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Abstract

Warning: this paper contains content that
may be offensive and distressing.

State-of-the-art approaches for hate-speech de-
tection usually exhibit poor performance in out-
of-domain settings. This occurs, typically, due
to classifiers overemphasizing source-specific
information that negatively impacts its domain
invariance. Prior work has attempted to penal-
ize terms related to hate-speech from manu-
ally curated lists using feature attribution meth-
ods, which quantify the importance assigned
to input terms by the classifier when making
a prediction. We, instead, propose a domain
adaptation approach that automatically extracts
and penalizes source-specific terms using a do-
main classifier, which learns to differentiate be-
tween domains, and feature-attribution scores
for hate-speech classes, yielding consistent im-
provements in cross-domain evaluation.

1 Introduction

While recent state-of-the-art hate-speech classi-
fiers (Ayo et al., 2021; D’Sa et al., 2020; Mozafari
et al., 2019) yield impressive performance on in-
domain held-out instances, they suffer when evalu-
ated on out-of-domain settings (Yin and Zubiaga,
2021; Arango et al., 2019; Swamy et al., 2019;
Karan and Snajder, 2018). The distributions across
corpora/domains' change due to varying vocabu-
lary, topics of discussion over time (Florio et al.,
2020; Saha and Sindhwani, 2012), data bias caused
by sampling strategies (Wiegand et al., 2019) and
different hate-targets. This is concerning since cu-
rating new data resources for hate-speech involves
substantial time and effort (Poletto et al., 2019; Mal-
masi and Zampieri, 2018). This calls for strategies,
like Domain Adaptation (DA) approaches, that can
adapt models trained on existing labeled resources
to a new target domain that lacks class-labels.

"We use the terms ‘corpus’ and ‘domain’ interchangeably.

However, research on DA in hate-speech is lim-
ited (Sarwar and Murdock, 2022; Bashar et al.,
2021; Bose et al., 2021). Typically, vanilla clas-
sifiers tend to learn more from domain-specific
features (Ye et al., 2021; Wiegand et al., 2019) than
domain-invariant features, resulting in poor out-of-
domain performance. For instance, Wiegand et al.
(2019) show that in a hate-speech dataset (Waseem
and Hovy, 2016), neutral domain-specific terms,
like ‘football’, ‘commentator’, etc., discussing the
role of women in sports, are highly correlated with
the hate label, restricting its generalizability. Thus,
it is worth minimizing the importance of such terms
for improving cross-domain performance.

Recently, feature attributions — methods for ex-
tracting post-hoc model explanations, have been
used to align features with prior domain knowledge
(Rieger et al., 2020; Adebayo et al., 2020). These
provide importance scores to the input terms as
per their contribution towards the model prediction
(Lundberg and Lee, 2017). For instance, Liu and
Avci (2019); Kennedy et al. (2020) reduce the over-
sensitivity of classifiers on a curated list of identity
terms (e.g. muslims, gay) by penalizing their im-
portance. However, newly emerging social-media
terms (Grieve et al., 2018) may render such lists
non-exhaustive. Yao et al. (2021) do not use any list
but they require human-provided refinement advice
as inputs. Chrysostomou and Aletras (2022a) fur-
ther show that post-hoc explanation methods might
not provide faithful explanation in out-of-domain
settings. The contemporaneous work by Attanasio
et al. (2022) and Bose et al. (2022) reduce lexical
overfitting automatically with entropy-based atten-
tions and feature attributions, respectively. While
cross-domain classification performance across dif-
ferent datasets is not studied in the former, the latter
needs some labeled target instances to identify the
over-fitted terms.

In the task of detecting objects in images, Zunino
et al. (2021) use a domain classifier, trained to dif-
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ferentiate between domains, to visually identify the
irrelevant background information to be domain-
specific. Thus, they enforce the model explanations
to align with the ground-truth annotations highlight-
ing the objects in the image. Inspired by this, we
propose a new DA approach in hate-speech employ-
ing a domain classifier, but without having access to
such annotations for aligning the attribution scores.
We hypothesize that domain-specific terms that
are simultaneously predictive of the hate-speech
labels are instrumental in restricting the domain
invariance of the hate-speech classifier. To this
end, we employ a domain classifier to automati-
cally extract the terms that help in identifying the
source domain compared to the unlabeled target
domain, and feature-attribution scores to identify
the subset important for hate-speech classification
from the source. Our method, through penalization
of these terms, automatically enforces the source
domain classifier to focus on domain-invariant con-
tent. Compared to approaches transforming high-
dimensional intermediate representations to reduce
the domain discrepancy, such as domain adversarial
learning (Ryu and Lee, 2020; Tzeng et al., 2017),
our approach makes the adaptation more explain-
able, while improving the overall cross-domain
performance compared to prior-approaches.

