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Abstract

Despite having achieved great success for senti-

ment analysis, existing neural models struggle

with implicit sentiment analysis. This may be

due to the fact that they may latch onto spu-

rious correlations (“shortcuts”, e.g., focusing

only on explicit sentiment words), resulting

in undermining the effectiveness and robust-

ness of the learned model. In this work, we

propose a CausaL intervention model for im-

plicit sEntiment ANalysis using instrumental

variable (CLEAN). We first review sentiment

analysis from a causal perspective and analyze

the confounders existing in this task. Then, we

introduce an instrumental variable to eliminate

the confounding causal effects, thus extracting

the pure causal effect between sentence and

sentiment. We compare the proposed CLEAN

model with several strong baselines on both the

general implicit sentiment analysis and aspect-

based implicit sentiment analysis tasks. The re-

sults indicate the great advantages of our model

and the efficacy of implicit sentiment reason-

ing.

1 Introduction

The remarkable success that the field of sentiment

analysis has achieved in the past few years has been

derived from the use of increasingly high-capacity

neural models to extract correlations from data (Pe-

ters et al., 2018; Devlin et al., 2018; Liu et al.,

2019). Although having reached state-of-the-art

results, correlational predictive models can be un-

trustworthy (Guidotti et al., 2018): they may latch

onto spurious correlations (“shortcuts”), leading to

poor generalization.

One shortcut might be the explicit sentiment

word which is a powerful feature cue. Unfortu-

nately, such a shortcut severely harms the general-

ization and the robustness of the learned models

in implicit sentiment analysis (ISA), where there

are no explicit sentiment words about the topic
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sentiment word

confounder
implicit, neg

The food was definitely good, but when all was 
said and done, I just couldn't justify it for the 
price (including 2 drinks, $100/person)...

explicit, pos

g

Figure 1: An examples of confounding factors in im-

plicit sentiment analysis for ABSA.

or aspect (Russo et al., 2015). Figure 1 gives a

sample of aspect-based sentiment analysis (ABSA)

(Zhou et al., 2020b,a), which aims to predict the

sentiments of the aspects in the sentence. The

aspect “food” has explicit sentiment words “def-

initely good”, but aspect “price” does not. If the

model thoughtlessly relies on shortcuts to senti-

ment words, it may make an incorrect sentiment

prediction about the aspect “price”. In fact, there

are many other kinds of shortcuts that models may

learn, for example, the rhetorical question mood

expressed by the users (Ranganath et al., 2018) and

the co-occurrence of neutral words and sentiment

polarities (Wang and Culotta, 2020).

The above shortcomings can potentially be ad-

dressed by the causal perspective: knowledge of

causal relationships between observations and la-

bels can be used to formalize spurious correlations

and alleviate the predictor’s dependence on them

(Bühlmann, 2020; Veitch et al., 2021; Feder et al.,

2021). Motivated by a causal perspective, we incor-

porate domain knowledge of the causal structure

of the data into the learning objective. Specifically,

causal intervention is used to curb dependence on

shortcuts (e.g., “good → positive”) and improve

the ability to reason causal effect between sentence

and sentiment.

In this paper, we rethink the ISA task from a

causal perspective and unitize the casual interven-

tion on deep learning. We argue that the causal

effect obtained by reasoning directly from the sen-
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tence (X) to the sentiment (Y ) without relying on

other extra prior stereotypical lexical impressions is

closer to the original semantic analysis. Our work

aims at eliminating the confounding causal effects

of C → Y and thus extracting the pure causal ef-

fect between sentence and sentiment. Inspired by

the instrumental variable in causality, we propose a

CausaL intervention model for implicit sEntiment

ANalysis using instrumental variable (CLEAN).

Different from the other work with causal inter-

vention like back-door adjustment (Landeiro and

Culotta, 2016), other variables like confounders

are not required to be observed. CLEAN contains

two-stage learning: (1) In the first stage, we model

the relationship between the instrumental variable

and sentence; (2) In the second stage, we dismiss

the spurious correlation between confounders and

sentiment by means of the relationship obtained

from the first stage.

To evaluate the effectiveness of our CLEAN, we

conduct a series of experiments on both the general

implicit sentiment analysis and aspect-based im-

plicit sentiment analysis. In particular, we compare

our model with several the mainstream baselines

and the results show the great advantages of our

model on ISA. We also validate the robustness of

the model by adversarial attack and case studies,

which proves that our model successfully dismisses

the spurious correlation caused by sentiment words

and extracts the pure causal effect.

The main contributions are summarized as fol-

lows.

• We rethink the implicit sentiment from a causal

perspective and proposed a casual intervention

model for implicit sentiment analysis (CLEAN).

• To remove the spurious causes of confounders,

we incorporate instrumental variable into neural

network to enhance its causal reasoning ability.

• We conduct experiments on diverse datasets, in-

cluding partially implicit and totally implicit sen-

timent, which shows our effectiveness and ratio-

nality to reason implicit sentiment.

2 Preliminaries

2.1 Structural Causal Model and Causal
Effect

In our paper, Structural Causal Model (SCM) (Gly-

mour et al., 2016) is represented as a directed

acyclic graphs (DAGs) G = {V,E} to reflect

X Y

C

Sentence Sentiment

Confounder

(a) Causal Graph

Z X Y

C

Instrumental 
Variable

Sentence Sentiment

Confounder

(b) Instrument Variable for Causal
Intervention

Figure 2: Causal Graph

causal relationships, where V denotes the set of

observational variables and E denotes the direct

causal effect (Figure 2(a)). X is a direct cause of

Y when variable Y is the child of X .

