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Abstract

Aspect-term sentiment analysis (ATSA) is an
important task that aims to infer the sentiment
towards the given aspect-terms. It is often re-
quired in the industry that ATSA should be
performed with interpretability, computational
efficiency and high accuracy. However, such an
ATSA method has not yet been developed. This
study aims to develop an ATSA method that ful-
fills all these requirements. To achieve the goal,
we propose a novel Sentiment Interpretable
Logic Tensor Network (SILTN). SILTN is inter-
pretable because it is a neurosymbolic formal-
ism and a computational model that supports
learning and reasoning about data with a differ-
entiable first-order logic language (FOL). To
realize SILTN with high inferring accuracy, we
propose a novel learning strategy called the two-
stage syntax knowledge distillation (TSynKD).
Using widely used datasets, we experimentally
demonstrate that the proposed TSynKD is ef-
fective for improving the accuracy of SILTN,
and the SILTN has both high interpretability
and computational efficiency.

1 Introduction

1.1 Motivation

Aspect-term sentiment analysis (ATSA) is a fine-
grained task in sentiment analysis, which aims is
to recognize the sentiment polarity of the given
aspect-term in a sentence (Zafra et al., 2019). Early
research for ATSA was developed based on man-
ually extracted features. For example, Poria et al.
(2014) designed hand-crafted dependency rules to
obtain aspect-related words, which are then fed into
the machine learning methods to infer the sentiment
polarity. With the development of deep learning,
deep neural networks (DNNs) have dominated the
study. Generally, the performance of DNNs is supe-
rior to traditional machine learning methods when
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the labeled training data is sufficient. More re-
cently, there are two classes of methods that have
received attention: (i) syntax-aware neural network
(SaNN), which integrates syntax knowledge into
attention-based neural network that increases the
predictor’s performance and interpretability (Zhang
et al., 2019; Wang et al., 2020; Li et al., 2020;
Nguyen and Shirai, 2015); (ii) large pre-trained lan-
guage model (PLM) for ATSA (e.g., Bert (Devlin
et al., 2019; Song et al., 2019; Zeng et al., 2019; Dai
et al., 2021)), which learns knowledge from large-
scale corpus and stably exceeds the other baseline
by a significant margin.

Despite the effectiveness of prior work, ATSA
in real-world remains a challenge for several rea-
sons. First, DNNs usually perform as a “black
box”, because they cannot explicitly explain the
process of the analysis; therefore, they cannot be
applied in cases where explanations are required.
Second, the performance of SaNNs relies on the
intricate knowledge integration mechanism, which
introduces more trainable parameters and brings
extra computational costs. Furthermore, based
on our empirical observation, the SaNN achieves
merely limited performance improvements on most
attention-based models (see methods 9-12 in Table
1). Third, for the pre-trained model, the enormous
parameters lead to high storage and computational
costs, making them a burden to be deployed in
resource-constrained application scenarios such as
real-time inference on mobile or edge devices. Be-
sides, similar to DNNs, the pre-trained methods
also lack interpretability.

1.2 Purpose

In response, this study aims to develop an ATSA
method that can achieve interpretability, computa-
tional efficiency and high accuracy simultaneously.

Interpretability. To satisfy the interpretability
requirement, we aim to develop an understandable
ATSA method that can extract aspect-related words
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with explicit semantic knowledge, and build the
sentiment inferring neural network that can be ex-
plained by first-order logic language (FOL). The
FOL type of explanation should be agreeable for
humans, and valuable in a situation where explana-
tions are required.

Computational efficiency. To achieve high
computational efficiency, we aim to develop an
efficient ATSA method that utilizes fewer parame-
ters for prediction while still achieving comparable
results as conventional state-of-the-art models.

High accuracy. To achieve high accuracy, we
aim to develop an ATSA method that achieves
outstanding performance while maintaining inter-
pretability and computational efficiency at the same
time. Although it is very challenging, inspired by
knowledge distillation (Hinton et al., 2015), we
aim to develop a knowledge distillation strategy
that transfers the knowledge of large and high-
performance networks into an interpretable and
computational efficient network.