2 Proposed Approach

Given training data from a labeled source domain
D and an unlabeled target domain D%, our
approach for DA in hate-speech involves 2 steps: (i)
extraction of source-specific terms and (ii) reducing
the importance of these terms. Our setting is similar
to Ben-David et al. (2020) and Ryu and Lee (2020).

2.1 Extraction of Source-specific Terms

Domain classification To identify source-
specific terms, we first train a binary domain
classifier using Dg"“m and DE%" that learns
to identify whether a candidate instance comes
from the source or the target domain. For this,
we use a simple Logistic Regression (LR) with
bag-of-words, as it is inherently interpretable. We
then use its feature weights to extract the top N
most important terms for predicting the source
domain class. Each term is tokenized with the
BERT (Devlin et al., 2019) WordPiece tokenizer
for compatibility with transformer models. The top
N terms obtained through domain classification
are denoted as Sy, g.

Attribution-based term ranking Intuitively, the
terms from Sy i that also contribute highly to the
hate-speech labels, are likely to restrict generaliza-
tion to the target as they could potentially reduce
the importance assigned by the classifier to domain-
invariant hate-speech terms. Thus, we extract only
those source-specific terms that are highly corre-
lated with the labels, given the binary classification
task of hate versus non-hate.

To this end, we first continue pre-training BERT
on the unlabeled DY %™ using the Masked Lan-
guage Model (MLM) objective for incorporating
the language-variations of the target domain, fol-
lowing Glavas et al. (2020). We then perform su-
pervised classification on Dg"‘"" using this MLM
trained model. After every epoch, we obtain 2
ranked lists of terms for the two classes, sorted
in the order of decreasing importance. We con-
struct the lists using feature attribution methods
that yield instance-level attribution scores ins-atr},
per term te in an instance j — a higher score indi-
cating a higher contribution to the predicted class.
We discard the scores of stop-words and the in-
frequent terms, and normalize ins-atr], using the
sigmoid function. For obtaining a corpus-level
class-specific attribution score cp-atrf, per term te
and per class ¢, we perform a corpus-level average
of all the ins-atr}, for every c using Equation 1.

‘Dgrain‘ .
Ej:l 1y3=clns—atx{eVOCcurrence of tein j

Z‘Dgrain‘ (1)

Ty —c#(occurrence of te in j)

cp-atry, =

j=1

Here ¢ € {hate, non-hate}, ¢ is the predicted class
and 1 is the indicator function. We sort the scores
cp-atry, for all te to obtain the highest attributed
(i.e. most important) term per class to the lowest,
yielding the ranked lists of terms per class, given
by CP = [cp-hate, cp-non-hate].

We extract the source-specific terms te® that are
common to both Sy, and the top M terms from CP,
ie. te® = [te € Spr & te € topy(CP)]. These
steps are repeated after every epoch. Note that the
list S7 g remains constant across the epochs, as it is
independent to the hate-speech classification task.

2.2 Penalization of Source-specific Terms

We hypothesize that penalizing te® obtained from
the previous epoch during the next epoch should
reduce the importance of terms that are both (i)
domain-specific and (ii) contribute highly to the
source labels, and thus, help learn from domain
invariant terms. We minimize the attribution scores
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for te¥, with Lo penalization, in Equation 2.

Yo itew’ @

tcteS

L= ‘C/ + Alay; Loy =

Here £’ is the classification loss and Ly is the attri-
bution loss. A controls the strength of penalization,
and ¢ (t) is the attribution score for t.

We experiment with two variations: (i) Dom-
spec: penalizing only the terms in te”; (ii) Comb:
penalizing the combination of te and the terms
from Liu and Avci (2019); Kennedy et al. (2020).

