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Abstract

We propose a speaker clustering model for tex-
tual dialogues, which groups the utterances of
a multi-party dialogue without speaker annota-
tions, so that the actual speakers are identical
inside each cluster. We find that, without know-
ing the speakers, the interactions between utter-
ances are still implied in the text, which suggest
the relations between speakers. In this work,
we model the semantic content of utterance
with a pre-trained language model, and the rela-
tions between speakers with an utterance-level
pairwise matrix. The semantic content repre-
sentation can be further instructed by cross-
corpus dialogue act modeling. The speaker
labels are finally generated by spectral cluster-
ing. Experiments show that our model outper-
forms the sequence classification baseline, and
benefits from the auxiliary dialogue act clas-
sification task. We also discuss the detail of
determining the number of speakers (clusters),
eliminating the interference caused by semantic
similarity, and the impact of utterance distance.

1 Introduction

Processing dialogues is a classical linguistic task.
With the development of pre-trained language mod-
els in recent years, studies on dialogues have made
great progress (Zhang et al., 2020; Roller et al.,
2021; Adiwardana et al., 2020). In general, these
training processes, especially pre-training, need a
large amount of data. Meanwhile, most of dialogue
models are designed to input speaker information,
for example, applying trainable speaker embed-
dings, or just assuming the dialogue is composed
of two speakers involved turn by turn, to introduce
dialogue structure information into the models. But
for common researchers, dialogue data is hard to
collect. Datasets like subtitles (Lison et al., 2018)
contain a lot of dialogue data of daily communi-
cation, but lack of speaker annotation. Some re-
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searches in related fields, such as conference tran-
scription (Raj et al., 2021; Fu et al., 2021; Kanda
et al., 2022) and multimodal body tracking (Vallet
et al., 2016; Nickel et al., 2005; Wang and Brand-
stein, 1999), may also be improved by text-based
speaker clustering techniques. Speaker clustering
can also be a self-supervision dialogue pre-training
procedure in the scenario that speaker annotation
is adequate. Therefore, it is valuable to develop
a model to reconstruct the missing identities of
speakers in textual dialogue data.

In order to reconstruct the speaker labels in the
dialogue, this work is dedicated to the method of
speaker clustering. Different from previous re-
searches on speaker identification (Kundu et al.,
2012; Ma et al., 2017; Ek et al., 2018), which
aim at selecting the most similar speaker from
the pre-modeled candidates, the speaker clustering
task aims at grouping the utterances into speaker-
specific clusters without any preset candidates (Lu-
kic et al., 2016). It is more useful because it works
on open corpus where the speakers cannot be mod-
eled in advance.

Speaker clustering is relevant to dialogue struc-
ture, because the process of turns follows certain
patterns. These patterns include the semantic con-
tent and the communicative functions of utterance,
and can be specifically represented as the dialogue
act (DA) of utterance and associations between di-
alogue acts respectively (Bunt et al., 2010). The as-
sociations between dialogue acts include question-
answer, request-response, offer-acceptance, etc.,
which are closely related to alternation of speak-
ers. Conversely, the relations between speakers
will be predicable if these patterns are available
from textual utterances.

In this work, the speaker relations are inferred
from the communicative functions by using an
utterance-level pairwise matrix. The speaker re-
lations have only two possible values, either same
or different. The relations among the whole dia-
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logue form this matrix, which is regarded as the
similarity matrix of the ground speakers.

The matrix can reconstruct the clusters of speak-
ers with a density-based clustering method. The
most popular algorithms of density-based cluster-
ing are spectral clustering (Von Luxburg, 2007) and
DBSCAN (Hess et al., 2019). In this work, we use
spectral clustering as the implementation, because
it is less sensitive to sparse points, which follows
this task that each utterance must be in a cluster.

Based on the above analysis, we build a model
that models the semantic content of utterances with
multi-task cross-corpus DA supervision, calculates
the speaker relations with the form of bilinear, and
generates the cluster labels with the method of spec-
tral clustering.