1.3 Approach

To achieve the goal, we propose a novel Sentiment
Interpretable Logic Tensor Network (SILTN) for
ATSA. Further, to realize this SILTN with high
inferring accuracy, we propose a two-stage syntax
knowledge distillation (TSynKD) strategy.

SILTN. SILTN is a neurosymbolic formalism
and a computational neural network that supports
learning and reasoning about data with a differen-
tiable first-order logic language. Logic rules pro-
vide a flexible declarative language for communi-
cating high-level cognition and expressing struc-
tured knowledge.

TSynKD. Although SILTN is well interpretable,
its predictive performance is unsatisfactory because
of the shallow network structure. Therefore, we
propose the TSynKD to improve the inferring ac-
curacy of SILTN, which is motivated by the ob-
servation that knowledge distillation can compress
the large and high-performance networks (teacher)
into a small student model while preserving the
knowledge of the teacher model. TSynKD consists
of two distillation stages with three networks: a
large network (first teacher), a big network (sec-
ond teacher) and a small network (student). The
first distillation stage is the output distillation stage,
which makes a large network output logits as a big
network training objective. In this paper, we use
the pre-trained Bert as the large network. As for

the big network, we propose an aspect-specific dy-
namic graph convolutional network (AsDGCN) to
model the dependency knowledge. The second
stage is feature distillation stage, which allows a
student to learn from a teacher’s intermediate fea-
tures. Here, SILTN is the student for distilling
dependency knowledge from teacher AsDGCN.

1.4 Contribution

We summarize our contributions as follows: (1) To
the best of our knowledge, this is the first work to
integrate an interpretable logic tensor network in
a principled framework for ATSA. SILTN is con-
structed followed by FOL, which provides a flexi-
ble declarative language for communicating high-
level cognition and expressing structured knowl-
edge. (2) We propose a two-stage syntax knowl-
edge distill strategy (TSynKD) in ATSA, which
significantly improves the performance of SILTN.
(3) Extensive experiments have been conducted to
evaluate the effectiveness of our model for ATSA.

2 Our Methodology

Figure 1: Overall framework.

2.1 Problem Definition

The ATSA task can be formulated
as follows. Given a sentence x =
{wc

1, ..., w
a
a, ..., w

a
a+m, ..., wc

n} contains the
corresponding aspect-term words {wa

a, ..., w
a
a+m},

where w denotes each word in the sentence and
m denotes the aspect-term length. Each sentence
has a sentiment label y. ATSA aims to predict a
sentiment label for the input sentence x towards
the given aspect-term. In this paper, we use
superscripts “c”, “a” to indicate a context word
and aspect-term word, respectively.
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2.2 Framework Overview

Figure 1 shows the overall framework of our pro-
posed method. The blue block denotes the SILTN,
which serves as a basic prediction model. SILTN is
developed following FOL, where each Grounding
G is constructed by a simple trainable neural net-
work structure. To realize SILTN with high infer-
ring accuracy, SILTN is trained by TSynKD strat-
egy. TSynKD consists of two distillation stages
with three networks: a large network (Bert), a big
network (AsDGCN), and a small network (SILTN).
The first stage is the output distillation, which uti-
lizes Bert’s output logits as the AsDGCN’s training
objective. The second stage is the feature distilla-
tion, where SILTN learns dependency knowledge
from AsDGCN and utilizes Bert’s output logits as
the SILTN’s training objective for further improv-
ing the inferring accuracy.

2.3 SILTN

2.3.1 Preliminary: Logic Tensor Network
Logic Tensor Network (LTN) is a neuro-symbolic
formalism and computational model that supports
learning and reasoning about data with rich knowl-
edge. The semantics of logic in LTN (called Real
Logic) depart from the standard abstract semantics
of FOL. In Real Logic, every object denoted by
constants, variables and terms is interpreted as a
tensor of real values. Predicates are interpreted
as functions or tensor operations projecting onto a
value in the interval [0, 1]. Here, functions are usu-
ally implemented by neural networks. Grounding
in Real Logic, denoted by G, associates a tensor of
real numbers, where a real number in the interval
[0, 1].

2.3.2 SILTN Notation and Definition
The notation and definition of SILTN are as fol-
lows:

Domains: texts, denoting the examples from
dataset. labels, denoting the class labels.