Variable X and Y is called treatment variable

and outcome variable respectively when observ-

ing the causal relationship between them. The

other variables we do not consider their causal re-

lationship are called error terms (ε), also known

as exogenous variables. Significantly, total effect

between X and Y , denoted as P (Y | X), is con-

ceptually different from causal effect of X → Y ,

denoted as P (Y | do(X = x)) because the

causal effect only involves the direct path from

X to Y , while the total effect involves all paths

between X and Y . Based on the ideal hypoth-

esis that none of the error terms will involve in

the path between X and Y , people usually treat

the total effect and the causal effect as the same.

But the actual fact is that a part of error terms

(we call it confounder (C)) serves as a common

cause of the treatment and outcome, denoted as

X ← C → Y . Consequently, the total effect

is practically different from the causal effect, i.e.

P (Y | do(X = x)) �= P (Y | X) and treatment-

outcome relationship may well be obscured by the

spurious correlation between C and Y generated

by confounder (Pearl, 2009; Hernán MA, 2020).

2.2 Instrument Variable for Causal
Intervention

To recover the gap between total effect P (Y | X)
and casual effect P (Y | do(X = x)) and de-

rive pure causal effect, we must “adjust” for po-

tential confounder (C) (Pearl, 1995). Fortunately,

applying causal intervention can extract the pure

causality from the correlation and therefore over-

come the problem of confounding bias. There are

four key interventions: randomized controlled trial,

backdoor adjustment, front-door adjustment, and

instrumental variable estimation. Randomized con-
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trolled trials are simply not practicable for natural

language, and both the front-door and back-door

adjustment require additional observable variables.

However, the confounders (e.g., rhetoric confound-

ing word, such as rhetorical questions and sarcasm)

are too polymorphic to be observed exhaustively

for implicit sentiment analysis. We adopt the instru-

mental variable to dismiss the spurious correlations

instead of directly observing confounders (Figure

2(b)).

Before the intervention, we should find a suitable

instrumental variable (Z) that qualifies well the

requirements as follows:(Brito and Pearl, 2012)

1. Z is independent of all error terms ε that have

an influence on Y which is not mediated by X ,

Cov(Z, ε) = 0.

2. Z is not independent of X , Cov(Z,X) �= 0.

The intuition behind this definition is that all

correlation between Z and Y requires X to act as

an intermediary.

Generally, instrument variable estimation con-

tains two stages (Angrist and Pischke, 2008). In the

first stage, the coefficient α is obtained by regres-

sion estimation of X and Z, denoted as Cov(Z,X).
In the second stage, substitute X with the expres-

sions including Z obtained in the first stage into

the expression of Y and then regress Y on Z , de-

noted as Cov(Z, Y ). There is no confounding bias

between Y and Z owing to the restriction in the

definition of Z, i.e. Cov(Z, ε) = 0 . A simple lin-

ear model for IV estimation consists of 2 equations:

X = αZ + εX ;Y = ωX + εY (1)

where Y is the outcome variable (e.g., sentiment),

X is the treatment variable (e.g, sentence), Z is the

instrumental variable (e.g., stochastic perturbation),

and εX and εY are error terms including but not

limited to confounders(C). Under the conditions

above, it can be proved that the equation presents

an asymptotically unbiased estimate of the effect

of X on Y (Angrist et al., 1996).

ωIV =
1
n

∑n
i=1(zi − z)(yi − y)

1
n

∑n
i=1(zi − z)(xi − x)

=
Cov(Z, Y )

Cov(Z,X)
(2)

3 Our Approach

In this section, we introduce our CLEAN model

for implicit sentiment analysis (Figure 3). We first

rethink the ISA from a causal perspective (Section

3.1). Then, we adopt stochastic perturbation as

instrumental variable (Section 3.2) and estimate

instrumental variable in two stages (Section 3.3

and 3.4).

3.1 Sentiment Analysis from Casual
Perspective

Given a sentence X , consisting of a sequence

of tokens (x1, x2, ..., xn), our task aims to an-

alyze the polarity Y . For aspect-based sen-

timent analysis task, we concatenate the sen-

tence and the aspect as the input X =
(x1, x2, ..., xn, [SEP ], a1, a2, ..., am). In the cur-

rent method, a deep neural network is used as a

classifier to predict the sentiment polarity label as

output and the sentence as input (as Equation 3).

y = h(x;w) = Wxy · x+ εy (3)

where εy denotes as the error terms including con-

founders (c) and other errors (ε̂y).

The prediction above is based on the hypothe-

sis that error terms will not involve in the causal

path between X and Y and ignore the influence of

error terms mostly. Nevertheless, several research

has found that text classification systems based on

neural networks are biased towards learning fre-

quent spurious correlations (Leino et al., 2018). It

urges us to focus on the longtime unheeded but

unavoidable existence of confounder (C) in error

terms, which results in the overlooked gap between

total effect and causal effect, denoted as the path

X ← C → Y . The Equation 3 can be updated in

consideration of confounder (c) (Equation 4).

y = h(x;w) = Wxy · x+Wcy · c+ ε̂y (4)

where c and ε̂y denotes the confounder and other

error terms respectively, Wcy denotes the causal

effect of C → Y .