The main contributions of this paper are summa-
rized as follows.

• We build a speaker clustering model for
textual dialogue, which explicitly exploits
the communicative functions to reconstruct
speaker relations and outperforms the base-
line.

• The model can be further improved by auxil-
iary DA classification task. Even if a dataset
is lack of DA annotations, the model can still
be improved by cross-corpus DA data.

• We discuss the reliability of our method to
predict the number of clusters, the ability to
disambiguate between speaker relation and
utterance text similarity, and the impact of
utterance distance.

2 Related Work

This work targets for speaker clustering, and is
based on the theories of dialogue structure.

2.1 Speaker Clustering

As far as we know, there are few works directly on
speaker clustering in textual dialogues. However,
there are some previous works on speaker diariza-
tion in voice conversations, and speaker clustering
is the most important step in speaker diarization
(Tranter and Reynolds, 2006; Anguera et al., 2012;
Park et al., 2022). But these works only use audio
features as the basis to calculate relation without
considering the semantic information.

A previous work on speaker diarization through
pairwise relations based on audio (Lin et al., 2019)

uses spectral clustering as the top-level structure,
which provides an idea for our structural design.
But its focus is only audio features too, and it just
descends the loss similarity score without training
more fundamental features into fixed classes, which
makes it difficult for the feature extraction process
to guarantee generalization.

2.2 Dialogue Structure
The early researches in dialogue processing have
noticed that a dialogue is made up of turns. Each
turn is a combination of a speaker and an utterance.
The turns are push ahead following the semantic
cue. Specifically, dialogue turns have semantic
content and communicative functions, which can
be represented as dialogue acts (Searle and Searle,
1969) and adjacency pairs (Schegloff and Sacks,
1973) respectively. Every turn has its own dialogue
act. Two turns from different speakers will form an
adjacency pair if they have a behavior of interaction.
Base on statistical or machine learning methods,
it is realizable to predict the dialogue acts or the
adjacency pairs (Surendran and Levow, 2006; Li
et al., 2019; Li and Wu, 2016; Zhang et al., 2018).
The semantic content and communicative functions
involve the relations between speakers.

Pre-trained language models (Devlin et al., 2019;
Lewis et al., 2020; Brown et al., 2020) have demon-
strated their effectiveness on semantic modeling.
These works illustrate the idea of represent seman-
tic content with contextualized embeddings, i.e.,
trainable distributed vector in semantic space. How-
ever, most of the above models output word-level
embeddings to represent the meaning of a word in-
stead of the meaning of a whole sentence. There are
solutions to convert from word-level embeddings
to utterance-level embeddings, including using the
corresponding embedding of the [CLS] token and
using some pooling strategies (Ma et al., 2019;
Xiao, 2018).

2.3 Other Works Related to Speakers in
Dialogue

There are some researches relevant to speaker la-
beling in textual dialogues (Kundu et al., 2012;
Ma et al., 2017; Ek et al., 2018), but they are not
speaker clustering models directly. Most of them
depend on the assumption that each speaker has
its own speaking feature, e.g. the proportion of
stop words, short words, adverbs in its utterances.
Turn-taking detection is another type of speakers
labeling (Liang and Zhou, 2020; Aldeneh et al.,
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2018). It refers to identifying the positions where
the speakers change during the dialogue, but it only
focuses on the relations between two adjacent ut-
terances, instead of every pair of utterances among
a multi-party dialogue.

3 Model

The three main processes of this model are get-
ting representation of utterances, cooperating with
cross-corpus DA supervision, and calculating the
similarity score. Therefore, as the overall struc-
ture shown in Figure 1, the model is divided into
three parts in general: the utterance embedding part
(blue), the speaker clustering part (yellow), and the
set-specific DA classification part (red).
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Figure 1: Model structure.

During training process, each data batch consists
of B dialogues. To simplify the expression, we will
omit the term of batch averaging in the following
formulas. In a dialogue of the batch, there are
T turns. The speaker of the i-th turn is si. The
utterance of the i-th turn is ui.