Variables: x+, x◦ and x− denoting the text of
“positive”, “neutral” and “negative”, respectively. x
for all examples. D(x+) = D(x◦) = D(x−) = D(x)
= texts.

Constants: l+, l◦ and l−, the labels of classes for
“positive”, “neutral” and “negative”, respectively.
D(l+) = D(l◦) = D(l−) = labels.

Predicates: A(x) denoting the dependency rela-
tion. K(k, q) denoting the knowledge rule k → q.
R(x, a) denoting the fact that the aspect-related

words toward the aspect-term a. P (R(x, a), l) de-
noting the fact that text x is classified as l when
targeting to aspect-term a.

Axioms:

∀x K(A(x), R(x, a)) (1)

∀x+ P (R(x+, a), l+) (2)

∀x◦ P (R(x◦, a), l◦) (3)

∀x− P (R(x−, a), l−) (4)

Notice that rules about exclusiveness such as
∀x(P (x, l+) → (¬P (x, l◦) ∧ ¬P (x, l−))) are not
included since such constraints are already imposed
by the grounding of P below, more specifically the
softmax function.

Grounding: G(l) is the one-hot vector where
G(l+) = [1, 0, 0], G(l◦) = [0, 1, 0] and G(l−) =
[0, 0, 1]. G(x) is a word matrix of x. G(a) and G(c)
are word matrix of aspect-term a and content words
c, respectively. G(A(x)) is a dependency relation
vector sequence of the given text x. G(R(x, a)) is
a vector sequence that computed by G(x) and G(a).
G(K(A(x), R(x, a))) is a vector sequence that
computed by G(A(x)) and G(R(x, a)). G(P |θ):
(x, a), l 7→ softmax(SILTNθ(x, a)), where the LTN
has three output neurons corresponding to the sen-
timent polarity “positive, neural or negative”, and
each neurons gives the probability corresponding
to the class l.

2.3.3 Network structure of SILTN
Follow the SILTN definitions, we aim to achieve
G(P |θ): (x, a), l 7→ softmax(SILTNθ(x, a)), where
each grounding is constructed by neural network
structure. Figure 2 is the framework of SILTN.

Specifically, following FOL, G(P ) can be de-
composed by each groundings. According to Fig-
ure 2, the first layer Grounding is G(x), where the
Grounding of input sentence x is constructed by the
text representation model such as LSTM or Bert,
etc. Formally, given input sequence x, we convert
the i-th word into a low-dimensional vector repre-
sentation ei by embedding layer, where d denotes
the dimension of embedded vectors. The G(x) rep-
resents the hidden states of LSTM, where the input
is the combination of ei.

The second layer Grounding is Predicates A(x),
which aims to model the dependency relation of
each word toward the aspect-term. To achieve this
goal, the distilled dependency knowledge is utilized
in this layer. Formally, G(A(x)) can be calculated
as:
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Figure 2: Framework of the proposed SILTN.

G(A(x)) = σ(

m∑
i=0

ÂiG(x)iWi + b), (5)

where Â is the distilled dependency knowledge
(see Eq. (9)); σ denotes the active function. Note
that W, b are distilled from AsDGCN (share param-
eters).

Next, G(R(x, a)) is computed by :

c = G(x)G(a)T,

G(R(x, a)) = G(x)tsoftmax(
∑
t

ct),
(6)

where softmax(fi) = efi∑
j e

fj
, t denodes the t-

th word. Specifically, G(a) is obtained by select-
ing the corresponding vector through the index
{wa

a, ..., w
a
a+m} from G(x).

After acquiring the representation G((R(x, a)),
it is fed into the feed-forward layer to compute
G(K(A(x), R(x, a))). Here, K(A(x), R(x, a))
represents the soft logic A(x) → R(x, a). Follow
soft logic operation in Badreddine et al. (2022),
K(A(x), R(x, a)) is computed by:

G(K(A(x), R(x, a))) =

1− G(A(x)) + G(A(x)) · G(R(x, a))
(7)

Then the softmax layer to obtain the sentiment prob-
ability distribution:

PS = softmax(W1G(K(A(x), R(x, a))) + b1),
(8)

where W1 and b1 are trainable parameters.