In previous studies, gender (Field and Tsvetkov,

2020), age, and address (Landeiro and Culotta,

2016) were found to be confounders in text classifi-

cation. As for ISA, we focus rather on the naturally

existing confounder within the text, i.e., sentiment

words. Sentiment words affect the form of the

text as a component of the text (i.e., the writer’s

word choice determines the form of expression)

and also affect sentiment expression (Xing et al.,

2020). The existence of sentiment words as con-

founder makes it difficult to distinguish the pure

causal effect of X → Y and the prediction indis-

criminately depends on the spurious correlation
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<fancy, negative> (for finger swipes), …
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Sentence

Sentiment

Confounder

Z

X

Y

C

1 Stochastic Perturbation as Instrumental Variable

As for all the fancy finger swipes -- I just gave up and attached a mouse.

As and all the fancy finger swipes -- I just gave up for attached a mouse.

Random Swap
Random Deletion
Random Insertion
Synonym Substitution

As for all the fancy finger swipes -- I just gave up and attached a mouse.

As for all coated the fancy finger swipes -- I just gave up and attached a mouse.

As for all the fancy finger swipes -- I just break up and attached a mouse.

IV Loss

| |
Figure 3: The framework of our CLEAN.

between sentiment words and sentiment will fail in

ISA. The main forms are as follows:

• Inter-aspect Confounding Word Explicit sen-

timent words of other aspects with opposite sen-

timent in the sentence confounds the prediction

effect of the current aspect.

• Inter-clause Confounding Word In an adver-

sative compound sentence, the other clauses with

opposite semantics confound the prediction effect

of the current clause.

• Rhetoric Confounding Word Sentiment

words conveying the opposite of the norm in rhetor-

ical devices such as rhetorical questions and sar-

casm confound the prediction effect.

• Dynamic Neural Confounding Word Neutral

words show dynamic sentiment polarity in different

contexts, but the model trained by biased data only

learns the spurious correlation of one polarity.

We also provide a detailed analysis of the con-

founder in case studies (Section 5.2).

Inspired by causal intervention with instrumen-

tal variable (Section 2.2), we adopt two-stage in-

strument variable estimation for ISA to achieve

the goal that distinguishes the pure causal effect of

X → Y without any spurious correlations, denoted

as P (Y | do(X = x)).

3.2 Stochastic Perturbation as Instrumental
Variable

For text, the two restrictions of instrumental vari-

able could be translated into two basic opinions:

(1) instrumental variable Z will not influence the

sentiment polarity via any other casual path except

through sentence X; (2) instrumental variable Z

will influence the format of sentence X . Intuitively,

we choose the stochastic perturbation as the instru-

mental variable of ISA. Inspired by the work of data

augmentation (Guohang et al., 2020), we choose

random swap, random deletion, random insertion,

and synonym substitution as stochastic perturba-

tion: A) Random Swap: Swap word randomly;

B) Random Deletion: Delete word randomly with

probability p; C) Random insertion: Insert word

randomly by word embeddings similarity; D) Syn-
onym Substitution: Substitute word by WordNet’s

synonym. It fortunately meets the requirements of

instrumental variable well: (1) stochastic perturba-

tion obviously has no independent effect on senti-

ment, except through augmentation sentences, i.e.

Cov(Z, ε) = 0; (2) stochastic perturbation above

will definitely change the sentence into another

form, i.e. Cov(Z,X) �= 0.

3.3 The First Stage of CLEAN
Following the traditional pattern of instrumental

variable estimation (Section 2.2), the first stage

of CLEAN is to establish the causal relationship

between stochastic perturbation (Z) and sentence

(X), i.e. Z → X . We use two open source tools1

to generate augmentation samples xz from the orig-

inal sample x and the formal expression is as fol-

lows.

xz = f(x, z)

where f(·) denotes the different stochastic perturba-

tion on the original sentence. For a specific stochas-

tic perturbation zi, we have xzi = f(x, zi) ≈ αi ·x.

1https://github.com/jasonwei20/eda_nlp
https://github.com/makcedward/nlpaug
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Table 1: The statistics information of the datasets. IS means the percent of samples that are implicit sentiment.

Dataset
Postive Neural Negative IS (%)

Train Test Train Test Train Test Train Test
Restaurant 2164 728 805 196 633 196 28.59 23.84
Laptop 987 341 866 128 460 169 30.87 27.27
CLIPEval 435 144 205 72 640 155 100.00 100.00

To obtain the accurate value of α which can well

represent the relationship between x and xz , a neu-

ral network was constructed based on the BERT

and α was set as a self-learning parameter.

αi = min
α

∑

xzi=f(x,zi)

‖ M(xzi)− α · M(x) ‖

whereM denotes a text encoder (e.g., BERT).

3.4 The Second Stage of CLEAN

Substituting the relation above between original

sample x and augmentation sample xzi into Equa-

tion 4, we will get the y |x=xzi
with different pro-

portionality coefficient α obtained from the first

stage.

y |x=xzi
= Wxy · xzi +Wcy · c+ ε̂y

= αi ·Wxy · x+Wcy · c+ ε̂y

= αi · y |do(x=x) +Wcy · c+ ε̂y

(5)

where y |do(x=x) denotes the prediction only along

the path X → Y .

As the neural network is not totally linear, we

slightly generalize the usage of two stages in instru-

mental variable. We set the dismission of influence

of the confounder as a regularization function in-

stead of directly calculating the effect between X
and Y as a single value (Equation 2), which is

obviously more fit for deep learning method.