We use two different feature attribution meth-
ods that have been widely used in recent stud-
ies (Chrysostomou and Aletras, 2021, 2022b):
(i) Scaled Attention («V ) (Serrano and Smith,
2019), which scales attention weights o by their
corresponding gradients Va; = 6%’ where g is the
predicted label, and is shown to work better than us-
ing only the attention weights; (ii) DeepLIFT/ DL
(Shrikumar et al., 2017) that assigns scores based
on the difference between activation of each neuron
and a reference activation (zero embedding vector).
Note that although Liu and Avci (2019) have used
the Integrated Gradients (IG) (Sundararajan et al.,
2017), we use DL as it is most often a good and a
faster approximation of 1G (Ancona et al., 2018).

3 Experimental Setup
3.1 Data

We use three standard hate-speech datasets, namely,
Waseem (Waseem and Hovy, 2016), HatEval
(Basile et al., 2019) and Vidgen (Vidgen et al.,
2021). Following Wiegand et al. (2019); Swamy
et al. (2019), we perform hate/non-hate classifica-
tion across domains. We use the standard splits
available for HatEval (42.1% hate; train: 89932,
val: 1000; test: 3000) and Vidgen (54.4% hate;
train: 32497, val: 1016, test: 4062). We sub-
sample the Vidgen validation set by 25% to get
1016 samples, making its size similar to the other
datasets. We split Waseem (26.8% hate) randomly
into train (80%; 8720), validation (10%; 1090) and
test (10%; 1090) sets, as no standard splits are
available.

We present the top ten most frequent terms in
these datasets in Table 1. The Waseem dataset is
known to comprise a high proportion of implicit
hate (Wiegand et al., 2019), which are subtle ex-
pressions of hate without the use of profanity. This

’The instances containing only URLs are removed, de-
creasing the number of train instances from 9000 to 8993.

is also evident in the most frequent terms from
this dataset. In Table 1, #mkr refers to a cooking
show which frequently results in sexist comments
targeted towards the participating women. HatE-
val involves hate against women and immigrants.
Many hateful tweets against immigrants occurred
in the context of the US-Mexico border issues with
the hashtag #buildthewall. The Vidgen dataset is
collected through a dynamic data creation process
with a human-and-model-in-the-loop strategy, un-
like HatEval and Waseem datasets that are sampled
from Twitter. In particular, the Vidgen dataset in-
volves hate against many different target groups or
identity terms, with a wide variety of topics and
hateful forms. See Appendix A for further details
on the datasets.

Dataset
Waseem

Frequent terms in the datasets
#mkr, #notsexist, kat, women, like,
andre, get, people, one, think
b*tch, women, refugees,
#buildthewall, immigrant,
immigration, illegal, men, mi-
grants, h*e

people, black, women, f*cking,
like, love, think, white, get, want

HatEval

Vidgen

Table 1: Top ten most frequent terms in the datasets
after removing the stop-words.

3.2 Baselines

We compare our work with approaches that pe-
nalize (i) pre-defined terms in Convolutional Neu-
ral Networks-based Liu and Avci (2019)3; (ii) (a)
the identity terms in the top features of a bag-of-
words Logistic Regression in BERT-based Kennedy
et al. (2020)* (b) all the terms listed by Kennedy
et al. (2020); (iii) terms extracted automatically
by Attanasio et al. (2022); (iv) combination of
terms from (i) and (ii,b) within BERT, and call
this Pre-Def. We do not compare with Bose et al.
(2022) as they use labeled target instances for term-
extraction, which does not allow a fair comparison.

Further, we experiment with the Vanilla baseline
(Van-MLM-FT), where the pre-trained BERT is
adapted to D @n ysing the MLM objective, fol-
lowed by a supervised fine-tuning on Dtsf"“i”. We
also assess different DA methods from the sen-
timent classification task, namely, BERT PERL
(Pivot-based Encoder Representation of Language)

