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Abstract

Emotion-cause pair extraction (ECPE) is an
emerging task in emotion cause analysis, which
extracts potential emotion-cause pairs from an
emotional document. Most recent studies use
end-to-end methods to tackle the ECPE task.
However, these methods either suffer from a
label sparsity problem or fail to model compli-
cated relations between emotions and causes.
Furthermore, they all do not consider explicit
semantic information of clauses. To this end,
we transform the ECPE task into a document-
level machine reading comprehension (MRC)
task and propose a Multi-turn MRC framework
with Rethink mechanism (MM-R). Our frame-
work can model complicated relations between
emotions and causes while avoiding generating
the pairing matrix (the leading cause of the la-
bel sparsity problem). Besides, the multi-turn
structure can fuse explicit semantic information
flow between emotions and causes. Extensive
experiments on the benchmark emotion cause
corpus demonstrate the effectiveness of our pro-
posed framework, which outperforms existing
state-of-the-art methods.'

1 Introduction

Emotion cause extraction (ECE) is a classical emo-
tion cause analysis task that aims to extract the
corresponding causes of the given emotional ex-
pressions in an emotional document (Gui et al.,
2016). However, the ECE task is not practical in
real-world scenarios without annotated emotions.
To overcome the limitation and capture mutual
indications of emotions and causes together, Xia
and Ding (2019) came up with a new task called
emotion-cause pair extraction (ECPE), which aims
to extract a potential emotion-cause pair set consist-
ing of all emotions and their corresponding causes
from a document. As shown in Figure 1(a), c2 is
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'Data and code are
https://github.com/zhoucz97/ECPE-MM-R

available at
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Figure 1: The green colour denotes an emotion clause,
and the red colour denotes a cause clause. Figure (a) is
an example of the ECPE task. Figure (b) is a pairing
matrix generated by pair-level end-to-end approaches.
Only (c2, ¢3) and (c4, c4) are valid pairs. Figure (c)
shows the processing results by our MM-R in each turn.

an emotion clause, c3 is the corresponding cause
clause, and c4 is an emotion clause that is its own
corresponding cause clause itself.

In recent years, there has been a trend to use
end-to-end methods to solve the ECPE task and
the two sub-tasks, emotion extraction and cause
extraction, which aim to extract all emotions and
causes in one document. These end-to-end meth-
ods can be classified into two categories: pair-level
methods by combining all clause pairs to form a
clause pairing matrix; sequence labeling methods
by designing novel tagging schemes. Specifically,
some works (Ding et al., 2020a,b; Wei et al., 2020;
Chen et al., 2020b; Wu et al., 2020) proposed pair-
level methods that generate a pairing matrix by
enumerating all possible combinations of clauses
and then select valid emotion-cause pairs, as shown
in Figure 1(b). However, the average ratio of in-
valid/valid pairs is more than 200:1 in the ECPE
benchmark corpus (Xia and Ding, 2019), which
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leads to a label sparsity problem. Besides, some
works (Chen et al., 2020a; Yuan et al., 2020) pro-
posed sequence labeling methods based on novel
tagging schemes. However, they cannot effectively
model the corresponding relation between emo-
tions and causes. For example, Chen et al. (2020a)
cannot deal with the situation where two emotion
clauses of the same emotion type correspond to
different cause clauses. Therefore, how to solve
the label sparsity problem by avoiding the calcula-
tion of the pairing matrix while modeling the cor-
responding relation between emotions and causes
is a crucial challenge. Furthermore, Zhong and
Chen (2021) has shown that explicit semantic infor-
mation can improve performance in the extraction
tasks. Therefore, utilizing explicit semantic infor-
mation of clauses to improve the performance in
the ECPE task is also a challenge.

To address these challenges, in this study, the
ECPE task is transformed into a document-level
machine reading comprehension (MRC) task, and
a Multi-turn MRC framework with Rethink mech-
anism (MM-R) is proposed. The multi-turn struc-
ture decomposes the ECPE task to model the cor-
responding relation between emotions and causes
and avoid generating the pairing matrix. In every
turn, static and dynamic queries designed manu-
ally make full use of explicit semantic informa-
tion of clauses to improve the performance of emo-
tion or cause extraction. In addition, inspired by
the human two-stage reading behavior, in which
search for possible answer candidates and then ver-
ify these candidates (Zheng et al., 2019), the re-
think mechanism is proposed to verify candidate
emotion-cause pairs further to enhance the flow
of information between emotions and causes and
improve the overall performance.

