{shunjiechen,

Joint Alignment of Multi-Task Feature and Label Spaces
for Emotion Cause Pair Extraction

Shunjie Chen!, Xiaochuan Shi', Jingye Li', Shengqiong Wu?, Hao Fei2, Fei Li'f, Donghong Ji!

'Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of

Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China
2School of Computing, National University of Singapore, Singapore

shixiaochuan,
swu@u.nus.edu,

Abstract

Emotion cause pair extraction (ECPE), as one
of the derived subtasks of emotion cause anal-
ysis (ECA), shares rich inter-related features
with emotion extraction (EE) and cause ex-
traction (CE). Therefore EE and CE are fre-
quently utilized as auxiliary tasks for better fea-
ture learning, modeled via multi-task learning
(MTL) framework by prior works to achieve
state-of-the-art (S0TA) ECPE results. How-
ever, existing MTL-based methods either fail
to simultaneously model the specific features
and the interactive feature in between, or suffer
from the inconsistency of label prediction. In
this work, we consider addressing the above
challenges for improving ECPE by performing
two alignment mechanisms with a novel A2Net
model. We first propose a feature-task align-
ment to explicitly model the specific emotion-
&cause-specific features and the shared inter-
active feature. Besides, an inter-task alignment
is implemented, in which the label distance
between the ECPE and the combinations of
EE&CE are learned to be narrowed for better
label consistency. Evaluations of benchmarks
show that our methods outperform current best-
performing systems on all ECA subtasks. Fur-
ther analysis proves the importance of our pro-
posed alignment mechanisms for the task.'

1 Introduction

Emotion cause analysis (ECA), detecting potential
causes for certain emotion expressions in a doc-
ument, has been a hot research topic in natural
language processing (NLP) community (Lee et al.,
2010; Gui et al., 2016; Fan et al., 2019). ECA has
derived three associated tasks: EE, CE and ECPE.
As illustrated in Figure 1(a), EE and CE detects
the emotion and cause clauses respectively, while
ECPE identifies both the emotion and cause clauses
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Figure 1: (a) illustrates three subtasks of ECA. (b) and
(c) depicts the shared and parallel features encoding
method, respectively. In (d) and (e) we show our pro-
posed feature-task alignment mechanism and inter-task
alignment mechanism, respectively.

as well as their semantic relation. By jointly model-
ing the clauses detection and the relational pairing,
ECPE effectively relieves the noise introduction
in the pipeline process, and thus receives most re-
search attention recently (Ding et al., 2020a; Wei
et al., 2020; Wu et al., 2022).

As there are close correlations among EE, CE
and ECPE, existing ECPE works extensively treat
EE and CE as auxiliary tasks for additional fea-
ture supports, and mostly adopt the multi-task
learning framework to explicitly model the inter-
dependency in between, thus achieving current
SoTA performances (Wei et al., 2020; Ding et al.,
2020a; Fan et al., 2021; Bao et al., 2022). From
the view of feature encoding, there are two major
categories of MTL-based ECPE methods: shared
feature encoding method and parallel feature en-
coding method. As shown in Figure 1(b), shared
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methods only learn mixed features via one encoder
without distinguishing specific features for individ-
ual subtasks (Wei et al., 2020; Yuan et al., 2020).
In contrast, parallel methods (Ding et al., 2020a,b;
Fan et al., 2021) use two encoders to learn emotion-
and cause-specific features separate (cf. Figure
1(c)), where unfortunately, the interaction among
these tasks are overlooked. We argue that both the
private emotion-specific and cause-specific features
and the shared interactive feature are important to
the final performance, which should be explicitly
modeled in the MTL framework. To this end, we in
this work propose a feature-task alignment (FTA)
scheme of MTL for ECPE (cf. Figure 1(d)), in
which we explicitly split three parts of features,
and align them to EE, CE and ECPE respectively.