2.4 TSynKD
2.4.1 Key Idea of TSynKD
The “deepth” of the network structure is shallow,
which poses a big challenge to improve the net-
work’s performance on ATSA while maintaining
an interpretable and simple network structure. An
effective solution is to adopt knowledge distilla-
tion, which can transfer the knowledge from the
large network (teacher) into the small network (stu-
dent), and improve the student’s performance sig-
nificantly.

2.4.2 Large Network (Bert)
In this paper, we deploy the pre-trained Bert model
as the first teacher that produces features learned
from large-scale corpus. Specifically, we first fine-
tune the Bert model, and then generate the out-
puts of all training samples. The outputs are then
denoted as a big model training objective in out-
put distillation. Bert model takes “[CLS] sentence
[SEP] aspect-terms [SEP]” as input, which com-
putes the deep representations of sentences and
aspects. We denote the output of Bert as PL.

Figure 3: Framework of AsDGCN.
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2.4.3 Big Network (AsDGCN)
AsDGCN is the extention of Zhang et al. (2019),
which aims to distill dependency knowledge from
Bert by output distillation, and then transfer the
knowledge into the student SILTN. We only briefly
discuss sections overlapping with contents in
Zhang et al. (2019) so that we can put more empha-
sis on the new contributions.

Formally, the first layer of AsDGCN is Bi-
LSTM network, which can be denoted as Hx =
{hc1, ..., ha2, ..., hcn}, Hc and Ha are the combina-
tion of the hidden states of content words and
aspect-terms, respectively. The second layer is
constructed for learning the dependency relation
(denoted as Â) of each word. In particular, we
propose a novel attention mechanism, where the
attention distributions simulate the adjacency rela-
tions. Specifically, we first use the hidden states of
aspect-term (Ha) as the attention query to calculate
the attention distribution with the hidden state Hx.
Then, Â can be computed as:

Â = IN + softmax(Relu(HaTHx)), (9)

where IN is the identity matrix. After obtaining
the adjacency Â, The final graph representation S
can be calculated by GCN:

S = σ(ÂHW + b), (10)

where σ represents a non-linear function, W+b are
trainable parameters.

Finally, S is then fed into the attention-based
layer and followed by the softmax layer to compute
a sentiment probability distribution PB .

2.4.4 Learning
• Output distillation:

The output logits serve as a soft target provid-
ing richer supervision than the hard target of
the one-hot gold label for the training (Hinton
et al., 2015). Given an input sentence x with
the gold label y (one-hot), the output logits
of the large network (Bert) PL and the output
logits of the big network (AsDGCN) PB , the
loss function of output distillation denotes as:

Lod = α1 · CE(PB, Y )

+ (1− α1) ·MSE(PL, PB)
(11)

• Feature distillation:

To capture rich syntactic tree features, we first
consider allowing the student SILTN to di-
rectly utilize dependency relations Â from As-
DGCN.

Second, SILTN shares the parameters of syn-
tax layer with AsDGCN (See from Eq. (5)
and Eq. (10) ).

• Loss function for SILTN:
The loss function of SILTN is similar to output
distillation, which can be computed as:

L = α2 · CE(PS , Y )

+ (1− α2) ·MSE(PL, PS)
(12)

Training strategy: From Figure 1, the training
of the overall framework has three steps: (1) fine-
tune Bert and then predict the sentiment label PL;
(2) train AsDGCN by output distillation (Eq. 11);
(3) train SILTN by leveraging Â (Eq. 9) from the
trained AsDGCN and then optimize through the
loss function L (Eq. 12). During inference, the
well-trained SILTN can make predictions on its
own for the given input.

3 Experiments

Datasets. To evaluate the effectiveness of our
method, we conduct extensive experiments on five
datasets. Twitter dataset is obtained from Dong
et al. (2014). There are 1561 positive, 3127 neutral
and 1560 negative tweets for training and 692 for
the test. Lap14 and Rest14 datasets are taken from
SemEval-14 Task 4 in Pontiki et al. (2014). Lap14
denotes the laptop reviews and it contains 2328
training texts and 638 test samples. Rest14 com-
poses of the restaurant reviews, it contains 2164
positive, 637 neutral and 807 negative texts for
training and 1120 samples for test. Rest15 is col-
lected from SemEval 2015 task 12 in Pontiki et al.
(2015), it contains in total 1204 training samples
with three sentiment classes and 542 samples for
test. SPD is collected from Zhang et al. (2020),
the sentences in SPD all contain unique structures,
such as conditional statements and subjunctive. It
contains 4726 training samples and 1182 test sam-
ples.