Specifically, in the first turn, all emotion clauses
are extracted. In the second turn, cause clauses
corresponding to each emotion clause are extracted
with the assistance of explicit semantic informa-
tion about emotions. Numerous experiments (Ding
et al., 2020b; Fan et al., 2020; Ding et al., 2020a;
Wei et al., 2020; Chen et al., 2020b,a; Yuan et al.,
2020) have shown that emotion extraction is more
reliable than cause extraction, and therefore it is
reasonable to extract emotions first and then ex-
tract the corresponding causes with the assistance
of emotions. Hence, a candidate emotion-cause
pair set is obtained in the first two turns. In the
third turn, a rethink mechanism verifies each can-

didate emotion-cause pair. For example, as shown
in Figure 1(c), emotion clauses c2 and c4 can be
obtained in the first turn, and cause clauses corre-
sponding to each emotion clause can be obtained
in the second turn. The candidate emotion-cause
pair set {(c2, c3), (c2, c4), (c4, c4)} can thus be
obtained without the pairing matrix. In the third
turn, the rethink mechanism demonstrates that c2
is not one of the corresponding emotion clauses
of c4. Therefore, the valid emotion-cause pair set
becomes {(c2, c3), (c4, c4)}.

Comprehensive experiments are conducted on
the ECPE benchmark datasets to verify the effec-
tiveness of the proposed MM-R framework. The
experimental results show that the proposed frame-
work substantially outperforms the previous meth-
ods. The contributions of this research can be sum-
marized as follows:

* The ECPE task is formalized as a document-
level machine reading comprehension (MRC)
task. To our best knowledge, this is the first
time that the ECPE task has been transferred
to the MRC task.

* Based on the MRC formalization, a multi-
turn MRC framework with rethink mecha-
nism (MM-R) is proposed. It models the
corresponding relation between emotions and
causes and alleviates the label sparsity prob-
lem. Furthermore, the MM-R can use explicit
semantic information of clauses effectively.

* The experimental results demonstrate that
the proposed framework outperforms existing
state-of-the-art methods.

2 Related Work

2.1 Emotion-Cause Pair Extraction

Xia and Ding (2019) proposed the emotion-cause
pair extraction (ECPE) task and released the Chi-
nese benchmark dataset. Recently, many meth-
ods based on the pair-level end-to-end framework
have been designed for the ECPE task. For exam-
ple, Wei et al. (2020) obtained excellent results by
modeling inter-clause relationships and using the
ranking mechanism. Ding et al. (2020a) used a
2D-transformers module to model the interactions
of different emotion-cause pairs. However, these
pair-level end-to-end methods had a label sparsity
problem caused by calculating the pairing matrix.
Ding et al. (2020b) used a sliding window to re-
strict the amount of candidate emotion-cause pairs,
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which aims to shrink the pairing matrix. However,
the method still belonged to the pair-level end-to-
end method because it assumed all clauses were
emotion or cause clauses.

Sequence labeling was another popular method.
However, these methods could not model the corre-
sponding relation between emotions and causes. A
unified tagging scheme (Chen et al., 2020a) could
not be used on a document with multiple emo-
tion clauses of the same emotion types because
the tagging scheme was based on emotion types.
Another joint tagging scheme (Yuan et al., 2020)
based on the distance between the cause and the cor-
responding triggered emotion. The tagging scheme
could not handle the situation in which the distance
between the emotion clause and the correspond-
ing cause clause exceeded the distance threshold.
Therefore, the challenge remains of how to solve
the label sparsity problem while modeling the cor-
responding relation between emotions and causes.

2.2 Machine Reading Comprehension

Recently, it became popular to transform many
traditional natural language processing tasks into
machine reading comprehension (MRC) tasks. For
example, Liu et al. (2020) cast the event extraction
as a machine reading comprehension problem to
solve the data scarcity problem. Zhou et al. (2021)
proposed a dual QA framework aiming at event
argument extraction. Chen et al. (2021) and Mao
et al. (2021) proposed a bidirectional MRC and
a Dual-MRC frameworks to handle aspect-based
sentiment analysis, respectively. In this paper, the
ECPE task is formalized as a document-level MRC
task, and the multi-turn MRC framework with re-
think mechanism is proposed. It concatenates a
query with each clause to explicitly utilize semantic
information of clauses and uses a single classifier
to predict whether a clause is an emotion or a cause
clause in each turn.