Meanwhile, aligning the label space in a MTL
framework is crucial to overall ECPE performance,
because intuitively all modules in the MTL process
should reach a consensus. For example as in Figure
1(a), once “c1” is recognized as a cause clause by
ECPE module, it should not be further predicted
as a non-cause clause by CE module. We notice
that such label consistency is not guaranteed in
existing MTL-based ECPE methods, which could
inevitably hurt the prediction. Therefore we further
introduce a inter-task alignment (ITA) mechanism
(cf. 1(e)) that learns to pull closer the label dis-
tance between the ECPE and the combinations of
EE&CE, ensuring label consistency.

We implement the above ideas of feature-task
alignment and inter-task alignment by developing
a novel neural network, namely A%Net, as shown
in Figure 2. First, we employ the BERT (Devlin
et al., 2019) as document encoder for producing
clauses representations. We then leverage the par-
tition filter network (PFN) (Yan et al., 2021b) to
implement the feature-task alignment, generating
emotion-specific features, cause-specific features
and interaction features, respectively. Afterwards,
we apply emotion-specific and interaction features
for EE, cause-specific and interaction features for
CE, and all features for ECPE. Finally, we reach
the goal of inter-task alignment by minimizing the
bidirectional KL-divergence between the output
distributions of ECPE and EE x CE, thus maintain-
ing the consistency of label spaces among all tasks.

Our A%Net framework is evaluated on the ECA
benchmark (Xia and Ding, 2019), where our
system achieves new SoTA results on EE, CE
and ECPE. Further analyses demonstrate that our

method learns better consistency in the predictions
of all subtasks than existing baselines. Overall, this
work contributes to three major aspects:

* We present an innovative multi-task learning
based ECPE framework, where we further pro-
pose a feature-task alignment mechanism that
can make better use of the shared features
from EE and CE sources.

* We also introduce an inter-task alignment
mechanism to reduce the inconsistency be-
tween the prediction results of ECPE and the
EE&CE, significantly enhancing the perfor-
mance as well as the robustness of the system.

* Our system empirically achieves new SoTA
performances of the EE, CE and ECPE tasks
on the benchmark.

2 Related Work

In NLP area, the analysis on sentiment and opin-
ion is a long-standing research topic (Liu, 2012; Li
et al., 2020; Wu et al., 2021; Fei et al., 2022a),
including detecting of the sentiment polarities
(Tang et al., 2016; Fei et al., 2022b; Shi et al.,
2022) and the emotion categories (Lee et al., 2010;
Neviarouskaya and Aono, 2013). One of the recent
trend on the emotion detection has been upgraded
to the emotion cause analysis (ECA). Centered on
the topic of ECA, there are several subordinated
tasks according to the extracting elements of emo-
tion and cause, such as emotion cause extraction
(ECE) (Lee et al., 2010; Neviarouskaya and Aono,
2013; Gui et al., 2016; Li et al., 2018) and ECPE
(Xia and Ding, 2019; Wei et al., 2020; Bao et al.,
2022).

Lee et al. (2010) pioneer the ECE task, in which
the task is formulated as a word-level cause label-
ing problem. Following this work, initial research
constructs rule-based methods (Neviarouskaya and
Aono, 2013; Gao et al., 2015) and machine learning
methods (Ghazi et al., 2015; Song and Meng, 2015)
on their own corpus. Deep learning based methods
greatly facilitate the line of this research (Fei et al.,
2021a, 2022e,c, 2021b; Wei et al., 2019a). Re-
cently, Gui et al. (2016) release a public corpus and
re-formalize ECE as a clause-level classification
problem, where the goal is to detect cause clauses
for a given emotion in the text. The framework
has received much attention in recent years and the
corpus has become a benchmark ECA dataset (Gui
etal., 2017; Li et al., 2018; Fan et al., 2019; Ding
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et al., 2019; Hu et al., 2021b; Yan et al., 2021a; Hu
etal., 2021a).