LIV =
∑

i �=j

‖ αj · y |x=xzi
−αi · y |x=xzj

‖

The reason we just model the prediction y |x=xzi

and unitize the regularization loss on it is that the

essence of theLIV is to force the model to suppress

the confounding effect caused by sentiment words.

It can be easily proved by substituting the y |x=xzi

with Equation 5 obtained by two-stage learning.

The benefit is obviously that we can suppress the

confounding effect without directly observing the

confounders (c).

LIV =
∑

i �=j

‖ (αi − αj) · (Wcy · c+ ε̂y) ‖

In addition, the model should not go to the

other extreme, i.e., ignore sentiment words entirely,

which would be inconsistent with the normal pro-

cess of natural language understanding. We set a

hyperparameter β to achieve balance and combine

the causal regularization loss function LIV with

the conventional cross-entropy loss LCE and the

influence of the β is analyzed in Section 5.3.

LALL = LCE + βLIV

4 Experiment

4.1 Datasets and Metrics

Implicit Sentiment Analysis To show our

model’s better performance in understanding im-

plicit sentiment, we evaluate the implicit polarity

prediction on a total implicit dataset, CLIPEval

from SemEval 2015 task 9 (Russo et al., 2015),

which consists of self-reported entity reviews col-

lected from psychological research with 1,280 sen-

tences for the training and 371 for the test.

Aspect-based Implicit Sentiment Analysis As

our aim to dismiss the spurious correlation between

explicit sentiment words and polarity, we also con-

ducted experiments on both explicit and implicit

datasets, Laptop and Restaurant review from Se-

mEval 2014 task 4 (Pontiki et al., 2014). The seg-

mentation of explicit sentiment (ESE) and implicit

sentiment (ISE) is based on the work of (Li et al.,

2021b) based on the annotation of opinion words

(Fan et al., 2019).

We adopt two widely used metrics accuracy and

macro-F1 to evaluate the performance of our model

and the baselines.

4.2 Baselines

To investigate the effectiveness of our CLEAN

model, we compare it with several typical baseline

models for implicit sentiment analysis and aspect-

based implicit sentiment analysis.

Implicit Sentiment Analysis We select four

popular baselines for implicit sentiment analysis,

which are listed as follows. SHELIFBK (Dragoni,
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Table 2: The main results for aspect-based sentiment analysis. For ESE and ISE, we provide the F1 score. We use

the results reported in (Li et al., 2021b). The baselines with † are our implementation.

Restaurant Laptop
Acc F1 ESE ISE Acc F1 ESE ISE

ATAE-LSTM 76.90 62.64 84.16 53.71 65.37 62.92 75.69 37.86
IAN 76.88 67.71 86.52 46.07 67.24 63.72 75.86 44.25
RAM 80.23 70.80 85.11 55.81 74.49 71.35 75.86 44.25
MGAN 81.25 71.94 85.18 60.04 75.39 72.47 76.16 56.31

NN

TransCap 79.55 71.41 86.52 59.93 73.87 70.10 77.16 60.34
ASGCN 80.77 72.02 84.29 62.91 75.55 71.05 75.46 57.77
BiGCN 81.97 73.48 87.19 59.05 74.59 71.84 79.53 62.64
CDT 82.30 74.02 88.79 65.87 77.19 72.99 77.53 68.90

GNN

RGAT 83.30 76.08 89.45 61.05 77.42 73.76 80.17 65.52
BERT-SPC 83.57 77.16 89.21 65.54 78.22 73.45 81.47 69.54
CapsNet+BERT 85.09 77.75 91.68 64.04 78.21 73.34 82.33 67.24
BERT-PT 84.95 76.96 92.15 64.79 78.07 75.08 81.47 71.27
BERT-ADA 87.14 80.05 94.14 65.92 78.96 74.18 82.76 70.11
R-GAT+BERT 86.60 81.35 92.73 67.79 78.21 74.07 82.44 72.99
TransEncAsp 77.10 57.92 86.97 48.96 65.83 59.53 74.31 43.20
TransEncAsp+SCAPT 83.39 74.53 88.04 68.55 77.17 73.23 78.70 72.82

BERT-SPC† 85.09 77.19 91.68 64.04 77.90 73.50 80.99 69.71

BERT-SPC† (Aug4) 84.20 76.55 90.50 64.04 76.65 70.86 81.64 63.43

BERT-SPC† (Aug8) 80.98 67.77 90.39 50.94 75.71 71.62 77.97 69.71

BERT

BERT-SPC† (Aug16) 77.59 67.44 85.35 52.81 74.61 69.92 77.97 65.71
Ours CLEAN 87.05 81.40 92.50 69.66 80.41 77.25 81.21 78.29

2015), ATTLSTM (Lin et al., 2017), MTL (Zheng

et al., 2018), BERT-SPC (Xu et al., 2019).

Aspect-based Implicit Sentiment Analysis The

commonly used baselines can be split into three

parts, neural network, graph neural network, and

BERT-based models, which are given as follows.

Neural Network: ATAE-LSTM (Wang et al.,

2016), IAN (Ma et al., 2017), RAM (Chen et al.,

2017), MGAN (Fan et al., 2018).

Graph Neural Network: TransCap (Chen and

Qian, 2019), ASGCN (Zhang et al., 2019), BiGCN

(Zhang and Qian, 2020), CDT (Sun et al., 2019),

RGAT (Wang et al., 2020).