3 Methodology

3.1 Problem Formulation

Given a document consisting of multiple clauses
D = (c1,¢2,..,¢p)|) 2 and each clause contains
multiple words ¢; = (wiyl,wi72,...,wi7|ci|), our
goal is to extract a set of emotion-cause pair in
D:
_ [(& Laiiy|P]
P={(c/scp ")zt (1)

The | * | denotes the number of elements in the collection

where the superscript e; and ca; ; denote the i-th
emotion clause and its corresponding j-th cause
clause in D; the subscript k£ denotes the k-th
emotion-cause pair in set P; an emotion clause
corresponds to one or more cause clauses. °

3.2 Query Design

Static and dynamic queries are used to formalize
the ECPE task to the MRC task. All queries can be
formulated as follows:*

* Static emotion query ¢°¢ € Q*¢: The query
“Is it an emotion clause?” is designed to ex-
tract all emotion clauses.

Static cause query ¢°¢ € Q°¢: The query “Is
it a cause clause?” is designed to extract all
cause clauses.

Static pair query ¢*” € QQ°P: The query “Is
it an emotion-cause pair?” is designed to
extract all emotion-cause pairs.

 Dynamic emotion query ¢ € Q%: The
query template “Is it an emotion clause corre-
sponding to c¢;?” is designed to extract emo-
tion clauses corresponding to clause c;.

+ Dynamic cause query ¢% € Q%: The query
template “Is it a cause clause corresponding
to ¢;?” 1is designed to extract cause clauses
corresponding to clause c;.

3.3 Frameworks

The architecture of MM-R is illustrated on the left
side of Figure 2. In the first turn, a static emo-
tion query ¢°¢ is used to extract emotion clause
set £ = {Cez}El In the second turn, based
on each extracted emotion clause c® € FE, a dy-
namic cause query ¢% is constructed to obtain ¢%’s
corresponding cause clause set C; = {c%i }LC:Z{
In this way, the candidate emotion-cause pair set
Pean = {(c5i, ) |,€P:Cf "l'is obtained in the first
two turns. To filter out invalid emotion-cause pairs
in P further, for each cause clause c®®J, the
framework rethinks whether the clause c* is its
corresponding emotion clause with the help of
dynamic emotion query ¢%. Finally, the valid

3To avoid confusion, the “cause clause” is denoted to ca
rather than c.

*Static cause query and static pair query are only used in
two variants of our framework (MM-D and MRC-E2E); refer
to the Experiments section for details.
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Figure 2: Left: The overall architecture of our MM-R framework. In each turn, the answer is yes if the probability
output by the classifier is greater than 0.5, otherwise it is no. Right: The implementation structure of the encoding
layer which includes the token-level encoder and the clause-level encoder. The token-level encoder generates
the hidden representation of each token using the BERT module. The clause-level encoder provides the hidden
representation of query and each clause using the attention mechanism and graph attention network. Finally, the

concatenate operation (CONCAT) is executed on the hidden representations of queries and clauses.

. . ; i\ Pl
emotion-cause pair set P = {(czl,cza 7) Ikz|1 is

obtained.

3.4 Encoding Layer

The structure of the encoding layer is illustrated
on the right side of Figure 2. The encoding layer
includes the token-level encoding layer and the
clause-level encoding layer.

Token-level encoder: This study used BERT
(Devlin et al., 2019) as its token-level contextu-
alized encoder. Specifically, a document D =
(c1,¢2, .., ¢ p|) and a query q are used to construct
the BERT input sequence:

I = {[CLS], Wq,1, Wq,2, ...,wq7|q‘, [SEP], (2)

W1,1, W1,25 s W|D|15 -+ w\D|,|c‘D|\}a

where ¢ = ¢*¢ in the first turn, ¢ = ¢% in the
second turn and ¢ = ¢% in the third turn; wq,j 15 the
j-th token of query ¢; w; ; is the j-th token of the
i-th clause in the document D; and [C'LS], [SEP|
are special BERT tokens. The tokens can then be
encoded into hidden representations:

H' =BERT(I)

={hicLs), hg1s hg2s - ha g hiser),  (3)

h171, h172, R h\D|71’ ey h|D|,\c‘D‘|}7

where H! € R ‘Xd; d is the dimension of the
hidden states; and h; ; denotes the hidden represen-
tation of token wj ;.