However, as Xia and Ding (2019) points out, the
ECE task is limited to the task definition, i.e., emo-
tion needs to be manually marked in advance. They
thus introduce the ECPE task that simultaneously
extract both the emotion and cause clauses as well
as determining their relations, which has a better
utility in real-world applications (Fei et al., 2022d,
2020). Thereafter, a line of subsequent research
efforts are paid to ECPE within the last years (Ding
et al., 2020b; Cheng et al., 2020; Fan et al., 2021;
Bao et al., 2022).

Recent ECPE methods mostly employ the multi-
task learning for simultaneously modeling the EE
and CE as auxiliary tasks for making use of the
shared features, and thus realize SOTA ECPE per-
formances (Bao et al., 2022). Existing MTL-based
ECPE works can largely be divided into two cat-
egories: parallel encoding and shared encoding
methods. Parallel methods mostly learn the emo-
tion/cause feature representations in mutually in-
dependent ways (Cheng et al., 2020; Ding et al.,
2020a; Fan et al., 2021; Bao et al., 2022). Ding
et al. (2020b); Chen et al. (2022) uses auxiliary task
prediction to aid the interactions between emotion
and cause features. However, the prediction values
are limited to only a two-dimensional vector, lead-
ing to insufficient interaction between emotion and
cause features.

Shared methods learn the mixed features by only
one encoder without distinguishing between fea-
tures of different tasks (Wei et al., 2020; Yuan et al.,
2020; Wei et al., 2019b,c). In this work, we use
the PFN (Yan et al., 2021b) to generate emotion-
specific features, cause-specific features and in-
teraction features and implement the feature-task
alignment. Moreover, we use an inter-task align-
ment module to reduce the gap between EE, CE
and ECPE, maintaining the consistency of the label
space.

3 Methodology

Task Formulation Given a document consisting
of N clauses D = {ci,¢2,...,cn}, and each ¢;
denotes a subsection of a sentence separated by a
comma. The goals of EE and CE task are extracting
emotion clauses ¢f € D and cause clauses ¢ € D
in the document, respectively, while ECPE task
identifies the emotion-cause clause pair (cf, c?)
that has causal relationship between emotion and

cause clauses.

As illustrated in Figure 2, the overall architecture
of our A%Net consists of four tiers, including the en-
coder layer, feature-task alignment layer, prediction
layer and inter-task alignment mechanism. First,
following the previous work and we use BERT
(Devlin et al., 2019) as encoder to yield contextual-
ized clause representations from input documents.
Then, to explicitly model task-specific features and
task-shared features. We leverage a PFN (Yan et al.,
2021b) to capture emotion- and cause-specific fea-
tures and the interaction between them. Afterward,
a prediction layer is used to align three combina-
tions of three kinds of features from PFN with
three tasks, and predict the emotion clauses, cause
clauses and emotion-cause pair for EE, CE and
ECPE, respectively. Finally, considering that there
should be a consensus among all tasks. We propose
an inter-task alignment mechanism to enhance the
consistency between ECPE and EE x CE.

3.1 Encoder Layer

Following (Wei et al., 2020), we also leverage
pre-trained BERT language model (Devlin et al.,
2019) as the underlying encoder to yield contex-
tualized clause representations. Concretely, we
insert a [CLS] token at the beginning of each
clause and append a [ SEP] token to the end, i.e.,
C; = {[CLS], Wi 1, Wi 2y -y Wi M, [SEP]} Then
we concatenate them together as the input of BERT
to generate contextualized token representations,
in which we take the representation of [CLS] to-
ken in each clause c; as its clause representation.
After that, we obtain all the clause representations
X ={x,x9,...,zN}.

3.2 Feature-task Alignment Layer

We adopt partition filter network (PFN) (Yan et al.,
2021b) to capture emotion- and cause-specific fea-
tures and the interaction between them because
of its powerful ability to extract task-specific fea-
tures and interaction features. PEN is similar to the
LSTM structure and has two task-related gates: the
emotion gate and the cause gate. The gates filter
features according to their contribution to each task
with emotion and cause gates. In each time step,
the encoder divides clause representation into three
feature partitions: emotion partition, cause parti-
tion, and interaction partition, where interaction
partition represents information useful to all tasks.