3with Integrated Gradients (Sundararajan et al., 2017)
*with Sampling and Occlusion (Jin et al., 2020)
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Approaches H-V V—-H H-W W —-H VoW W -V Average
BERT Van-MLM-FT 56.6+1.3 66.24+1.2 70.01+2.5 50.942.1 61.44+2.4 435+1.9 58.1
Liu and Avci (2019) 45.1+4.5 59.54+0.7 57.24+3.8 52.6%1+0.8 57.142.7 39.642.0 51.9
MLM + Kennedy et al. (2020) (a) 55.442.0 65.510.8 64.1+1.4 54.4*%+1.3 59.24+1.8 445429 57.2
MLM + Kennedy et al. (2020) (b) 54.942.9 65.74+0.9 67.3+1.2 54.3%+2.2 62.34+2.7 46.61+3.5 58.5
BERT PERL 54.14£0.7 60.040.6 60.14+2.0 55.2%4+0.7 55.5+1.0 37.8+1.2 53.8
BERT-AAD 56.6+1.3 53.943.5 68.81+2.5 50.7+1.4 48.31+4.7 53.0%+1.7 55.2
HATN 48.4+1.6 59.1+0.4 59.7+2.9 51.4+1.8 60.042.6 454427 54.0
MLM + Sarwar and Murdock (2022) 55.04+1.9 66.21+2.0 68.8+1.1 48.243.1 57.9+1.3 36.241.1 55.4
MLM + Attanasio et al. (2022) 54.94+1.6 66.5+1.4 64.14+5.0 52.4%4+3.7 62.540.8 435423 57.3
MLM + x 2 -test 57.941.6 67.14+1.7 69.81+0.8 48.243.1 60.442.8 44.1+34 57.9
Pre-def (aV ) 58.9%10.7 674+1.5 71.3+1.0 48.9+4.0 60.042.0 46.5+4.9 58.8
Dom-spec (V) 58.3+1.8 66.840.7 70.1+1.8 52.3*%+3.0 60.84+2.2 46.9%1+2.5 59.2
Comb (Dom-spec + Pre-def) (Vo) 58.7*%42.1 67.7+1.0 70.94+1.0 51.542.1 59.84+1.5 45.943.1 59.1
Pre-def (DL) 58.5%+1.4 66.5+1.3 70.34+1.7 51.2+1.7 70.3*1+0.5 42.7+£2.0 59.9
Dom-spec (DL) 58.8%1+0.6 66.441.2 72.2+14 52.9%+1.9 63.6%+2.0 48.8%+4.7 60.5
Comb (Dom-spec + Pre-def) (DL) 584414 66.7+1.0 71.3+0.9 51.142.2 69.5%+2.2 46.6+1.9 60.6

Table 2: Macro-F1 (£std-dev) on source —target pairs. H : HatEval, V : Vidgen, W : Waseem. Bold denotes the
best score and underline the second best in each column . * denotes statistically significant improvement compared
to Van-MLM-FT with paired bootstrap (Dror et al., 2018; Efron and Tibshirani, 1993), 95% confidence interval.

(Ben-David et al., 2020) that adopts the MLM ob-
jective of BERT to perform pivot-based fine-tuning;
BERT-AAD (Adversarial Adaptation with Distil-
lation) (Ryu and Lee, 2020) that performs domain
adversarial training; HATN (Hierarchical Attention
Transfer Network) (Li et al., 2018, 2017) that ex-
tracts pivots using a domain adversarial approach.

We evaluate a data-augmentation-based approach
(Sarwar and Murdock, 2022) for DA in hate-speech.
For a fair comparison, we use the BERT as the un-
derlying model in this approach. Finally, we apply
the x2-test with 1 degree of freedom and Yate’s
correction (Kilgarriff, 2001), penalizing the terms
from Dtsmm, using their DL scores, for which the
null hypothesis of both ngm and DZ%" being
random samples of the same larger population, is
rejected with 95% confidence. We initialize all the
BERT models with MLM adaptation on the tar-
get, except for PERL and AAD, which inherently
adapts to the target.