Clause-level encoder: The attention mechanism
and the graph attention network (GAT) (Velickovié
et al., 2017) are used to obtain clause-level hidden
representations.

Specifically, for clause ¢;, its token-level repre-
sentation set is selected from H':

Se, = {hij Y e RIxd, 4)

The attention mechanism produces an attention
weight vector ;. The hidden representation of
clause c; is obtained by calculating the weighted
sum of the hidden representations of all tokens:

a; = softmaz(w’S,, +b) € Rl (5)

he, = sum(o;S,,) € R4, (6)

where w and b are learnable parameters. For all
clauses, the attention mechanism is used to obtain
the hidden representations:

HC = {h017h027~~7h0|m}' (7)

Similarly, the attention mechanism is used to
obtain the hidden representation of query q:

Ho = {hy). ®)

Furthermore, GAT models the interaction among
clauses, and then the hidden representations of
clauses are updated to:

He = GAT(He) = {hg,, hey, b b (9)

Finally, h, € Hg and R, € Hy, are concate-
nated to obtain o; = [hg; hi,.], where [;] denotes
the concatenate operation. The output of the encod-
ing layer is thus obtained:

Oenc = {017027”~70|D|}- (10)
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3.5 Answering Prediction

The output representation of the encoder layer
0; = [hg; h..] contains abundant semantic informa-
tion, including identification information of emo-
tion/cause, semantic information of clauses, and
semantic information of the document. Therefore,
only a single linear perception (SLP) is needed to
obtain the answer to the query by predicting yes or
no:

§i = o(w§o; + bs), (11)
where wg and bg are learnable parameters of SLP;
o(+) is a logistic function; and g; denotes the proba-
bility that the answer is yes. If ¢; > 0.5, the answer
is judged to be yes, meaning that clause c; is one

of the answers to query ¢. This prediction style is
similar to BoolQ (Clark et al., 2019).

3.6 Joint Training

A joint learning strategy was used in this study,
the cross-entropy loss for each type of query was
minimized as follows:

L=
N D@

=330 Ipwigkleis ai) og Byijiklei s, i),

i=1 j=1 k=1
(12)

where * € {se,dc,de}; N denotes the number of
documents in the dataset; ¢; ; is the j-th clause of
the i-th document; and ¢ is the k-th query in Q™.

Therefore, the final loss function £ was as fol-
lows:

L=L%+ L%+ %, (13)

3.7 Inference

In the first turn, the ¢°¢ € @Q*¢ first identifies the
emotion clause set E = {c®, ¢, ...,c°1EI}. In
the second turn, for each predicted emotion clause
¢, the ¢% € Q% recognizes the corresponding
cause clause set C; = {c%1, %2 .. c“lCil}
and obtains the set of candidate emotion-cause
pairs P = {(¢, c,iai’j)}llic: "I, And the prob-
ability of each candidate pair is p(c®, i) =
P )p(cEt ).

In the third turn, the ¢% € Q% is used for select-
ing valid emotion-cause pairs. Furthermore, the re-
think mechanism is implemented through a soft se-
lection strategy, in which the probability is adjusted
and a probability threshold is used. Specifically,

the probability of the candidate pair (¢, c°*i-7) is
updated by this strategy as follows:
p(cFr, ¢400) = Ap(c®i)p(chi ), (14)
where the weight factor \ is used to adjust the
probability of candidate emotion-cause pairs. A is
1 when the predicted result of the third turn is yes,

otherwise ) is a unique value between 0 and 1. The
set of valid emotion-cause pairs is as follows:

P =
{(Cei,Ccai’j)|(cei,ccai’j) c Pcan7p(cei’ccai,j) > 5}7
(15)

where ¢ is a probability threshold value.