BERT-based Models: BERT-SPC (Xu et al.,

2019), CapsNet+BERT (Jiang et al., 2019), BERT-

ADA (Rietzler et al., 2020), R-GAT+BERT (Wang

et al., 2020), TransEncAsp (Li et al., 2021b),

TransEncAsp+SCAPT (Li et al., 2021b).

Moreover, to explore the influence of the aug-

mentation sentences, we add them into the train-

ing dataset for our basic model (BERT-SPC). For

example, BERT-SPC (Aug4) means we add four

augmentation samples for each example.

4.3 Implementation Details
We implement CLEAN with PyTorch based on

Hugging Face Transformer 2 and run them on the

GPU(NVIDIA GTX 2080ti). During training, we

set the coefficient λ of L2 regularization item is

2https://huggingface.co/bert-base-uncased.

0.01, 10−5 and dropout rate is 0.1. The learning

rate is set as 2e-5 and the batch size is set as 16.

Adam optimizer (Kingma and Ba, 2014) is used to

update all the parameters.

5 Experimental Analysis

5.1 Main Results

To evaluate the performance of our CLEAN model,

we compare it with several mainstream baseline

models for both the implicit sentiment analysis and

aspect-based implicit sentiment analysis (Table 3

and Table 2). We find the following observation

from these tables. First, our model outperforms

all the baselines in most cases. Particularly, our

model obtains the best F1 scores over all the three

datasets of two tasks. Second, our CLEAN strat-

egy significantly improves the performance of the

baseline. CLEAN improves more than two points

in terms of F1 over all the datasets compared with

BERT-SPC, which is the base of our model. Third,

our model can improve the performance of implicit

sentiment analysis effectively. For example, com-

pared with the BERT-SPC†, we obtain more than

five points improvement on ISE over both Restau-

rant and Laptop. Also, we obtain the best results of

implicit sentiment analysis over CLIPEval. Forth,

the model that regards the augmentation sentence

as a data augmentation (e.g., BERT-SPC† (Aug4))

performs even worse than the one without aug-

mentation as noise may exist. This shows that our
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Sentence Example Target BERT-SPC ISAIV
E1 The food was definitely good , but when all was said and done, I just 

couldn't justify it for the price (including 2 drinks, $100/person)...
price positive negative

E2 And as for all the fancy finger swipes -- I just gave up and attached a 
mouse.

mouse negative neutral

E3 I was a little concerned about the touch pad based on reviews, but 
I've found it fine to work with.

touch pad negative positive

E4 How can hope to stay in business with service like this? service positive negative
E5 The steak melted in my mouth. steak negative positive
E6 15% gratuity automatically added to the bill. gratuity positive positive

Figure 4: Some examples of case studies.

Table 3: The main results for implicit sentiment analysis.

We use the results reported in (Xiang et al., 2021). The

baselines with † are our implementation.

Method
CLIPEval

Acc F1
SHELLFBK 56.00 54.00
ATTLSTM 82.43 82.21
MTL 82.94 83.17

BERT-SPC† 87.06 84.74

BERT-SPC† (Aug4) 85.71 83.56

BERT-SPC† (Aug8) 86.52 85.30

BERT-SPC† (Aug16) 85.44 84.54
CLEAN 88.95 87.49

CLEAN algorithm can help learn the implicit senti-

ment reasoning behind the data.

5.2 Case Studies

We present five samples in Figure 4 to explain

the four main types of confounders (Section 3.1),

which shows the effectiveness and rationality of

our model to reason implicit sentiment. (1) Inter-
aspect Confounding Word. In example E1, “defi-

nitely good” is the sentiment words of aspect food,

implying positive sentiment but confounds the pre-

diction of aspect price. In E2, the user expresses

a negative sentiment towards aspect finger swipes
with opinion word “fancy”, which confounds the

prediction of aspect mouse. (2) Inter-clause Con-
founding Word. In E3, the first and second clauses

form an adversative relation, and the true meaning

of the expression is that the mouse works well,

but the sentiment word “a little concerned” in the

first clause confounds the prediction. (3) Rhetoric
Confounding Word. In E4, the customer used the

rhetorical device of a rhetorical question to express

that the restaurant’s service was terrible, but the

existence of the word “hope” confounds the pre-

diction, (4) Dynamic Neural Confounding Word.
In E5, the word “melted” is absolutely a neutral

(a) Laptop (b) CLIPEval

Figure 5: The influence of β

word, but when we directly count the proportion of

aspect-level sentiment polarity that co-occur with

“melted”, we surprisingly find that 83.33% aspect

polarity is negative, which well explains why the

previous model predicts “negative” strangely. Due

to the unbalanced distribution of training data, the

model tends to tag the neural word with specific

sentiment polarity and predict based on this spuri-

ous correlation learned superficially before.

5.3 Further analysis

Influence of Augmentation Sample Number.
We explore the influence of augmentation sample

number here (Table 4). The influence of sample

number on model performance depends on two con-

flicting factors: the degree of deviation from the

original sentence and the chance to find more poten-

tial confounders. With the increase in sample num-

ber, the model has a greater chance of finding more

potential confounders and adjusting for them. On

the other hand, a larger generation samples number

means that more samples deviating from the origi-

nal sentence are involved in the learning procedure,

and therefore the accuracy of prediction decreases.

Over Restaurant, the two conflicting factors reach

a better balance at 8; while on Laptop, the negative

effect of semantic deviation outweighs the positive
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Table 4: The influence of augmentation sample number.