The objective of the model follows multi-task
learning framework. The loss function of each
data batch L is a combination of the binary cross
entropy loss of the pairwise matrix Lmat and the
cross entropy loss of the DA prediction LDA. We
use a hyperparameter λ to moderate the association
between the two objectives. Formally,

L = Lmat + λLDA. (1)

The objective and structure will be described in
detail in the following sections.

3.1 Utterance Embedding
The first step of this model is to represent the se-
mantic content of utterances as distributed vectors.
Following previous works on text representation
and dialogue processing (Ma et al., 2019; Gu et al.,
2021), we concatenate the utterances in the dia-
logue with a [CLS] token prepended at the begin-
ning of every utterance, and append a [SEP] to-
ken after them. For a dialogue with T utterances
u1, u2, . . . , uT , the input format is

[CLS] u1 [CLS] u2 . . . [CLS] uT [SEP].

Comparing to modeling each utterance in a sep-
arate pre-trained language model, this format is
more lightweight that uses only a single BERT
model, and contributes to directly calculate the
word-level attentions across the utterances.

For each utterance, we take the output vectors
of all the tokens (including the leading [CLS] to-
ken), and concatenate the mean pooling and max
pooling results as the semantic representation, i.e.,
contextualized utterance embedding. Formally, the
j-th token of the utterance ui corresponds to the
contextualized token embedding ei,j outputted by
BERT. The utterance embedding is

ci = concat
[

mean
j

(ei,j),max
j

(ei,j)

]
, (2)

where mean and max are mean pooling and max
pooling functions through the stream dimension.
For a BERT model of hidden size dBERT, the
length of the contextualized utterance embedding
is 2dBERT.

3.2 Speaker Clustering
The relations between speakers are calculated by
the form of bilinear. Specifically, for a dialogue
with T turns, the contextualized utterance embed-
dings are

c1, c2, . . . , cT ∈ R2dBERT .

The similarity score of the utterances um and un
is the sigmoid mapping of bilinear form

sim(m,n) = σ(cTmWcn + b), (3)

where W ∈ R2dBERT×2dBERT and b ∈ R are trainable
parameters.

For each pair of utterances, the similarity score
is a real number between 0 and 1, denotes the prob-
ability that the corresponding speakers are identical.
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The similarities are symmetric, so each pair of ut-
terances is calculated just once, i.e., always having
m < n in Equation 3. All pairs of utterances finally
form a symmetric T × T matrix.

The loss function of the matrix is calculated with
the elements of the triangular. Formally,

Lmat =
1

C

T−1∑
m=1

T∑
n=m+1

BCE[sim(m,n), I(sm = sn)], (4)

where C = T (T − 1)/2 is the number of the utter-
ance pairs in the dialogue, I is indicator function,
and BCE is Binary Cross Entropy loss function1.

It is worth noticing that no additional positional
encoding or embedding is added when calculating
the similarity scores. We find that the positional
information taken from BERT is enough for current
calculation. Adding another positional information
to this layer does not improve the performance
according to our preliminary experiments.

We follow the spectral clustering algorithm to
cluster the utterances into clusters that each cluster
has the same speaker and different clusters have
different speakers (Von Luxburg, 2007; Lin et al.,
2019). For the audiences who are not familiar with
this technique, spectral clustering is a clustering
approach based on similarity graph and graph min-
cut problem, which has nothing to do with speech
spectra.

Given the symmetric similarity matrix S ∈
RT×T , we compute both of the two kinds of nor-
malized graph Laplacians, Lsym and Lrw, which
are the same as the definition in the review
(Von Luxburg, 2007). We use the eigenvalues of
Lrw to determine the number of clusters, and the
eigenvectors of Lsym to cluster2.