Specifically, at the i time step, we first generate
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Figure 2: Overview of our A?Net model.

two task-related gates:

g7 = Cummax(Linear([x;; hi_1])), )

g{ = 1 — Cummax(Linear([z;; h;—1])) ,

where Cummax(-) = Cumsum(Softmax(-)), per-
forms as a binary gate, and Linear(-) denotes lin-
ear transformation, and h;_; is the hidden state
of i-1-th clause. Each gate will divide clause rep-
resentations into two segments: task-related and
task-unrelated, according to their usefulness to the
specific task. With the joint efforts of the two gates,
the clause representation can be divided into three
partitions: emotion partition p$, cause partition p;
and interaction partition p;. We use task-related
gates (g; and g7) to calculate forgetting gates:

Il =giogi,
fze :gze_ i$7 (2)
=91,

where o denotes element-wise multiplication, f7,
f{ and f? are emotion, cause and interaction for-
getting gates, respectively. Similarly, we also can
obtain input gates o5, of and o; via Equation 1 and
2.

After that, we use forgetting and input gates to
control the flow of input and history information:

¢ = tanh(Linear([:L'i; hi—l])) )
pf:ffoci_l—i-ofogia (3)

(4 e (4 -~
p; = fioci_1+o050¢,

C C C -~
p; = fioci-1 +0oc,

where ¢; denotes the current input information, and
c;—1 denotes the history information.

Next, we can obtain three feature representations:
emotion feature hY, cause feature h{ and inter-task
interaction feature h; from the partition:

h} = tanh(p;) ,
h; = tanh(p;) , )
h{ = tanh(py) .

We further use the information in all three parti-

tions to construct cell state c¢;, and hidden state h;
for the next time step:

¢; = Linear([p§; pj; ps]) ,
h; = tanh(c;) .

After PFN, we can obtain the emotion-specific
features h{, cause-specific features hj and the in-
teraction features h{. First, we align features with
the EE and CE tasks, in which we concatenate the
features of emotion and cause with the interaction
features separately and gain the emotion represen-
tations v = [h¢; h{] and the cause representations
r¢ = [h§; h]. Moreover, we consider aligning
features with ECPE task, so we add task-specific
features and interaction features to aggregate all
the information about ECPE task:

B = hi + b,
h¢ = hS + k3, (©)
rij = [h{ ;R e,

where e;; denotes the relative position embedding

following Wei et al. (2020). 7;; is the final emotion-
cause pair representation.

)
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3.3 Prediction Layer

Extracting Emotion/Cause We feed r{ and 7§
into two feedforward network (FFN) to obtain emo-
tion prediction g and cause prediction ¢ for the
i-th clause:

gi = o(FEN(77))

¢ = o(FEN(r?)) @

where o () means the sigmoid function.
The auxiliary task loss for emotion prediction
and cause prediction can be formulated as:

N

= " log (i) + y§ log (i), (8)

=1

ﬁauw =

where y{ and y; are emotion and cause ground
truth labels of clause c;, respectively.

Extracting Emotion Cause Pair We employ a
FFN with a sigmoid function to obtain the emotion-
cause pair score g)fj:

i, = o(FFN(ryy)) ©)

The loss function of emotion-cause pair extrac-
tion can be formalized as:

pazr = Z Z y log yl]

i=1 j=1

(10)

where yfj is the ground truth label of the clause
pair (¢4, ¢;).

3.4 Inter-task Alignment Mechanism

As we argued earlier, the predictions of EE and CE
could be inconsistent with ECPE, i.e., the emotion
in the emotion-cause pair predicted by ECPE could
not be detected by EE, which hinders the task for
further improvements. To address this issue, we
propose an inter-task alignment (ITA) mechanism
to constrain the predicted scores between ECPE
and auxiliary tasks during the training period. First,
we leverage the emotion score g7 and the cause
\ IES-
Note that there could not exist a causal relationship
in pairs matched from predictions of EE and CE.
Thus, as shown in Figure 3, we calculate the pseudo
emotion-cause pair score gjfj as follows:

~P _ .. nenc
Yij = Qg /Y:7Y5

score §; to get the pre-pseudo pair score

1D

i Vi€

8- 7117 -

b

18- 8
Pre-Pseudo|Pair Score Soft|Mask Score

,?‘

J

Pseudo Pair Score

Figure 3: The generation of pseudo pair score, where
v/ denotes candidate emotion-cause pairs, green grids
represent the masked pair.

where a;; (0 < ;5 < 1) is a soft mask score
for the pseudo pair (3, §7), which can reduce the
score of fake emotion-cause pairs in pre-pseudo
pairs score. o;; is computed by:

A ) v§
iy — \/g )
(12)
__ exp(ty)
Q5 = N 5
> exp(ti;)
where vf and v are obtained from r{ = [h{; h;]

and r§ = [h{; k3] with FFNs, respectively. The d
denotes the dimension of v and vj.

Then we reduce the gap between the pseudo
emotion-cause pair score yp from EE and CE and
the true emotion-cause pair score yp from ECPE
using Kullback Leibler (KL) Dlvergence

N N
1 R -
Cxr =5 > > (KL@II3,) + KL(]]13]))
=1 j=1
1 N N ~p, e
=003 + i log () -
=1 j=1 g
(13)

Optimization The final loss of our model is a
weighted sum of Lpqir, Lauz and Lk, :
L= ['pair + Al*caux + )\2£KL ) (14)

where A\; and Ay are hyperparameters.
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ECPE EE CE
Approach
P R Fl1 R Fl1 P R F1

ANTS 7243 63.66 67.76 81.96 7329 77.39 7490 66.02 70.18
TransECPE  73.74 63.07 67.99 87.16 82.44 8474 75.62 64.71 69.74
ECPE-2D 72.92 6544 68.89 8627 9221 §89.10 73.36 6934 71.23
PairGCN 76.92 6791 7202 8857 79.58 83.75 79.07 69.28 73.75
RANKCP 71.19 76.30 73.60 91.23 89.99 90.57 74.61 77.88 76.15
ECPE-MLL 77.00 72.35 7452 86.08 9191 8886 73.82 79.12 76.30
MGSAG 77.43 7321 7521 92.08 82.11 87.17 79.79 74.68 7T7.12
A%Net(ours) 75.03 77.80 76.34 90.67 90.98 90.80 77.62 79.20 78.35

Table 1: Comparisons with baselines on Chinese benchmark ECPE corpus. For a fair comparison, they all use
BERT as the encoder. The best performance is in bold and the second best performance is underlined.

4 Experiments Settings

4.1 Dataset and Metrics

We conducted experiments on the Chinese bench-
mark dataset provided by Xia and Ding (2019) to
evaluate the effectiveness of our proposed model
A?Net. For fair comparisons, following previous
work we use 10-fold cross-validation as the data
split strategy and the precision (P), recall (R), and
F1 score (F1) as evaluation metrics. Meanwhile,
we also verify the performance of two auxiliary
tasks: emotion extraction (EE) and cause extrac-
tion (CE), using the same evaluation metrics as
ECPE.

4.2 TImplementation Details

We apply PyTorch to implement our framework.”
We leverage pre-trained language model BERT
(Devlin et al., 2019) as our embedding layer.> We
employ one-layer PFN (Yan et al., 2021b) with hid-
den size of 300. Besides, the hyperparameters \;
and A\, are both set to 0.4. We set the batch size
and the learning rate to 4 and 2e-5, respectively.
We apply AdamW (Loshchilov and Hutter, 2017)
to optimize our model parameters. To prevent over-
fitting, the dropout rate is set to 0.1.

4.3 Baselines

In order to verify the effectiveness of our proposed
model A?Net, we compared it with the following
strong methods. For a fair comparison, they all use
BERT as the encoder.

¢ ANTS (Yuan et al., 2020): ANTS solves

Zhttps://pytorch.org
3The version of BERT is bert-base-chinese.