#Num
Restaurant 0.6 Laptop 0.4

Acc F1 ESE ISE Acc F1 ESE ISE
4 86.88 80.99 92.50 68.91 80.41 77.25 81.21 78.29
8 87.05 81.40 92.50 69.66 78.68 75.23 79.70 76.00
16 85.09 77.75 91.21 65.54 78.06 75.04 79.05 75.43

Table 5: The results of robustness.

Model
Restaurant (Trans.) Laptop (Trans.)
Acc F1 Acc F1

BERT-SPC 57.04 44.43 51.05 41.01
CLEAN 58.77 48.56 59.45 43.24

effect of correction for more confounders, and the

best result is achieved at 4.

Influence of β. Either emphasizing sentiment

words only or completely ignoring them is not rea-

sonable. The purpose of our hyper-parameter beta

is to strike a balance between these two terms (Fig-

ure 5). In Laptop and CLIPEval, performance is

best at 0.4 and 0.3 relatively, and both show a trend

of high in the middle and low on both sides, indi-

cating that our hypothesis is rational.

Robustness. We also analyze the robustness of

our proposed CLEAN (Table 5). We test our

model on a robustness testing dataset, Revnon of

TextFlint (Wang et al., 2021), which reverses the

sentiment of the non-target aspects with originally

the same sentiment as target. Our model outper-

forms the model BERT-SPC without causal inter-

vention, which means CLEAN can also improve

the robustness by learning the implicit sentiment

reasoning.

Limitation. We also analyze wrong samples and

find the model may fail when encountering the ex-

pression with unusual knowledge. In Figure 4 E6,

due to the lack of prior knowledge about “gratuity",

“automatically added" is likely to be perceived as a

good thing. Admittedly, our work mainly focuses

on the reasoning ability and doesn’t integrate ex-

ternal corpus and knowledge and therefore lacks

abundant prior knowledge. The better combination

of prior knowledge and causal inference is also an

intriguing and worth exploring field.

6 Related Work

6.1 Implicit Sentiment Analysis

Implicit sentiment analysis (ISA) task plays an im-

portant role in sentiment analysis field (Liu, 2012;

Zhou et al., 2019, 2020c). Early studies mainly

trained machine learning models based on hand-

crafted features or explicit characterization of im-

plicit feature information. Some studies argued

that seemingly neural words actually contain emo-

tional content and then construct a lexicon (Feng

et al., 2013; Castelló and Stede, 2017). Label prop-

agation was used to judge the affective polarity of

the words automatically (Ding and Riloff, 2016;

Li et al., 2021a). Moreover, Balahur et al. (2011)

proposed to build a commonsense knowledge base

(EmotiNet) with the concept of affective value and

the sentiment.

Recent efforts (He et al., 2018; Tang et al., 2020)

used syntax information from dependency trees to

enhance attention-based models. Using syntactic

analysis tree and CNN, Liao et al. (2019) analyzed

fact-implied implicit sentiment by fusing multi-

level semantic information, including sentiment

target, sentence, and context semantic. A lot of

works (Zhang et al., 2019; Sun et al., 2019; Wang

et al., 2020) incorporated tree-structured syntactic

information via graph neural networks to capture

aspect-aware information in text. Another method

is to utilize external corpus and pre-trained knowl-

edge to enhance semantic awareness of models (Xu

et al., 2019; Rietzler et al., 2020; Dai et al., 2021;

Li et al., 2021b; Zhou et al., 2020b).

The existing methods mainly improve the ISA by

integrating external corpus and knowledge. How-

ever, the knowledge is always not complete which

will influence the models’ performance. In this pa-

per, we solve it via causal intervention to learn the

reasoning behind the sentiment classification.

6.2 Causality for NLP

Recently, some researchers are beginning to com-

bine causality and NLP to create more robust and

interpretable models (Wood-Doughty et al., 2018;

Tang et al., 2021). Most of the papers integrated

backdoor and counterfactual into NLP tasks. Par-

ticularly, Landeiro and Culotta (2016) applied the

back-door adjustment to text classification by con-

trolling the artificially predetermined confounding

variable. Feng et al. (2021) introduced counterfac-

tual reasoning into the model learning process by

generating representative counterfactual samples
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and comparing the counterfactual and factual sam-

ples. Veitch et al. (2021) utilized distinct regulariza-

tion schema for distinct causal structure to induce

counterfactual invariance. Niu et al. (2021) utilized

the counterfactual inference on VQA models by

subtracting the language bias as direct language

effect from the total causal effect.

Different from these studies, we explore the

causal graph for ISA and incorporate it using the

causal intervention.

7 Conclusion

In this paper, we proposed a causal intervention

model for implicit sentiment analysis using instru-

ment variable (CLEAN). Given that the current

model indiscriminately focuses on the correlation

between sentiment and sentiment words and con-

sequently performs poorly in implicit sentiment

analysis as the explicit sentiment words disappear,

we rethink the implicit sentiment analysis from a

causal perspective and analyze the four main forms

of sentiment words as potential confounders. In-

spired by the instrumental variable of causal in-

tervention, we adopt stochastic perturbation as in-

strumental variable and construct a model with

two-stage learning. Across three different datasets,

including general implicit sentiment analysis and

aspect-based sentiment analysis, our CLEAN shows

great advantages in implicit sentiment.

Acknowledge

The authors wish to thank the reviewers for their

helpful comments and suggestions. This work was

partially funded by the National Natural Science

Foundation of China (No. 61976056, 62076069),

Shanghai Municipal Science and Technology Ma-

jor Project (No.2021SHZDZX0103).