The eigenvalues of the Laplacian matrix are re-
lated to the number of clusters. If the appropriate
number of clusters is k, there will be a larger differ-
ence between the k-th smallest eigenvalue and the
(k + 1)-th smallest eigenvalue, which is known as
the spectral gap. The greater the number of clusters,
the less the overall eigenvalues will be. Therefore,
an appropriate threshold can be selected on the val-
idation set. If the k-th eigenvalue is greater than

1For the definition, refer to: https://pytorch.org/
docs/stable/generated/torch.nn.BCELoss.
html .

2Implemented by scikit-learn and called with parameter
assign_labels="discretize".

the threshold, the number of clusters will be con-
sidered to be less than k. Conversely, if the k-th
eigenvalue is less than the threshold, the number
of clusters will be considered to be greater than or
equal to k. The threshold is adjusted on the valida-
tion set to maximize the accuracy. We report the
results of both using the actual number of speakers
as the number of clusters and using the spectral gap
method to determine the number of clusters in the
experiment section.

3.3 Auxiliary Set-specific Dialogue Act (DA)
Classification

This part is designed as a auxiliary task to infuse di-
alogue act information into utterance embeddings.
We assume that the ability of understanding seman-
tic content will be stronger and the calculation of
similarity will be more accurate if the model can
predict the dialogue act of utterance correctly.

We present DA classification as part of the multi-
task learning framework. For each dataset, if
there are dialogue act annotations, we can use
these labels to supervise the model to adjust the
embeddings so that they express the correspond-
ing dialogue acts. However, there is a problem
that most of the DA-annotated datasets are not
big enough, comparing to the speaker-annotated
datasets. Meanwhile, these datasets are annotated
with different sets and rules, and they are difficult
to map to each other.

To solve this problem, we use a set-specific lin-
ear layer to adapt to different DA annotation sets.
For different DA annotation sets, we use different
linear layers to predict the corresponding number
of dialogue act types. The loss function LDA is
calculated by the multi-class cross entropy3 of the
corresponding linear layer, and the output from
other linear layers is ignored. With a shallow layer,
we can expect to obtain a more general semantic
representation. Formally,

LDA = − 1

T

T∑
m=1

log
exp (zm,tm)∑D
d=1 exp (zm,d)

, (5)

where zm,d is the output of the set-specific linear
layer of the m-th turn, d-th DA class, and tm is the
actual DA class of the m-th turn.

3For the definition, refer to: https://pytorch.
org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html .

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


738

4 Experiment

4.1 Datasets

Our datasets are composed of three corpora: the
Switchboard Dialogue Act Corpus (SwDA) (Stol-
cke et al., 2000), the Meeting Recorder Dialogue
Act Corpus (MRDA) (Shriberg et al., 2004), and
the Ubuntu Dialogue Corpus (Lowe et al., 2015).
The SwDA Corpus and the MRDA Corpus are two
common DA-annotated datasets. The SwDA Cor-
pus is a two-party dialogue dataset transcribed by
phone calls. The DA annotations are divided into
217 small categories and 43 major categories. The
MRDA Corpus is a multi-party dialogue dataset
transcribed by conferences. The DA annotations
are divided into 52 full categories, 12 general cat-
egories, and 5 basic categories. The Ubuntu Di-
alogue Corpus is a widely used dialogue dataset
collected from the chat records on the Ubuntu IRC
system, without DA annotation. For all the three
datasets, the adjacent utterances may be from the
same speaker.

For the SwDA Corpus, we first split the dialogue
streams into 10-turn segments, and then randomly
divide them into training, validation and test set by
the ratio of 8:1:1. For the MRDA Corpus, we use
the same set division as the original data, and then
split the dialogue streams into 10-turn segments.
For the Ubuntu Dialogue Corpus, We use the 10-
turn version released by previous works (Ouchi and
Tsuboi, 2016; Gu et al., 2021). Table 1 shows the
basic quantity statistics of the datasets.