4 Experiments

4.1 Dataset and Metrics

The benchmark dataset (Xia and Ding, 2019) was
constructed based on a public Chinese emotion cor-
pus (Gui et al., 2016) from the SINA NEWS web-
site 7. The dataset contains 1,945 documents and
28,727 clauses. The number of candidate clause
pairs is 490,367 and the number of valid emotion-
cause clause pairs is 2,167.

In the experiment, we use the two styles of data
split:

* 10-fold cross validation. Selecting 90% of
the data for training and the remaining 10%
for testing stochastically (as same as Xia and
Ding (2019)). The most previous works use
the data split style.

* Training/Validation/Test data set. Select-
ing 80% of the data for training, 10% of the
data for validating and the remaining 10% for
testing stochastically (as same as Fan et al.
(2020)). The data split style is more plausible
than the first style.

Furthermore, when we extract the emotion-cause
pairs, we obtain the emotions and causes simultane-
ously. Thus, the performance of emotion extraction
and cause extraction were also evaluated. The pre-
cision P, recall R and F1 score defined in (Gui et al.,
2016; Xia and Ding, 2019) are used to evaluate the
performance of the three tasks.

Shttps://news.sina.com.cn/
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E-C Pair Extraction

Emotion Extraction Cause Extraction

Model
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
SL-NTS 7243 63.66 67.76 81.96 73.29 77.39 7490 66.02 70.18
TransDGC (Val) 73.74 63.07 67.99 87.16 8244 84.74 75.62 64.71 69.74
ECPE-2D 72.92 6544 68.89 86.27 92.21 89.10 73.36 69.34 71.23
PairGCN 76.92 6791 72.02 88.57 79.58 83.75 79.07 69.28 73.75
RANKCP 71.19 76.30 73.60 91.23 89.99 90.57 74.61 77.88 76.15
ECPE-MLL 77.00 7235 74.52 86.08 9191 88.86 73.82 79.12 76.30
MM-R 82.18 79.27 80.62 97.38 90.38 93.70 83.28 79.64 81.35
MM-R (Val) 78.97 7532 77.06 96.09 88.09 91.88 80.90 76.21 78.45

Table 1: Performance of our models and baselines. P, R and F1 denote precision, recall and F1-measure respectively.
E-C denotes Emotion-Cause. TransDGC(Val) and MM-R(Val) use the second data split style, the rest of models use

the first data split style.

4.2 Experimental Settings

We used the BERT}se—Chinese @s our encoding
backbone. During training, the AdamW optimizer
with a weight decay of 0.01 was used for online
learning, and the initial learning rate and warmup
rate are set to 1e-5 and 0.1 respectively. The batch
size is set to 2. As for regularization, dropout is
applied for networks and the dropout rate is set to
0.1. We trained the model 20 epochs in total and
adopted early stopping strategy. In the inference
stage, A € {0.7,1.0} and the threshold § was set
to 0.5. The model was run on a Tesla V100 GPU.

4.3 Baselines

To demonstrate the effectiveness of our method,
we compare our model with the following BERT
baselines.

e SL-NTS (Yuan et al., 2020) regards the ECPE
task as a sequence labeling problem and pro-
poses a novel tagging scheme.

e TransDGC (Fan et al., 2020) proposes a
transition-based model to transform the task
into a parsing-like directed graph construction
procedure. ¢

* ECPE-2D (Ding et al., 2020a) uses a 2D trans-
formers to model the interactions of different
emotion-cause pairs.

¢ PairGCN (Chen et al., 2020b) constructs a
pair graph convolutional network to model de-
®Tt should be noted that the TransDGC method use the

second data split style, while others methods use the first data
split style.

pendency relations among local neighboring
candidate pairs.

* RANKCP (Wei et al., 2020) uses a graph at-
tention network to model interactions between
clauses and selects emotion-cause pairs by the
ranking mechanism.

* ECPE-MLL (Ding et al., 2020b) extracts
emotion-cause pairs based on sliding window
multi-label learning. It is a state-of-the-art
model of baselines.

4.4 Variants

To show the effectiveness of the multi-turn struc-
ture and the rethink mechanism in the proposed
method, We designed the following variants:

* MRC-E2E is a single-turn MRC framework
with an End-to-End style. The static queries
q°P is used to extract an emotion-cause pair
set.

* MM is a simple Multi-turn MRC framework.
Compared with MM-R, it removes the rethink
mechanism.