References
Joshua D Angrist, Guido W Imbens, and Donald B

Rubin. 1996. Identification of causal effects using
instrumental variables. Journal of the American sta-
tistical Association, 91(434):444–455.

Joshua D Angrist and Jörn-Steffen Pischke. 2008.
Mostly harmless econometrics. In Mostly Harmless
Econometrics. Princeton university press.

Alexandra Balahur, Jesús M Hermida, and Andrés Mon-
toyo. 2011. Detecting implicit expressions of senti-
ment in text based on commonsense knowledge. In
Proceedings of the 2nd Workshop on Computational

Approaches to Subjectivity and Sentiment Analysis
(WASSA 2.011), pages 53–60.

Carlos Brito and Judea Pearl. 2012. Generalized instru-
mental variables. arXiv preprint arXiv:1301.0560.

Peter Bühlmann. 2020. Invariance, causality and robust-
ness. Statistical Science, 35(3):404–426.

Núria Bertomeu Castelló and Manfred Stede. 2017. Ex-
tracting word lists for domain-specific implicit opin-
ions from corpora. In IWCS 2017 - 12th International
Conference on Computational Semantics - Long pa-
pers.

Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang.
2017. Recurrent attention network on memory for
aspect sentiment analysis. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 452–461.
Association for Computational Linguistics.

Zhuang Chen and Tieyun Qian. 2019. Transfer cap-
sule network for aspect level sentiment classification.
In Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 547–556. Association for Com-
putational Linguistics.

Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and
Xipeng Qiu. 2021. Does syntax matter? a strong
baseline for aspect-based sentiment analysis with
RoBERTa. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1816–1829, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. north american chapter of the association for
computational linguistics.

Haibo Ding and Ellen Riloff. 2016. Acquiring knowl-
edge of affective events from blogs using label prop-
agation. In Thirtieth AAAI Conference on Artificial
Intelligence.

Mauro Dragoni. 2015. SHELLFBK: an informa-
tion retrieval-based system for multi-domain sen-
timent analysis. In Proceedings of the 9th
International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2015, Denver, Colorado,
USA, June 4-5, 2015, pages 502–509. The Associa-
tion for Computer Linguistics.

Feifan Fan, Yansong Feng, and Dongyan Zhao. 2018.
Multi-grained attention network for aspect-level sen-
timent classification. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 3433–3442. Association
for Computational Linguistics.



6975

Zhifang Fan, Zhen Wu, Xinyu Dai, Shujian Huang, and
Jiajun Chen. 2019. Target-oriented opinion words
extraction with target-fused neural sequence label-
ing. north american chapter of the association for
computational linguistics.

Amir Feder, Katherine A Keith, Emaad Manzoor, Reid
Pryzant, Dhanya Sridhar, Zach Wood-Doughty, Jacob
Eisenstein, Justin Grimmer, Roi Reichart, Margaret E
Roberts, et al. 2021. Causal inference in natural lan-
guage processing: Estimation, prediction, interpreta-
tion and beyond. arXiv preprint arXiv:2109.00725.

Fuli Feng, Jizhi Zhang, Xiangnan He, Hanwang Zhang,
and Tat-Seng Chua. 2021. Empowering language un-
derstanding with counterfactual reasoning. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2226–2236, Online.
Association for Computational Linguistics.

Song Feng, Jun Seok Kang, Polina Kuznetsova, and
Yejin Choi. 2013. Connotation lexicon: A dash of
sentiment beneath the surface meaning. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1774–1784, Sofia, Bulgaria. Association for
Computational Linguistics.

Anjalie Field and Yulia Tsvetkov. 2020. Unsupervised
discovery of implicit gender bias. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 596–608. Association
for Computational Linguistics.

Madelyn Glymour, Judea Pearl, and Nicholas P Jewell.
2016. Causal inference in statistics: A primer. John
Wiley & Sons.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
2018. A survey of methods for explaining black box
models. ACM Computing Surveys.

Liu Guohang, Zhang Shi-bin, Tang Haozhe, Yang Lu,
Jiazhong Lu, and Huang Yuanyuan. 2020. Easy data
augmentation method for classification tasks. active
media technology.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Effective attention modeling for
aspect-level sentiment classification. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 1121–1131, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Robins JM Hernán MA. 2020. Causal Inference: What
If. Boca Raton: Chapman & Hall/CRC.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao,
and Min Yang. 2019. A challenge dataset and ef-
fective models for aspect-based sentiment analysis.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural

Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 6279–6284.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Virgile Landeiro and Aron Culotta. 2016. Robust text
classification in the presence of confounding bias. In
Thirtieth AAAI Conference on Artificial Intelligence.

Klas Leino, Emily Black, Matt Fredrikson, Shayak Sen,
and Anupam Datta. 2018. Feature-wise bias amplifi-
cation. arXiv preprint arXiv:1812.08999.

Qizhi Li, Xianyong Li, Yajun Du, and Xiaoliang Chen.
2021a. Iswr: An implicit sentiment words recog-
nition model based on sentiment propagation. In
CCF International Conference on Natural Language
Processing and Chinese Computing, pages 248–259.
Springer.