3.3 Model training

We train all the models on Dtsmm, use a small
amount of the labeled D%"l only for model-
selection and hyper-parameter tuning (see Ap-
pendix B) , following Dai et al. (2020); Maharana
and Bansal (2020), and evaluate on D45t

4 Results

4.1 Discussion

Table 2 displays the macro-F1 scores obtained, in
cross-domain settings, averaged across five ran-
domly initialized runs. We use macro-F1 as penal-
izing te® corrects the mis-classifications for both
the hate and non-hate classes across domains. We
observe an overall performance drop, compared

to Van MLM-FT, with the DA approaches, origi-
nally proposed for sentiment classification, namely,
BERT PERL, BERT-AAD and HATN. This also
agrees with Bose et al. (2021), who analyze the ex-
tracted pivots — terms that are both frequent across
domains as well as important for classification with
respect to the source — and find them to be sub-
optimal for DA in hate-speech. The approach by
Sarwar and Murdock (2022) also displays an over-
all drop. They augment the source domain by sub-
stituting relevant terms from a different negative
emotion dataset with tagged hate-speech related
terms from the target domain. We observe that the
augmented instances are often incomprehensible
after such substitution.

Dom-spec yields improvements over all the base-
lines using both aVa and DL, both independently
and in combination (Comb) with Pre-def, where
Comb achieves the highest overall performance
with DL: 60.6. With DL, Dom-spec yields signif-
icantly improved performance in 4/6 cases, com-
pared to 2/6 with Pre-def (DL). This is apparently
due to the penalization of relevant source-specific
terms that have wider coverage compared to the pre-
defined terms in Pre-def. Since the entropy-based
attention regularization by Attanasio et al. (2022)
do not use the target domain unlabeled instances
for term-extraction, it may not be optimal for cross-
domain settings. The large improvement with Pre-
def (DL) for Vidgen — Waseem (70.3) could be
attributed to the fact that Vidgen involves a wide
variety of identity terms. Thus, penalizing the pre-
defined identity terms might result in higher em-
phasis on more generalizable hate-speech content.
While only this particular case drives the high av-
erage performance with Pre-def (DL), Dom-spec
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Non-hate example from the test set of HatEval for Waseem — HatEval
FP with Van-MLM-FT TN with Dom-spec (DL)

Depression is a Depression is a

whole whole

entire  b*tch entire  b*tch

Hate example from the test set of Waseem for Vidgen — Waseem
FN with Van-MLM-FT TP with Dom-spec (DL)

... good to talk with your ... good to talk with your
wife but it is easier to wife but it is easier to
say shut up n make me say shut up n make me

a sammich not sexist lol a |sammich not sexist lol

Table 3: Change in attributions with Dom-spec (DL).

(DL) performs well consistently and yields a higher
average score (Dom-spec: 60.5, Comb: 60.6) com-
pared to Pre-def.

As discussed by Wiegand et al. (2019), the
Waseem dataset includes a high degree of implicit
hate. Still, Dom-spec (DL) yields improvements
on the Waseem dataset when using it as the tar-
get domain, compared to Van MLM-FT. This is
reflected in the cases of HatEval —Waseem and
Vidgen —Waseem. This is most likely because
when the source domain-specific terms causing
bias are penalized, the model is forced to learn
more from the wider contextual meaning of the
instances, rather than focusing on individual terms.
We believe that this could possibly help in improv-
ing the detection of implicit hate in out of domain
instances, at least to some extent. We leave further
investigation in this direction for future work.

4.2 Qualitative Analysis

Table 3 displays examples of False Positives (FP)
for Waseem — HatEval and False Negatives (FN)
for Vidgen —Waseem, yielded by Van-MLM-FT
for the respective target domain instances, which
are correctly classified by Dom-spec (DL), where
the hate class is the positive class. The darker
the shades, the higher the attributions assigned by
the source classifier. The examples suggest that
penalizing source-specific terms results in placing
more emphasis on the general contextual meaning
of the out-of-domain instances such as ‘depression’
in the first example and ‘wife...shut...make me a
sammich’ in the second.

Note that the terms in these examples from the
target domain that receive reduced importance with
Dom-spec, compared to Van-MLM-FT, may not
be the same terms that are extracted and penalized.
This is because the domain classification step re-
sults in obtaining terms that are more likely to be
infrequent in the target domain. Rather, due to the

penalization of source-specific terms, the source
domain classifier learns to focus on the wider con-
text of the instances. For example, we observe
that in the case of Waseem —HatEval, the auto-
matically extracted te® includes terms related to
the role of women in sports, such as {sports, sex-
ist, gaming, football, commentary, competition, ...}.
Note that Wiegand et al. (2019) also mention that
these terms cause domain or topic bias in Waseem,
restricting generalizability. See Appendix C for
more examples.