* MM-D is proposed inspired by (Chen et al.,
2021; Mao et al., 2021), which is a Multi-turn
MRC framework with Dual structure. One di-
rection sequentially recognizes emotions and
causes to obtain the candidate emotion-cause
pair set with the help of static emotion query
¢°¢ and dynamic cause query ¢%. In contrast,
the other direction identifies causes first and
then emotions to obtain another candidate set
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Natural QL Pseudo QL Structured QL
Q% Is it an emotion clause? emotion? emotion:_;cause:None
Qdc Is it a cause clause corresponding to c;? ciscause? emotion:c;;cause:_
Qde Is it an emotion clause corresponding to ¢;?  c;;emotion? emotion:_;cause:c;
MM-R 80.62 (%F1) 80.51 (%F1) 79.72 (%F1)

Table 2: The performance of different query language designs (Natural, Pseudo and Structured QL) on ECPE task.
“QL" denotes “Query Language". Q*¢, Q% and Q% are static emotion query, dynamic cause query and dynamic

emotion query, respectively.

with the help of static cause query ¢°¢ and dy-
namic emotion query ¢%. Finally, we take the
intersection of the two candidate sets.

4.5 Main Results

Table 1 gives the comparative results for the ECPE
task and the two sub-tasks. The proposed MM-
R shows a clear advantage over other baselines,
obtaining F; improvements of 6.10%, 3.13%, and
5.05%, respectively, over the previous baselines on
the three tasks.

Specifically, for the ECPE task, the MM-R ob-
tains 5.18%, 6.92% and 6.10% improvements in
the P, R, and F'1 measures compared to ECPE-
MLL. For the emotion extraction task, the MM-
R performs 3.13% better than the best-performed
baseline RANKCP, and it is worth noting that the
increase in precision contributed most to the boost
in the F score. We believe that the high precision
is due to the rethink mechanism filtering out some
negative samples. The cause extraction task is more
difficult because the cause clauses depend heavily
on emotions. However, with the help of dynamic
cause queries constructed by emotion semantic in-
formation, substantial increases (+5.05% F}) are
obtained compared to ECPE-MLL.

Besides, when we use the data split as the Trans-
DGC (Fan et al., 2020), our method MM-R (Val)
still obtains the state-of-the-art performance over
the previous baselines.

S Further Analysis

5.1 Effect of the Multi-turn Structure

MRC-E2E has the same label sparsity problem
as pair-level end-to-end baselines, and it cannot
model the interaction of emotions and causes due
to its single-turn structure. However, MM, the
most straightforward multi-turn framework among
these similar methods, achieves 2.68%, 0.02%, and
2.84% F1 improvements over MRC-E2E as shown

Extraction of. (F1 %)

Model
Emotion Cause E-C pair
MRC-E2E  90.34 7792  75.35
MM 93.02 7794  78.19
MM-D 93.67  79.47  78.76
MM-R 93.70  81.35  80.62

Table 3: Performance of variants.

in Table 3, which demonstrates the effectiveness of
the multi-turn structure.

In addition, compared with end-to-end base-
line ECPE-MLL, MRC-E2E still achieves 1.48%,
1.62% and 0.83% improvements of F) in three
tasks, which demonstrates that the explicit emo-
tion/cause semantic information played an impor-
tant role.

5.2 Effect of the Rethink Mechanism

To verify the advantages of the rethink mechanism,
MM-R was compared with the other two models
(MM and MM-D). Specifically, compared with
MM, MM-R achieved 0.68%, 3.41%, and 2.43%
F1 improvements on the three tasks, demonstrating
the the rethink mechanism’s effectiveness. Further-
more, MM-D achieved excellent performance with
its dual structure. However, its score was 1.86%
lower than MM-R in the ECPE task. The dual
structure treats both emotion extraction and causes
extraction equally, whereas the rethink mechanism
is more trusting of emotion extraction. MM-R ob-
tains a better performance due to emotion extrac-
tion being more reliable than cause extraction’.

5.3 Effect of the Query Design

We explore the effect of different query language
design on the model. As shown in Table 2, their F1

"We have illustrated in the introduction that emotion ex-
traction is more reliable than cause extraction.
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BRHRZES (c6).