Dataset Set Dialogues S/D

SwDA
Train 17059 2.00
Valid 2132 2.00
Test 2132 2.00

MRDA
Train 7485 3.01
Valid 1636 2.91
Test 1664 2.96

Ubuntu
Train 495226 4.08
Valid 30974 4.21
Test 35638 4.19

Table 1: Statistics of the datasets. “S/D” stands for
“average number of different Speakers per Dialogue”.

In the experiments, we use the 43 major cat-
egories of SwDA and the 52 full categories of
MRDA as our target DA sets in the auxiliary task.

We propose the results of the SwDA dataset and
the MRDA dataset as DA-annotated single-corpus

scenarios to analyze the role of the pairwise cal-
culation and the auxiliary DA classification task,
and the result of simultaneously training on SwDA,
MRDA, and Ubuntu datasets as a sophisticated
cross-corpus scenario. We will focus more on the
experimental results on the MRDA dataset, because
this dataset is both DA annotated and multi-party,
which is convenient to analyze various aspects of
the model.

4.2 Metrics

We employ two metrics in the experimental results,
the adjusted Rand index (ARI) (Hubert and Arabie,
1985)4 and the accuracy (ACC). The adjusted Rand
index is a common metric for clustering, which
measures the similarity between two sets of clus-
ters. The value ranges from -1 to 1. For a random
clustering, the mathematical expectation of ARI
is 0. The accuracy is calculated by transforming
the clustering problem into a classification prob-
lem. The idea is finding the best injective mapping
from the predicted clusters to the actual clusters.
Formally, enumerate all permutations of the set
{1, 2, . . . , n} where n is the number of predicted
clusters, so that

ACC (y, ŷ) = max
p∈P

1

T

T∑
i=1

I
[
p
(
ŷ(i)

)
= y(i)

]
,

(6)

where y is the labels of actual clusters, ŷ is the
labels of predicted clusters, p is a permutation of
the set {1, 2, . . . , n}, I is indicator function, and
y(i) is the element on index i in vector y.

The ACC result is utterance-level average statis-
tics, which is the number of correctly cluster-
assigned utterances divided by the total number
of turns in the dataset. The ARI result is dialogue-
level average statistics, which is the mean ARI
values among the dialogues.

The reason for using accuracy as a metric is that
it is convenient to observe the difference between
the predicted speakers and the real speakers af-
ter mapping. And it provides a comparable result
with other speaker identification models, not just
speaker clustering models.

4.3 Setup

We use the PyTorch framework (Paszke et al., 2019)
and common backpropagation for training. During

4Implemented by scikit-learn.
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training, we calculate the metrics on the validation
set and save the model parameters that maximize
the accuracy on the validation set to avoid overfit-
ting.

We use AdamW (Loshchilov and Hutter, 2019)
as the optimizer. By validating on the SwDA
dataset, we select the hyperparameters in lr={1×
10−5, 2×10−5, 3×10−5}, eps={1×10−4, 1×10−5,
1×10−6}, and weight_decay={0, 1×10−4}, to max-
imize the accuracy on the validation set. The final
choice, lr=2×10−5, eps=1×10−6, weight_decay=0,
betas=(0.9, 0.999), are used for all datasets.

We use BERT-base-uncased provided by Google
(Devlin et al., 2019; Turc et al., 2019) as the ini-
tialization parameter of the BERT part. All of the
BERT parameters and other linear and bilinear pa-
rameters are fine-tuned end-to-end.

For the SwDA and MRDA single-corpus experi-
ments, we select the association hyperparameter in
λ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. Every setting
is trained on a single RTX 2080Ti GPU for about
1.5 hours to select the best one on the validation set.
The final choice is λ = 0.2 for SwDA and λ = 0.1
for MRDA.

For the SwDA, MRDA, and Ubuntu cross-corpus
experiment, we select the association hyperparam-
eter in λ = {0.005, 0.01, 0.1}. For each training
step, the data batch consists of 3 random Ubuntu
dialogue segments, 1 random SwDA dialogue seg-
ment, and 1 random MRDA dialogue segment. Ev-
ery setting is trained on a single RTX 2080Ti GPU
for about 2 days to select the best one on the vali-
dation set. The final choice is λ = 0.01.