5 Conclusion

We proposed a DA approach for automatic extrac-
tion and penalization of source domain-specific
terms that have higher attributions towards the
hate-speech labels, to improve cross-domain hate-
speech detection. The results demonstrated con-
sistent improvements on the target domain. These
results should motivate further research on domain
adaptation in hate-speech and building classifiers
that can generalize well to the concept of hate. Fi-
nally, it would be interesting in applying our ap-
proach to other tasks such as rumor and misinfor-
mation detection (Mu and Aletras, 2020; Mu et al.,
2022).

Ethical Considerations

This work serves as a means to build more robust
hate-speech detection models that can make proper
use of the existing curated hate-speech resources
and adapt well on new resources or social-media
comments, which have not been well-annotated
due to time and cost constraints. The hate-speech
resources used for the work are publicly available
and cited appropriately, wherein the authors have
discussed the sampling techniques and annotation
guidelines in detail. The hate-speech examples
presented in the paper are only intended for re-
search purposes and better analysis of the models
explored. The terms extracted and penalized in this
work are not meant to be used off-the-shelf, but
the approach should serve as a starting point for
research on model-debugging and building more
generalizable hate-speech classifiers.
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A Differences across Datasets

The datasets HatEval (Basile et al., 2019) and
Waseem (Waseem and Hovy, 2016) have been sam-
pled from Twitter. HatEval has primarily been
collected in the year 2018 using a combination of
sampling strategies, including keyword-based sam-
pling (with both neutral and derogatory words),
collecting the history of identified perpetrators and
monitoring the potential victims of hate. It mainly
consists of hate against women and immigrants. In
the case of Waseem, tweets are collected particu-
larly using keyword-based sampling in or before
2016, with keywords that are likely to co-occur
with hateful content. Wiegand et al. (2019) discuss
the presence of a large amount of topic-bias in the
dataset Waseem. Since this dataset is available as
tweet-IDs, we observe that in the crawled dataset,
many tweets flagged as racist are missing, and have
most likely been deleted already. Thus, the ma-
jority of available hateful content in this dataset is
directed against women. The topics discussed in
these two datasets are also quite different.
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Vidgen5 (Vidgen et al., 2021), on the other hand,
is a dataset generated using a human and model-
in-loop process. This process results in adding
several perturbations and instances, which are dif-
ficult to classify, aimed at making the dataset ro-
bust. Besides, it consists of hateful content directed
against a wide array of target groups, e.g. black,
gay, muslim, disabled, etc., along with different
forms of hate such as derogation, threatening lan-
guage, animosity, support for hateful entities and
dehumanization. Thus there is a substantial amount
of differences across these datasets in terms of col-
lection time-frames, sampling strategies, targets of
hate, forms of hate, vocabulary used and the like.

For pre-processing the datasets, we remove the
URLSs, split the hashtags using CrazyTokenizer®
and lowercase the terms.

B Implementation Details and
Hyper-parameter Tuning

We use the pre-trained BERT-base (Devlin et al.,
2019) uncased model’” (Wolf et al., 2020) for our
experiments. We run both the Masked Language
Model (MLM) training on the unlabeled target do-
main training data DY @n and the subsequent su-
pervised fine-tuning on the source domain training
data ngmm for 6 epochs with a batch size of 8 for
all the BERT baselines and Dom-spec. We use the
AdamW optimizer with decoupled weight decay
regularization (Loshchilov and Hutter, 2019), hav-
ing a weight decay of 10~%. We use a learning rate
of 3 x 107 for the MM training and 1 x 107°
for the supervised fine-tuning, with the epsilon pa-
rameter set to 1 x 1075,

We use the original implementations provided by
the respective authors of all the baselines except for
Sarwar and Murdock (2022). We implement the
data-augmentation approach by Sarwar and Mur-
dock (2022) ourselves, as there is no available im-
plementation. We follow the description provided
in the paper and label all the terms in the hateful
instances of the source domain that have a match
with hatebase.org® for training a sequence tagger.
However, while finding the matches, we do not to-
kenize the multi-word phrases in hatebase.org. We
lowercase the terms from hatebase.org and look for

SWe use an older version of the dataset. The authors have
uploaded a newer version of this dataset currently.