Baselines We adopt several sentiment classifica-
tion methods as baselines. SVM (Kiritchenko et al.,
2014) is an effective traditional mechine learning
based method. LSTM (Tang et al., 2016a) utilizes
the standard LSTM to model the sentiment repre-
sentation. IAN (Ma et al., 2017), MemNet (Tang
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Model
Twitter Lap14 Rest14 Rest15 SPD

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
1.SVM¶ 63.40 63.30 70.49 - 80.16 - - - - -
2.LSTM† 69.56 66.42 69.28 63.21 78.13 67.42 77.37 52.97 61.16 59.17
3.Memnet¶ 71.48 68.14 70.64 65.19 79.61 68.14 77.31 56.17 61.42 57.56
4.AOA† 72.30 68.20 72.62 66.97 79.97 69.59 78.17 57.21 63.76 64.41
5.IAN† 72.50 68.14 72.05 67.38 79.26 70.12 78.54 52.21 63.76 63.96
6.CapsNet¶ - - - - 69.63 69.63 78.14 61.57 - -
7.TNet-LF† 72.98 71.43 74.61 70.14 80.40 70.57 78.47 59.12 63.76 64.96
8.MIMLLN¶ - - - - - 81.06 71.25 78.27 60.59 - -

Syntax-aware methods
9.PRNN¶ - - - - 66.20 59.32 - - - -
10.SAttn¶ - - 72.57 69.13 80.45 71.26 - - - -
11.ASGCN† 72.15 71.00 71.05 70.72 80.86 72.73 79.89 59.47 66.24 65.24
12.R-GAT† 71.56 71.07 72.49 71.01 73.83 72.14 78.92 61.24 66.87 65.14

Ours (SILTN)
-sp 70.95 68.73 72.57 68.14 81.16 71.87 79.97 57.76 63.74 60.12
-(dep) 73.12 72.25 76.96 72.95‡ 83.13 75.12‡ 81.01 64.11 67.60 67.38‡

-(dis-dep) 73.01 73.07‡ 76.77 73.03‡ 83.02 75.86‡ 81.37 64.26‡ 67.94 68.01‡

Table 1: Evaluation results (%) on none-pretrained based methods. The best result on each task is in bold. The mark
¶ refers to the results reported in the original papers, while † mark refers to the open implementation, ‡ mark refers
to p-value < 0.05 when comparing with the best competitor.

Twitter Rest14 Lap14
Bert 74.41 76.21 75.10
Bert-PT - 76.48 75.08
LCF-BERT 73.34 75.03 76.26
AEN-Bert 73.13 73.76 76.31
RoBerta-ASC - 75.12 70.52
Bert-ASGCN 74.67 76.29 75.96
Bert-RGAT 74.88 74.88 74.07
SILTN-Bert 75.52 77.04 76.34

Table 2: Evaluation results (F1 %) compared with pre-
trained models.

et al., 2016b), AOA (Huang et al., 2018)and TNet-
LF (Li et al., 2018) are attention-based methods.
ASGCN (Zhang et al., 2019) and R-GAT (Wang
et al., 2020) use GCN to model the dependency tree
graph for ATSA. MIMLLN (Li et al., 2020) treats
the aspect category as the key instances. PRNN
(Nguyen and Shirai, 2015) takes both dependency
and constituent trees into LSTM. SAttn further
integrates attention mechanism with PhraseRNN.
Bert (Devlin et al., 2019) is a pre-trained BERT
model to perform ATSA. We convert the given con-
text and target to “[CLS] + aspect-term + [SEP]
+ context” structure. Further we select several
variants Bert-based model Bert-PT (Xu et al.,

2019),AEN-Bert (Song et al., 2019), LCF-Bert
(Zeng et al., 2019), RoBerta-ASC, Bert-ASGCN
and Bert-RGAT(Dai et al., 2021).