4.4 Baselines

Due to the lack of related works of text-based
speaker clustering, we cannot find an existing
model that is directly comparable. So we imple-
ment our baselines to prove the necessity of the
model design.

The first design to test is modeling the pairwise
relations. For comparison, we implemented a gen-
eral sequence classification model that changes the
speaker clustering part (including pairwise bilinear
layer and similarity matrix layer) to a multi-class
softmax layer. The number of output classes is
set to the maximum number of different speakers
in the dialogue. We trained this baseline model to
predict the sequential IDs of speakers in a dialogue.

The second design to test is the set-specific dia-
logue act classification task. For comparison, we

set λ = 0 as the ablation setting in this scenario,
while other parameters including the constitution
of input batches are consistent.

4.5 Results

Our experimental results of the single-corpus sce-
narios are shown in Table 2 and Table 3. The result
of the cross-corpus scenario is shown in Table 4.

Model
Valid Test

ACC ARI ACC ARI
Baseline .760 .486 .748 .463
Clustering .868 .596 .860 .575
- w/o DA Task .865 .585 .856 .566

Table 2: Result of SwDA dataset. The number of clus-
ters is set to 2 as the consistent groud-truth.

Model
Valid Test

ACC ARI ACC ARI
Baseline .543 .204 .527 .179
Clustering∗ .714 .317 .703 .301
- w/o DA Task∗ .706 .306 .700 .296
Clustering† .654 .298 .644 .279
- w/o DA Task† .648 .286 .642 .277

Table 3: Result of MRDA dataset. *: Given the actual
number of different speakers in the dialogue as the num-
ber of clusters for spectral clustering. †: Using spectral
gap method to predict the number of clusters for spectral
clustering.

Table 2 and Table 3 show the results of SwDA
and MRDA datasets respectively. Our multi-task
clustering model outperforms the sequence classifi-
cation baseline and the ablative setting without aux-
iliary DA classification task in all the tests. These
results prove that our auxiliary task improves the
semantic content representation and similarity cal-
culation if the training data has DA annotation and
the evaluating data has the same distribution as the
training data. The result of using the spectral gap
method to detect the number of clusters shows that
this model still outperforms the baseline and the
ablative setting even without prior knowledge of
the actual number of clusters.

Table 4 shows the results of training on all of
the three datasets, and evaluating on either all three
datasets or just the Ubuntu datasets. This model
still outperforms the baseline in all the tests. It
also outperforms the ablative setting in all the tests
in the scenario of given the ground-truth number
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Model Structure
S+M+U S+M+U (Ubuntu Only)

Valid Test Valid Test
ACC ARI ACC ARI ACC ARI ACC ARI

Baseline .530 .249 .531 .247 .513 .234 .516 .235
Clustering∗ .697 .299 .695 .296 .685 .279 .685 .280
- w/o DA Task∗ .696 .297 .694 .292 .684 .277 .684 .277
Clustering† .632 .284 .631 .282 .618 .264 .619 .264
- w/o DA Task† .633 .283 .632 .281 .618 .264 .619 .265

Table 4: Result of training synergistically on SwDA, MRDA, and Ubuntu datasets, and evaluating on the three
datasets (left) or only the Ubuntu dataset (right). *: Given the actual number of different speakers in the dialogue as
the number of clusters for spectral clustering. †: Using spectral gap method to predict the number of clusters for
spectral clustering.

of speakers. Even the Ubuntu-only result is pro-
moted by our set-specific DA classification task.
This proves that cross-corpus supervised training
is possible if we design the model with reasonable
structure and objective.

Another phenomenon reflected in Table 4 is that,
without specifying real number of speakers, there is
a different trend between the results of ACC metric
and ARI metric on S+M+U data. Actually, ARI is
more concerned about whether the dividing points
of clusters are correct, while ACC is the result after
mapping. Therefore, ARI is a more direct metric
that indicates whether the key points of speaker
alternation are found correctly.