ECPE with a sequence labeling approach and
proposes a tagging scheme.

e TransECPE (Fan et al., 2020): TransECPE
is a transition-based framework that converts
ECPE into a parsing-like directed graph con-
struction task.

* ECPE-2D (Ding et al., 2020a): ECPE-2D
leverages clauses pairs to construct a 2D rep-
resentation matrix which integrated with aux-
iliary task predictions for ECPE task.

e PairGCN (Chen et al., 2020): This method
models the dependency relations among
clause pairs with graph convolution networks.

* RANKCP (Wei et al., 2020): RANKCP tack-
les the ECPE task from a ranking perspective
and uses graph attention to model the inter-
clause relations.

* ECPE-MLL (Ding et al., 2020b): ECPE-
MLL converts the ECPE task into the emotion-
pivot cause extraction and the cause-pivot
emotion extraction using the sliding window
strategy.

* MGSAG (Bao et al., 2022): MGSAG con-
structs a multi-granularity semantic aware
graph to deal with ECPE task, and it is the
current SOTA approach.

5 Experimental Results

5.1 Main Results

Table 1 shows the comparison results of our model
(A®Net) with the strong baselines on the emotion-
cause pair extraction (ECPE) task and two auxiliary
tasks: emotion extraction (EE) and cause extraction
(CE).
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ECPE EE CE

AMet(ours) 7634 90.80 7835
w/ Shared encoding  69.97 84.81 72.66
w/ Parallel encoding 75.59 89.75 78.03

Table 2: Performances (F1) with different feature en-
coding schemes.

For the ECPE task, it is clear that our model
A%Net achieves 1.13% and 1.82% Fl-score im-
provement over MGSAG (the current best method)
and ECPE-MLL, respectively. Further analysis, we
can find that the above advantage mainly comes
from the improvement of the recall. Compared with
MGSAG and ECPE-MLL, our recall is increased
by 4.59% and 5.45% respectively, which indicates
that consistent prediction on the three tasks allows
the A2Net model to detect more emotion-cause
pairs under a considerable precision.

For auxiliary tasks, on the EE task, our model
achieves 3.63% and 1.94% F1 improvement over
MGSAG and ECPE-MLL, and 0.23% F1 improve-
ment over the previous best model RANKCP. On
the CE task, our model yields a great improvement
of F1 scores by 1.23% in comparison with the top-
performing baseline MGSAG, and achieves 2.20%
and 2.05% F1 improvement over RANKCP and
ECPE-MLL.

We argue that all improvements come mainly
from our proposed feature-task alignment module
and inter-task alignment module. Both alignment
mechanisms are able to collaboratively improve
the performances of all tasks, and enhance the ro-
bustness of the model. In the following part we
performed corresponding experiments to verify our
ideas.

5.2 Effect of Feature-task Alignment

The feature-task alignment module is capable of
generating efficiency and independent task-specific
and interactive features. To verify the effectiveness
of our feature-task alignment, we replaced the PFN
with two encoding schemes: shared encoding and
parallel encoding. The results are shown in Table
2.

In terms of the shared encoding, we encode the
emotion features and cause features using a shared
BiLSTM, in which emotion and cause features are
entangled. For parallel encoding, we utilize two
BiLSTMs to capture emotion features and cause
features separately, in which interaction informa-

A2Net (ours) 76.34 90.80 78.35

"~ w/o ECPESEExXCE  75.83 90.65 78.05
w/o EExCE—ECPE 75.50 90.54 77.60
w/lo ITA 7532 90.05 77.37

" wWoEE&CE 7 7439 - -

Table 3: Ablation study of inter-task alignment module
and auxiliary task (F1). The ECPE—EE xCE means
we use the prediction distribution of ECPE to align to
EExCE (i.e., KL(g;;||9;;) in Eq.13), and vice versa.

tion among different tasks is not considered. Firstly,
we observe that the model with parallel encod-
ing significantly outperforms the shared encoding
among three tasks, indicating that it is important for
the model to consider task-specific features. Fur-
thermore, we can see that our model enjoys better
performances when we consider both task-specific
features and shared interaction features, compared
with the parallel encoding. This shows the neces-
sity of aligning feature spaces for different tasks.