WET (c1) , FFIBRERREMET (c2) , FISEEVRIREEITF (c3) , MIESESIFHILELRE (c4) , FAIEFF7E2LEE (c5)”,

Translate: "It's the New Year (c1), and the creditor looted all food of my family (c2). Other families happily celebrate the
New Year (c3), but we are too poor to buy meat (c4). This makes us very sad(c5)", said Huaijun Chen (c6).

The first turn The second turn

Rethink

Threshold Valid E-C pairs | Ground-truth

(3, c4), p(3,4)=0.5135

€3, ¢5 (c5, c4), p(s.4) = 0.6313

(c3, c4), P(3,4) = 0.3595
(c5, c4), p5,4) = 0.6313

0.5 (c5, c4) (c5, c4)

Figure 3: An example in the test set. The emotion clause set {c3, c5} was obtained in the first turn and the
candidate emotion-cause pair set {(c3, c4), (c5, c4)} in the second turn. After using the rethink mechanism, the

valid emotion-cause pair set was identified as {(c5, c4)}.

scores all exceeded 79% on the ECPE task. Con-
cretely, Natural QL performs best in the ECPE
task. Compared with Pseudo and Structured QL,
Natural QL makes it easier for our model to under-
stand the meaning of the queries, because BERT’s
pre-trained corpus are all natural languages. The
Pseudo QL can be regarded as a concise expression
of Natural QL. Hence our model can still under-
stand the meaning of queries. Structured QL is
the most abstract of three QLs, transforming the
three queries (Q**%“%) into a unified paradigm.
It gains the lowest F1 score, which indicates that
the inductive ability of our model is not enough to
understand abstract structured query language.

5.4 Case Analysis

Figure 3 shows the inference process of MM-R and
the advantage of the rethink mechanism through
an example in the test set. The candidate emotion-
cause pair set {(c3, c4), (c5, c4)} were obtained
in the first two turns, and their probabilities were
p34 = 0.5135 and p5 4 = 0.6313. After this, the
proposed model adjusted the probabilities by re-
thinking whether each candidate emotion-cause
pair was valid. The bottom of Figure 3 shows that
the adjusted probabilities were p3 4 = 0.3595 and
P54 = 0.6313, and the threshold value was 0.5.
This means that the answer to the dynamic emo-
tion query “Is it an emotion clause corresponding
to ‘but we are too poor to buy meat’?" was no for
clause ¢3 in the third turn. Therefore, candidate
emotion-cause pair (c3, c4) was filtered out, while
(c5, c4) was preserved.

5.5 Results for Emotion Cause Extraction

The proposed framework is also applied to the emo-
tion cause extraction (ECE) task. Compared with
the ECPE task, the ECE task has emotion annota-
tions, and therefore in the MM-R framework, the
emotion extraction of the first turn is omitted, and

Emotion Cause Extraction

Methods P(%) R(%) F1(%)
RTHN 76.97 76.62 76.77
KAG 79.12  75.81 77.43
RHNN 81.12 77.25 79.14
2-step RANKING 80.76 78.45 79.59
MM-R 83.59 83.47 83.48

Table 4: Results on the Emotion Cause Extraction task.

the emotion annotations are used to extract the cor-
responding cause clauses directly in the second
turn. Finally, each candidate emotion-cause pair
was verified by the rethink mechanism.

Comparisons are also conducted with recently
proposed methods for the ECE task: RTHN (Xia
et al., 2019), RHNN (Fan et al., 2019), KAG (Yan
et al., 2021) and 2-step RANKING (Xu et al.,
2021). Table 4 clearly demonstrates that our pro-
posed framework achieves the state-of-the-art per-
formance on the ECE task.

6 Conclusions

This study transforms the emotion-cause pair ex-
traction (ECPE) task into the machine reading com-
prehension (MRC) task and proposes a multi-turn
MRC with rethink mechanism (MM-R). This struc-
ture, which extracts emotions and causes in turn,
avoids the label sparsity problem and models the
complicated corresponding relations between emo-
tions and causes. In every turn, explicit semantic in-
formation can be used effectively. Furthermore, the
rethink mechanism verifies each candidate emotion-
cause pair by modeling the flow of information
from causes to emotions. Experimental results on
the ECPE corpus demonstrated the effectiveness of
the proposed model.
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