5 Discussion

In this section, we discuss whether the substruc-
tures of the model work accurately, and whether
the model is disturbed by some possible factors
(semantic similarity and utterance distance).

5.1 Determining the Number of Speakers
For clustering problems, it is an important step to
predict an appropriate number of clusters. The prin-
ciple of using spectral gap to predict the number
of clusters has been described in Section 3.2. In
order to verify whether this method can accurately
predict the number of clusters, we make statistics
on the MRDA dataset. We also tried training a
multilayer perceptron (MLP) with the eigenvalues
to predict the number of clusters. The multilayer
perceptron uses 90% of the validation set data for
training and the remaining 10% for validation.

Table 5 shows that the spectral gap method can
predict more than 94% of the test data almost accu-
rately, where error is less than or equal to 1. This
method is more accurate than the multilayer per-
ceptron.

Method
Accurate ≤ ±1

Valid Test Valid Test
Spectral Gap .485 .482 .941 .942
- w/o DA Task .464 .468 .941 .941
MLP .498 .480 .927 .928
- w/o DA Task .499 .467 .928 .931

Table 5: Speaker (cluster) number prediction accuracy
on the MRDA dataset. “≤ ±1” means the proportion of
data whose difference between the predicted value and
the actual value is less than or equal to 1.

The result also shows that the DA auxiliary
task can not only directly improve the accuracy
of speaker relation detection, but also help improve
the accuracy of speaker number prediction.

5.2 Distinguishing Speaker Relation and
Semantic Similarity

The similarity calculation takes a bilinear form. In
this case, it is necessary to check whether the model
confuses speaker similarity and utterance text sim-
ilarity (semantic similarity). Semantic similarity
is one of the fundamental features for inferring
the relation between speakers, i.e., utterances from
the same speaker tend to be semantically similar
(Kundu et al., 2012; Ma et al., 2017; Ek et al., 2018).
However, it would be harmful if the model takes
semantic similarity as the only factor in prediction,
because utterances from different speakers with
same words are very common in dialogues, such
as greetings, farewells, and rhetorical questions,
and they will make a higher rate of false positives.
Therefore, it is necessary to prove that the utter-
ance embeddings and the similarity scores take
full account of the contextual utterances, instead
of simply extracting context-independent semantic
features of the utterances.



741

Accurary Student’s t-test p-value Spearman’s rank
Correctness P1-S1=0.645 P2-S1=4.49×10−104 -
Confusion P1-C1=0.550 P1-C2=8.66×10−12, P2-C1=9.70×10−4 P2-C2=0.0866
Inherence S1-C1=0.526 S1-C2=1.23×10−3 -

Table 6: The correlations about correctness (between P and S), confusion (between P and C), and inherence (between
S and C). There is no Spearman’s rank correlation coefficient about correctness or inherence because S does not
have numerical dimension.

The way of demonstration is calculating three
types of correlations:

• Correctness: The correlation between predic-
tion results (P) and speaker relations (S).

• Confusion: The correlation between predic-
tion results (P) and context-independent se-
mantic similarities (C).

• Inherence: The correlation between speaker
relations (S) and context-independent seman-
tic similarities (C).

If the correctness is much greater than the confu-
sion, it will prove that the model is aware of speaker
relations without being compromised by context-
independent semantic similarity. The inherence is
necessary because the speakers and the semantic
features are dependent, and the ground correlation
between them needs to be excluded.

To determine these three types of correlations,
we collected values in 5 dimensions:

• P1: The prediction result of whether the
speakers are same or different (binary values).

• P2: The prediction result of similarity score
in the pairwise matrix (numerical values).

• S1: Whether two speakers are same of differ-
ent (binary values).

• C1: Whether two utterances are semantically
similar or dissimilar (binary values).

• C2: The semantic similarity between two ut-
terances (numerical values).