Variant of SILTN. To get a trade-off between
interpretability, computational efficiency and high
accuracy, we increase or simplify trainable parame-
ters for SILTN, and compare their prediction accu-
racy and prediction time. SILTN-sp: This method
maximally simplifies the training parameters. We
expect that each grounding of SILTN is a simple
trainable tensor production, and for the first layer
of grounding G(x), we directly initialize it with
glove vector without adding any text representation
structure. SILTN-LSTM: To sacrifice the inter-
pretability and improve inferring performance, we
use one LSTM layer to construct G(x). Note that,
the SILTN-(dep) denotes the dependency knowl-
edge acquired from the external tools, and the de-
pendency knowledge of SILTN-(dis-dep) is dis-
tilled from Big network AsDGCN. SILTN-Bert:
To further improve the inferring performance, we
use pretrained Bert to model G(x).

Experimental Setting. In this paper, we utilize
300-dimensional pre-trained GloVe vectors to ini-
tialize the word embeddings. The dimensions of
the hidden state of Bi-LSTM is 128. The scale
weight α{1,2} is 0.01. The model is optimized with
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the Adam optimization algorithm with the batch
size of 32 and the learning rate is 0.001. As in
Zhang et al. (2019), We use accuracy and macro-
averaged F1 score as the evaluation metrics, which
are widely adopted in sentiment classification. We
compute the metrics independently for each class
and then take the average (hence treating all classes
equally), as the final performance.

3.1 Task Setup and Quantitative Results
To evaluate the stability of the model, following
Zhang et al. (2019), we run the method three times
and summarize the best results in Tables 1. Besides,
we adopt the t-test to confirm the significance of
differences between the other methods with a p-
value of 0.05.

(a) None-Bert model.

(b) Bert-based model.

(c) Predict time (sort by time increase).

Figure 4: Comparison results of the size of training
parameters vs. F1 score.

According to the results, we can observe that
our model consistently outperforms the compared
baseline methods. First, SILTN outperforms all
none-syntax baselines (No. 1-8) on all datasets,
which indicates that SILTN has better ability to
infer the sentiment polarities by utilizing depen-

dency knowledge. For example, compared with the
best competitor of methods 1-8, SILTN(dis-dep)
improves 1.64% on Twitter, 4.61% on Rest14 and
2.69% on Rest15 for F1 score, respectively. This
is because SILTN utilizes the dependency knowl-
edge distilled from the big model, which enriches
the learning ability between the word and aspect-
terms. Second, compared with the syntax-aware
models (No. 9-12), SILTN improves 2.02% on
Lap14, 3.13% on Rest14 and 3.02% on Rest15 for
F1 score, respectively. The reason is that the syntax
dependency tree from the SpaCy tool utilized by
the conventional method may introduce additional
errors especially for the text are short and informal.
Third, to further imporve the infering accuracy,
we compare our method with Bert-based methods
and give the results in Table 2. The result shows
SILTN-Bert achieves the best F1 score over the
competitors. Note that, SILTN-(dis-dep) reduces
parameters by 99.17% compared to the Bert model;
however, SILTN still achieves compatible results.

In sum, the advantage of SILTN comes from its
two characteristics: (i) TSynKD provides adequate
syntax knowledge, making the SILTN able to com-
bine the prior knowledge effectively. (ii) SILTN
uses fewer parameters while interpretable, which
leads to high efficiency and high accuracy.

3.1.1 Cost Efficiency vs. Accuracy
Figure 4 summarized the number of parameters and
the F1 score results. First, compare SILTN with
the baselines, SILTN contains fewer parameters but
achieves state-of-the-art results. For example, -dep
has 58.32% less parameters than ASGCN, but the
performance improved by 4.46% on Rest15 and
2.23% on Lap14. Moreover, the predict time of -
dep is comparable to simple LSTM model. Second,
compared with SILTN-sp, which has the fewest pa-
rameters (even fewer 74.91% than standard LSTM),
our method can still obtain competitive results to
the conventional best attention mechanism model
(ASGCN). In sum, the results show the effective-
ness of the TSynKD framework, and it proves that
our model can strike a balance between computa-
tional efficiency and high accuracy.