5.3 Effect of Inter-task Alignment

In this section, we investigate the effect of the
inter-task alignment (ITA) mechanism and auxil-
iary tasks for A%Net, and the results are plotted in
Table 3.

We first analyze the effect of the aligned direc-
tion of the inter-task alignment mechanism. When
we merely apply unidirectional alignment to reg-
ulate the predictions between ECPE and two aux-
iliary tasks, we can observe slight performance
drops on three tasks to some extent. Furthermore,
after removing the inter-task alignment mechanism
(bidirectional alignment), we find that the overall
decreases in F1 score on three tasks happen, and are
more than the any unidirectional alignment, which
verifies the helpfulness of the alignment in label
spaces among tasks, and bi-direction of alignment
are more important for our model.

Besides, we also explore the effectiveness of
auxiliary tasks, EE and CE. It should be noted that
inter-task alignment module does not work after
the auxiliary tasks are removed. When the auxil-
iary tasks are further removed, we can see that the
model performances drop significantly, demonstrat-
ing that the auxiliary task can effectively contribute
to the ECPE task.
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Document A2Net(w/o ITA) A2Net Ground-truth
... The police visited the villagers of Nanyuan Village (c3), and they
learned that Meng was playing mahjong at a mahjong parlor opposite ECPE:[c7, c6] ECPE:|[c7.c6] ECPE:|c7, c6]
his home the day before the incident (c4), through inquiries (c5), it wa- EE:[] EE:[c7] EE:[c7]
-s found that only Wang from the same village had gone out to an unk- CE:[c6] CE:[c6] CE:[c6]
nown destination(c6), (7).
Op March 14 (cl),.a magmt}lde 4.3 earthquake occurred in Ymgguan ECPE:[c5. 4] ECPE:(c5. c4] ECPE:[c5. 4]
District, Fuyang City, Anhui (c2). Then (c3), a rumor of a magnitude - - -
6.8 earthquake occurred in Fuyang City at 2:15 am on March 15. (c4) EE:[c5] EE:[c3] EE:[c5]

‘ q yang My ab = e CE:[c2], [c4] CE:[c4] CE:[c4]
Mr. Feng said frankly (c1), Jingjing is naughty on weekdays (c2), and
sgn}eFlmes he is not polite (c3), but when 1t. comes to the reason for th- ECPE:[c5.c4].[c5.c6] ECPE:[c5.c4] ECPE:[c5.c4]
-is injury(c4), (c5), just because of my son Dra- - - -
-nk other children’s yogurt (c6). Teacher Xing lost her mind (c7), she EE:[c5] EE:[c3] EE:[c5]

yos ' & . CE:[c4], [c6] CE:[c4] CE:[c4]

was emotionally out of control (c8), then pulled the child out of the do-

-or (c9), the child was injured when the door was closed (c10)...

Table 4: Two examples for the case study. The words in are the emotion clause, and the words in blue are the
cause clause. The green means correct predictions, red means wrong predictions.

5.4 Analysis of Prediction Consistency Cross 00 ours 00 Ours w/o FTA BB Ours w/o ITA

Tasks 0 Ours w/o FTA & ITA RANKCP

In order to verify the effect of our proposed feature- s

task alignment module and inter-task alignment & 98 Toal |
module on model prediction consistency among ‘:i 97 | i

tasks, we conduct the experiments with multiple 2

variants of A%Net and the baseline RANKCP, as _‘% 96 | 192] |
shown in Figure 4. Specifically, we disassemble the g 95 |- H 90 L Ml
emotion-cause pairs into a set of emotion clauses ©,

and a set of cause clauses which are considered
as gold labels for EE and CE, respectively. We
calculated the consistency rate to evaluate the con-
sistency of EE and CE tasks with ECPE task predic-
tions by (EE & ECPE) / ECPE or (CE & ECPE) /
ECPE, where EE, CE and ECPE denote the predic-
tion results of corresponding tasks and & denotes
the logic AND.