The values are collected from the validation set
of MRDA. We select one pair of turns with the
same speaker and one pair of turns with different
speakers from each dialogue to form a new dataset.
In this dataset, the two types of S1 are balanced.
The utterance embeddings are calculated with a

pre-trained-only BERT model5, and the values in
C2 are calculated by cosine similarity between the
embeddings. Then, the pairs of turns are sorted
by C2 in ascending order, and the first half of the
pairs are regarded as dissimilar pairs, and the last
half of the pairs are regarded as similar pairs, form-
ing a balanced C1. The values in P1 and P2 are
predicted by the model.

The experimental results are divided into three
categories:

• The correlation between two binary dimen-
sions is evaluated by the accuracy (whether
it meets the hypothesized association). A
greater value indicates a stronger correlation.

• The correlation between a binary dimension
and a numerical dimension is evaluated by
Student’s t-test. A smaller p-value indicates a
stronger correlation.

• The correlation between two numerical dimen-
sions is evaluated by Spearman’s rank corre-
lation coefficient. A greater absolute value
indicates a stronger correlation.

The statistics of correlation are shown in Table 6.
Three conclusions can be drawn from it:

First, there is a strong correlation between pre-
diction results and speaker relations. As the Cor-
rectness row shows, P1-S1 is much greater than
0.5, and P2-S1 is very small.

Second, there is a ground correlation between
speaker relations and context-independent semantic
similarities. As the Inherence row shows, S1-C1
is slightly greater than 0.5, and S1-C2 is between
10−3 and 10−2.

Third, there is a weak correlation between pre-
diction results and context-independent semantic
similarities. As the Confusion row shows, P1-C1
is slightly greater than 0.5, P1-C2 and P2-C1
are less than 10−3, and P2-C2 is slightly greater
than but close to 0. But this correlation is mainly

5BERT-base-uncased without any fine-tuning.
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brought by the ground correlation between speaker
relations and semantic similarities, because the cor-
relations about Confusion approximately equal to
the correlations about Inherence, and much less
than the correlations about Correctness.

These results complete the demonstration that
this model can detect speaker relations without be-
ing compromised by context-independent semantic
similarity.

5.3 Distance Impacts Similarity Modeling

We investigate the results of internal layer of
the pairwise similarity score by aggregating the
position-level error of similarity matrix, as shown
in Figure 2. The item in m-th row and n-th column
is the mean error of the similarity score of the m-th
turn and n-th turn. Formally,

err(m,n) =
∣∣sim(m,n)− y(m,n)

∣∣ . (7)

We take the results of similarity matrix on the
Ubuntu test set, and plot the heatmap of mean er-
ror. The figure shows that the model successfully
models the relations between utterances, especially
the adjacent ones. For longer-distance pairs, it is
constitutionally more difficult to be modeled, but
the model is still effective with a mean error less
than 0.5.

1 2 3 4 5 6 7 8 9 10
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10 0.25
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Figure 2: Error heatmap of similarity matrix on the
Ubuntu test set with auxiliary DA classification task.
Darker color means more accurate, and lighter color
means more erring.

6 Conclusion

We propose a text-based dialogue speaker cluster-
ing model. Based on the theory of the dialogue
structure, the model holds the semantic content and
the communicative functions explicitly with the

BERT layer and the similarity matrix. The model
is enhanced by the idea of cross-corpus supervision
with the auxiliary set-specific dialogue act classifi-
cation task. It finally generates the cluster labels of
speakers with spectral clustering. Our model out-
performs the sequence classification baseline and
the non-DA ablation on almost all tests. Additional
discussion illustrates the accuracy in predicting the
number of speakers (clusters) and the ability to
distinguish between speaker relation and semantic
similarity of our model. We also show that the pre-
cision of speaker similarity prediction varies with
utterance distance.

In future research, it is worth trying further pre-
training the model on dialogue data, which will
likely help to perceive dialogue turns and extract
better utterance embeddings. We will also explore
for a method to make the similarity calculation be-
tween long-distance utterance pairs more accurate.
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