3.2 Ablation Study

To study the impact of each component of the pro-
posed method, we implement the ablation test to
remove the proposed component denoted as -w/o.

Specifically, -w/o TSynKD: SILTN without the
TSynKD framework, and utilize the standard de-
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pendency tree1 as the syntax knowledge. -w/o
TSynKDOT : SILTN trained by utilizing only out-
put distillation strategy and utilize the standard
dependency tree as the syntax knowledge. -w/o
TSynKDFT : SILTN trained by utilizing only fea-
ture distillation strategy and utilize the standard
dependency tree as the syntax knowledge.

Methods Twitter Lap14 Rest14
SILTN-sp 68.73 68.14 71.87

-w/o TSynKD 65.84 65.44 68.53
-w/o TSynKDOT 66.73 66.22 70.20
-w/o TSynKDFT 67.42 66.74 69.66

Table 3: Ablation study results (F1%).

The ablation results are summarized in Table
3. According to the results, we can summarize
that all the proposed components contribute a great
improvement to SILTN. In particular, the accu-
racy score decreases sharply when discarding the
TSynKD framework. This is within our expecta-
tion since the TSynKD injects knowledge from the
large network and the dependency knowledge from
the big model into SILTN. For example, the F1
score drops 2.89%, 2.70% and 3.34% for Twitter,
Lap14 and Rest14, respectively. In addition, the
proposed two-stage distillation framework also con-
tributes to the effectiveness of SILTN. For example,
the F1 score decreases 1.92% for Twitter when dis-
carding feature distillation, and decreases 2.21%
for Rest14 when discarding output distillation. Not
surprisingly, combining all factors achieves the best
performance for all the experiments.

3.3 Visualized of Distilled Dependency
Relation

The dependency knowledge enables SILTN to uti-
lize tree structures for capturing the corrected
aspect-related words. To understand how the dis-
tilled model promotes the mutual learning of de-
pendency structures, we empirically visualize the
adjacency relation based on a test example: “food
is delicious but price is expensive”. This sample
contains “food” and “price” two aspect-terms. The
visualization is summarized in Figure 5. Figure
5. (a) is the standard dependency structure from
SpaCy tools, which the conventional methods uti-
lize. Both “food” and “price” share the same ad-
jacency matrix. Figure 5. (b) and (c) are acquired

1Spacy tools: https://spacy.io/

(a) Standard dependency structure from Spacy.

(b) From AsDGCN with
aspect-term “food”.

(c) From AsDGCN with
aspect-term “price”.

Figure 5: Visualized of distilled dependency relation.

from Eq. 9 for our AsDGCN. They generate adja-
cency matrices for each aspect-term, respectively.
For example, in Figure 5. (b) “food” increases
the dependency weight associated with “delicious”;
and in Figure 5. (c), the “price” directly connects
with “expensive”.

4 Conclusion

In this paper, we propose a novel Sentiment Inter-
pretable Logic Tensor Network (SILTN). SILTN
is interpretable because it is constructed followed
by first-order logic language (FOL). The sentiment
inferring process can be decomposed into differ-
ent grounding, which is constructed by the simple
neural network; therefore, SILTN is computation-
ally efficient. To achieve high inferring accuracy,
we propose a two-stage syntax knowledge distilla-
tion (TSynKD) strategy. TSynKD consists of two
distillation stages with three networks: Bert, As-
DGCN and SILTN. The first distill stage refers to
the output distillation, which makes the Bert out-
put logits as the training objective of AsDGCN.
In AsDGCN, we develop a novel attention struc-
ture to learn the aspect-specific dependency knowl-
edge through output distillation. The second stage
is feature distillation, which allows a SILTN to
learn from AsDGCN’s intermediate feature rep-
resentations. Extensive experiments have been
conducted on 5 real-world datasets. The experi-
mental results show that the proposed SILTN with

https://spacy.io/
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the TSynKD strategy significantly outperforms the
conventional attention-based methods, and achieve
compatible results compared with the state-of-the-
art Bert-based methods for aspect-term sentiment
analysis.
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