On the EE task, we can find that when our model
A®Net removes the FTA and ITA modules, the
consistency rate drops significantly, but when our
model only removes FTA or ITA, the consistency
rate decreases slightly. Furthermore, all of them
outperform RANKCP, which indicates that FTA
and ITA have well aligned EE with ECPE.

On the CE task, we can find that a dramatic
drop occurs when we remove the FTA and ITA
modules. The consistency rate decreases slightly
when only ITA is removed, while the consistency
rate decreases more when only FTA is removed,
indicating that our feature-level alignment is more
effective for CE tasks. Moreover, all of them re-
ceive better consistency than RANKCEP, indicating
that both FTA and ITA are able to align CE and

(a) EE

(b) CE

Figure 4: Consistency of ECPE and EE (a), as well as
CE (b).

ECPE.

5.5 Case Analysis

Finally, to better understand the capacity of our pro-
posed model, we empirically perform case study on
EE, CE and ECPE tasks. Specifically, we demon-
strate some predictions based on three instances
randomly selected from testset, as shown in Table
4.

In the first example, our A2Net without ITA
correctly predicts the emotion cause pair (c7, ¢g)
on the ECPE task and incorrectly on the EE and
CE tasks. In contrast, our A2Net model correctly
predicts all ECPE, EE, and CE tasks after going
through the inter-task alignment module. In the
second example, A?Net without ITA correctly pre-
dicts the emotion cause pair (c5, c4) on the ECPE
task and incorrectly on the CE tasks. However,
A2Net model correctly predicts all EE, CE and
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Model #Param  Speed(doc/s)
RANKCP 105.97M 195

_A’Net (ours)  104.97M 195
w/o ITA 104.97M 195

Table 5: Parameter number and inference speed compar-
isons on ECPE. All models are tested with batch size 4.

ECPE tasks. In the third example, A2Net without
ITA predicts correctly in the EE task and incor-
rectly detects the cause clause cg in the CE task.
Meanwhile, the emotion-cause pair (cs, cg) is pre-
dicted incorrectly. Nonetheless, after the inter-task
alignment module, all predictions were correct in
both the ECPE and CE tasks.

This shows that after aligning between tasks, the
model can identify emotion-corresponding causes,
which is like the role of our proposed soft mask
score. We find that these cases are common in
our dataset, which ultimately leads directly to an
improvement in our model performance. This also
demonstrates that our inter-task alignment module
can normalize the inter-task training to make the
model performs better and more stable.

5.6 Model Efficiency Analysis

In order to test the efficiency of our model, we
conduct the experiments with multiple variants of
AZNet and the baseline RANKCP, and the results
are plotted in Table 5.

In terms of parameter quantity, our A>Net model
is even less than RANKCP, and it can be found that
since the ITA module does not introduce additional
parameters, w/o ITA does not change the parameter
quantity. In terms of inference speed, our model
has the same inference speed as RANKCP, which
shows that the efficiency of our model does not
decrease due to the addition of the alignment mech-
anism.

6 Conclusion

Existing best-performing ECPE works extensively
leverage EE and CE as auxiliary tasks for better
feature learning via multi-task learning (MTL).
In this paper, we further enhance the existing
best-performing MTL-based ECPE by proposing
feature-task alignment and inter-task alignment
mechanisms. At the feature space, the feature-task
alignment mechanism aligns the task-specific fea-
tures and the shared interactive feature with corre-

sponding tasks. At the label space, the inter-task
alignment mechanism reduces the inconsistency
among the predicted labels of EE, CE and ECPE.
Experimental results on the benchmark ECPE data
demonstrate the effectiveness of our methods. Fur-
ther analysis shows that our system achieves bet-
ter consistency than existing baselines, which ex-
plains the improvements of our model. The idea
to align the feature space and label space in MTL
framework is promising. In the future work, we
consider further constructing intra-clause relations,
inter-clause relations, and relations among pairs of
clauses for ECPE.
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