6https ://redditscore.readthedocs.io

"https://huggingface.co/
bert-base-uncased

$https://hatebase.org/

an exact match of a term in the source domain.
For Pre-Def, we combine the curated list of iden-
tity terms provided by Liu and Avci (2019) and
Kennedy et al. (2020) and penalize their attribu-
tion scores. We perform hyper-parameter tuning
and model selection with early-stopping on a small
amount of labeled target domain validation set
D%’Fal using the macro-F1 score for the proposed
approach as well as for all the baselines. The hyper-
parameter A\, both for the proposed approach and
Pre-Def, is selected from the range A € {0.01, 0.05,
0.1, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0}, using a
random seed by tuning over D%‘”. We set the value
of M to 250 and N to 750 for all our experiments.

C Terms Extracted

The full-list of penalized terms (BERT WordPieces)
te” across epochs for the examples listed in Section
4.2, is given below.

Waseem —HatEval

* Epoch 1: {college, sports, feminism, la, mag-
netic, used, unique, ##ava, speech, ##s, tr,
##cking, object, chu, result, ki, bus, ##is,
adopt, referring, ##roids, handed, ##em, sh,
##omp, unconscious, anger, gamer, prove,
xbox, tri, skill, judgment, tool, block, single,
harassment, size, georgia, involved, ##ism,
studying, voices, possible, gaming, pl, ##il,
helped, ##ke, survey, equality}

* Epoch 2: {feminism, used, football, awe-
some, equal, ##cking, object, ##ification, in-
terest, feminist, ##rra, scientist, ##al, igno-
rance, bodies, ##work, later, ##nk, troll, #d#ss,
based, adopt, ##cing, quality, sister, uncon-
scious, criticisms, pro, notch, xbox, tri, un-
fair, rap, meanwhile, impression, single, ha-
rassment, bonus, georgia, constant, sex, ##ist,
possible, click, competition, ##per, swedish,
#i#eral, november, write, eventually, equality }

* Epoch 3: {sham, anger, pull, used, focus,
speech, ashley, object, interest, bringing, ##na,
eye, ##nk, later, quality, ##roids, oppressive,
rain, ##omp, statistics, nsw, content, notch,
museum, unconscious, typically, tri, ##ol, un-
fair, writing, ##chan, georgia, constant, annie,
ra, weights, click, ##il, furniture, helped, shop-
ping, football, commentary, equality }

* Epoch 4: {minded, kat, used, equal, focus,
##hand, tr, ##cking, chu, interest, bringing,
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Approaches HatEval Vidgen Waseem Mean
BERT Van-FT 43.3£1.8 85.14+0.5 85.410.7 71.3
Performance on source domain (left of arrows) while applying domain adaptation for the target (right of arrows)
H-V H->W V-H V->W W —H W =V
Dom-spec (aV ) 424425 42.0+4.1 84.0£0.9 84.5£1.0 85.1+0.7 83.81+0.8 70.3
Dom-spec (DL) 41.7£3.7 40.5+4.4 83.940.7 82.6+1.5 84.7+1.2 81.14+2.7 69.1

Table 4: Effect of domain adaptation for the target on the source domain performance; Source-domain macro
average F1 scores (mean+std-dev) are obtained after MLLM training on the unlabeled target domain and penalizing
the source specific terms while adapting the model to the target domain (present at the right hand side of the arrows)
using Dom-spec. H : HatEval, V : Vidgen, W : Waseem. Van-FT: BERT model evaluated in-domain without MLM

training on the target domain.

thor, fm, ##tag, path, scientist, precious, later,
mike, quality, humanist, ##roids, ##el, ##omp,
worth, unconscious, nsw, xbox, tri, unfair, nu,
kaitlyn, ##ering, pest, fe, camera, giant, con-
stant, weights, gaming, rap, ##il, swedish,
opposes, ##thi, november, laughing, survey,
equality }

* Epoch 5: {feminism, raging, equal, focus,
##hand, ##cking, ##cky, ##tag, ##na, mostly,
scientist, ##al, ##rra, adopt, humanist, ft,
#i#roids, ##el, ##omp, example, unconscious,
museum, anger, typically, tri, unfair, impres-
sion, yu, single, fe, cu, ##rd, ##ification,
constant, grass, gaming, rap, science, ##per,
swedish, il, furniture, shopping, november,
equality }

Few of the extracted terms get repeated in sub-
sequent epochs as a single epoch may not be suf-
ficient to reduce the effect of a term and it may
appear in the next epoch as well. Moreover, as
the training progresses, the model may learn new
patterns, and some extracted terms may reappear
and disappear again due to the penalization.