Zhengyan Li, Yicheng Zou, Chong Zhang, Qi Zhang,
and Zhongyu Wei. 2021b. Learning implicit senti-
ment in aspect-based sentiment analysis with super-
vised contrastive pre-training. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 246–256, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jian Liao, Suge Wang, and Deyu Li. 2019. Identification
of fact-implied implicit sentiment based on multi-
level semantic fused representation. Knowledge-
Based Systems, 165:197–207.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos
Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. 2017. A structured self-attentive sen-
tence embedding. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Bing Liu. 2012. Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1):1–167.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Michael
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pretraining
approach. arXiv: Computation and Language.

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng
Wang. 2017. Interactive attention networks for
aspect-level sentiment classification. In Proceedings
of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 4068–4074. ij-
cai.org.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu,
Xian-Sheng Hua, and Ji-Rong Wen. 2021. Counter-
factual vqa: A cause-effect look at language bias. In



6976

Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12700–
12710.

Judea Pearl. 1995. Causal diagrams for empirical re-
search. Biometrika, 82(4):669–688.

Judea Pearl. 2009. Causality, 2 edition. Cambridge
University Press.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. north american chapter of the association
for computational linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. international conference
on computational linguistics.

Suhas Ranganath, Xia Hu, Jiliang Tang, Suhang Wang,
and Huan Liu. 2018. Understanding and identifying
rhetorical questions in social media. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
9(2):1–22.

Alexander Rietzler, Sebastian Stabinger, Paul Opitz, and
Stefan Engl. 2020. Adapt or get left behind: Domain
adaptation through BERT language model finetuning
for aspect-target sentiment classification. In Proceed-
ings of The 12th Language Resources and Evaluation
Conference, LREC 2020, Marseille, France, May
11-16, 2020, pages 4933–4941. European Language
Resources Association.

Irene Russo, Tommaso Caselli, and Carlo Strapparava.
2015. Semeval-2015 task 9: Clipeval implicit polar-
ity of events. SemEval-2015, page 443.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao,
and Xudong Liu. 2019. Aspect-level sentiment analy-
sis via convolution over dependency tree. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 5678–5687. Association
for Computational Linguistics.

Hao Tang, Donghong Ji, Chenliang Li, and Qiji Zhou.
2020. Dependency graph enhanced dual-transformer
structure for aspect-based sentiment classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6578–
6588, Online. Association for Computational Lin-
guistics.

Kaihua Tang, Mingyuan Tao, and Hanwang Zhang.
2021. Adversarial visual robustness by causal in-
tervention. arXiv preprint arXiv:2106.09534.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky,
and Jacob Eisenstein. 2021. Counterfactual invari-
ance to spurious correlations: Why and how to pass
stress tests. arXiv preprint arXiv:2106.00545.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020. Relational graph attention net-
work for aspect-based sentiment analysis. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3229–
3238, Online. Association for Computational Lin-
guistics.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou,
Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui Zheng,
Zexiong Pang, et al. 2021. Textflint: Unified multi-
lingual robustness evaluation toolkit for natural lan-
guage processing. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 347–355.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016
conference on empirical methods in natural language
processing, pages 606–615.

Zhao Wang and Aron Culotta. 2020. Identifying spu-
rious correlations for robust text classification. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3431–3440.

Zach Wood-Doughty, Ilya Shpitser, and Mark Dredze.
2018. Challenges of using text classifiers for causal
inference. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Lan-
guage Processing, volume 2018, page 4586. NIH
Public Access.

Chunli Xiang, Junchi Zhang, and Donghong Ji. 2021.
A message-passing multi-task architecture for the
implicit event and polarity detection. PloS one,
16(3):e0247704.

Xiaoyu Xing, Zhijing Jin, Di Jin, Bingning Wang,
Qi Zhang, and Xuan-Jing Huang. 2020. Tasty burg-
ers, soggy fries: Probing aspect robustness in aspect-
based sentiment analysis. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3594–3605.

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019. BERT
post-training for review reading comprehension and
aspect-based sentiment analysis. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2324–2335, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Chen Zhang, Qiuchi Li, and Dawei Song. 2019. Aspect-
based sentiment classification with aspect-specific
graph convolutional networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,



6977

EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 4567–4577. Association for
Computational Linguistics.

Mi Zhang and Tieyun Qian. 2020. Convolution over
hierarchical syntactic and lexical graphs for aspect
level sentiment analysis. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November
16-20, 2020, pages 3540–3549. Association for Com-
putational Linguistics.

Renjie Zheng, Junkun Chen, and Xipeng Qiu. 2018.
Same representation, different attentions: Shareable
sentence representation learning from multiple tasks.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pages
4616–4622. ijcai.org.

Jie Zhou, Qin Chen, Jimmy Xiangji Huang, Qinmin Vi-
vian Hu, and Liang He. 2020a. Position-aware hi-
erarchical transfer model for aspect-level sentiment
classification. Information Sciences, 513:1–16.

Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vi-
vian Hu, Tingting Wang, and Liang He. 2019. Deep
learning for aspect-level sentiment classification: sur-
vey, vision, and challenges. IEEE access, 7:78454–
78483.

Jie Zhou, Jimmy Xiangji Huang, Qinmin Vivian Hu,
and Liang He. 2020b. Sk-gcn: Modeling syntax
and knowledge via graph convolutional network for
aspect-level sentiment classification. Knowledge-
Based Systems, 205:106292.

Jie Zhou, Junfeng Tian, Rui Wang, Yuanbin Wu, Wen-
ming Xiao, and Liang He. 2020c. Sentix: A
sentiment-aware pre-trained model for cross-domain
sentiment analysis. In Proceedings of the 28th in-
ternational conference on computational linguistics,
pages 568–579.