Following is a non-hateful example in HatEval,
wrongly classified by Van-MLM-FT but correctly
classified by Dom-spec (The darker the shades, the
higher the attribution scores assigned):

Van-MLM-FT: Unfortunately you are in

a sticky size my only problem is

replacing my shoes has been a b¥*tch

Dom-spec (DL): | Unfortunately you are

in a sticky size my only problem is

replacing 'my shoes has been a b*tch

Vidgen —Waseem

* Epoch 1: {wheelchair, ##zzi, dali, seekers,
##oons, koreans, ##tos, #tware, ##ders, hand-
icapped, principles, mac, pregnant, #i#tier,
#iiers, ##wear, ##bib, barren, ##tite, dyke}

* Epoch 2: {customer, pip, principles, ##tos,
##hon, les, ko, vietnamese, teenagers, ##lock,
#ision, ##has, ##gin, ##rmi, poles, buddhist,
handicapped}

* Epoch 3: {pak, homosexuality, koreans,
pleasant, ##tos, mirror, spaniards, ##fs, ro,
##rmi, boom, handicapped}

* Epoch 4: {##cky, pak, chin, ##tos, bender,
herr, catholics, ro, buddhist }

* Epoch 5: {pip, pak, ##tos, yellow, bender,
koreans, ##mit, ##sion, ##has, ##rk, ##gin,
catholics, ro, arrogance }

Following is a non-hateful example in Waseem,
wrongly classified by Van-MLM-FT, but correctly
classified by the proposed approach (The darker the
shades, the higher the attribution scores assigned):

Van-MLM-FT: Omg I am lisening to an

apple genius dude tell | this . -

how to use email and it is adorable

Dom-spec (DL): Omg I am listening to

an |apple genius dude tell this old

woman how to use email and it is

D In-domain Performance

Table 4 presents, as a reference, the in-domain
macro-F1 scores using BERT supervised fine-
tuning (Van-FT) without the MLLM training on the
target domain. In this case, the model is tuned over
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Approaches HatEval | Vidgen Waseem

BERT Van-MLM-FT | 1m20s 3m49s | 2m 10s

Dom-spec (V) 2 m 30s 7m 3ml17s

Dom-spec (DL) 4m 18 m 8ml6s
Table 5: Per epoch training time on different source
domains.

the in-domain validation set. The HatEval dataset
is part of a shared task and involves a challenging
test set with low in-domain performance. Table 4
displays the source-domain scores obtained when
source-specific terms are penalized, while adapting
to the target domain using Dom-spec, where the
model is tuned over the target domain validation
set. The drop in in-domain performance is expected
as Dom-spec is aimed at making the model best-
suited to the target domain. However, the overall
performance with Dom-spec is comparable to that
of BERT Van-FT.

E List of Identity Terms for Pre-Def

The combined list of pre-defined curated identity
terms from Liu and Avci (2019) and Kennedy et al.
(2020) are given below:

{lesbian, gay, bisexual, trans, cis, queer, lgbt,
Igbtq, straight, heterosexual, male, female, non-
binary, african, african american, european, his-
panic, latino, latina, latinx, canadian, american,
asian, indian middle eastern, chinese, japanese,
christian, buddhist, catholic, protestant, sikh, taoist,
old, older, young, younger, teenage, millenial, mid-
dle aged, elderly, blind, deaf, paralyzed, muslim,
jew, jews, white, islam, blacks, muslims, women,
whites, gay, black, democrat, islamic, allah, jewish,
lesbian, transgender, race, brown, woman, mexican,
religion, homosexual, homosexuality, africans }

F Computational Efficiency

The per-epoch training time for Dom-spec, while
performing adaptation of different source domain
models, are presented in Table 5. Dom-spec (aV «)
takes less than double the time taken by Van-MLM-
FT to train, and Dom-spec (DL) takes roughly 4.5
times of the training time taken by Van-MLM-FT.
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