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Abstract

Question generation over knowledge bases
(KBQG) aims to generate natural questions
about a subgraph that can be answered by a
given answer entity. Existing KBQG models
still face two main challenges: (1) Most models
often focus on the most relevant part of the
answer entity, while neglecting the rest of the
subgraph. (2) There are a large number of
out-of-vocabulary (OOV) predicates in real-
world scenarios, which are hard to adapt
for most KBQG models. To address these
challenges, we propose LFKQG, a controlled
generation framework for Question Generation
over Knowledge Bases. (1) LFKQG employs
a simple controlled generation method to
generate the questions containing the critical
entities in the subgraph, ensuring the question
is relevant to the whole subgraph. (2) We
propose an optimization strategy called local
fine-tuning, which makes good use of the rich
information hidden in the pre-trained model to
improve the ability of the model to adapt the
OOV predicates. Extensive experiments show
that our method outperforms existing meth-
ods greatly on three widely-used benchmark
datasets SimpleQuestion, PathQuestions, and
WebQuestions .

1 Introduction

Question generation (QG) aims to endow machines
with the ability to ask relevant and to-the-point
questions for a given form of data such as text
(Du et al., 2017a; Song et al., 2018a), image (Li
etal., 2018), table (Bao et al., 2018) and knowledge
bases (KB) (Elsahar et al., 2018). KBQG aims
to generate natural language questions given a
subgraph in the KB, i.e. a set of connected
triples of the form <subject, predicate, object>.
KBQG is an effective approach to generating high-
quality QA pairs that can significantly address the
data scarcity issue for Knowledge Base Question
Answering (KBQA). In addition, KBQG can be
applied for educational purposes by producing
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Triple: <Alice Betty Stern, children, Otto Frank>, <Otto
Frank, religion, jew>

Reference: What type of religion does Alice Betty Stern's
heir have?

Q1: What religion does Otto Frank's children have ?

Triple: <12343 Martinbeech, discoverer or inventor,
Spacewatch>

Reference: Who is the discovery organization that
discovered 12343 Martinbeech?

Q2: What does 12343 Martinbeech discover?

Figure 1: The examples of two main challenges in
KBQG where the questions are generated from the
subgraph and the red texts are the answer entity. Q1
only focus on the second triple but neglect the first.Q2
does not contain any semantic of discoverer or inventor,
which is an OOV predicatge.

practice assessments (Heilman and Smith, 2010)
and can help dialog systems have more engaging
conversations (Mostafazadeh et al., 2016).

Current KBQG systems follow an attention-
based sequence-to-sequence structure (Elsahar
et al., 2018; Kumar et al., 2019). To make use
of the rich structure information hidden in the
subgraph, (Chen et al., 2020) proposes the graph-
to-sequence framework. However, these models
face two main challenges: (1) Most models often
focus on the most relevant part of the answer entity,
while neglecting the rest of the subgraph (Bi et al.,
2020; Chen et al., 2020). (2) There are many out-of-
vocabulary (OOV) predicates in the real knowledge
bases, which are unseen at the training time. Most
KBQG models are hard to adapt to OOV predicates,
which makes these models difficult to use in real-
world scenarios (Elsahar et al., 2018). Figure 1
illustrates the examples of these two problems. Q1
only focuses on the second triple but neglects the
first. As for Q2, discoverer of inventor is an OOV
predicate, and the model is unable to handle this
type of predicate, so the Q2 does not contain any
semantic relating to it.
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To address these challenges, we propose
LFKQG, a controlled generation framework. (Sun
et al., 2018a; Fei et al., 2021) claim that the entity
words in the given input play a decisive role in
the semantics of the whole question. We can see
that Q1 only focuses on the second triple and
miss the critical entity Alice Betty Stern in the first
triple. Intuitively, all the critical entities should
appear in the generated questions to ensure the
generated questions contains the semantics of
the whole subgraph. To this end, we introduce
the controlled generation method to KBQG task.
We use flag tag (Wang et al., 2021), a simple
but effective lexical constraint for generation at
each decoding step, to achieve the controlled
generation. In detail, in decoding progressing,
each input token is provided with a flag tag that
indicates whether the constraint of this token has
been satisfied. It is a strong incentive for the model
to try to satisfy all constrains. Furthermore, the
fine-tuning method distorts the pre-trained features
for OOV samples, because the model over-fits
the features for training data while removing the
OOV features that were originally hidden in the
pre-trained models (Zhang et al., 2021; Kumar
et al., 2021). To address the OOV problem in
KBQG, we propose a novel optimization strategy
called local fine-tuning, which can retain the OOV
features in the pre-trained model.

Extensive experiments show that our LFKQG
model outperforms existing methods greatly on
three widely-used benchmark datasets Simple-
Question, PathQuestions, and WebQuestions. In
addition, we conduct experiments on OOV data,
and the results show that our local fine-tuning
greatly improves the performance in this challeng-
ing scenario.

Our main contributions are summarized as
follows:

1. We propose LFKQG, which employs a con-
trolled generation framework for KBQG to
make model generate questions relevant to
the whole subgraph. We are the first one to
introduce the controlled generation methods
to the KBQG task.

2. We propose a novel optimization strategy
called local fine-tuning to utilize the rich
information hidden in the pre-trained features
to address the OOV problem.

3. Experimental results show that our model

greatly improves the performance. The
experimental results on OOV data prove
that local fine-tuning is able to improve
the performance of a pre-trained generation
model on OOV data.

2 Related Work

2.1 Question Generation

Early works on QG (Mostow and Chen, 2009;
Heilman and Smith, 2010) focused on the rule-
based approaches that rely on heuristic rules or
hand-crafted templates, with low generalizability
and scalability. Recent works adopted the attention-
based sequence-to-sequence neural model for QG
tasks, taking answer sentence as input and output
the question (Du et al., 2017b), which proved to
be better than rule-based methods. To generate a
question for a given answer, (Sun et al., 2018a; Kim
et al., 2019; Song et al., 2018b) applied various
techniques to encode answer location information
into an annotation vector corresponding to the word
positions, thus allowing for better quality answer
focused questions.

Recently, there is an increasing interest in Ques-
tion Generation over Knowledge Bases (KBQG),
sequence-to-sequence neural framework with RNN
or Transformer have been applied to this task
and are end-to-end trainable (Serban et al., 2016;
Indurthi et al., 2017; Kumar et al., 2019; Chen et al.,
2020). However, these works suffer the semantic
drift problem (Zhang and Bansal, 2019). To solve
the problem, (Elsahar et al., 2018) introduces
a set of textual contexts paired through distant
supervision. (Bi et al., 2020) employs grammarical
information and introduce auxiliary information
to model. These works focus on introduce extra
knowledge information but do not exploit the rich
knowledge information hidden in the pre-trained
model. In this work, we design the local fine-tuning
method to exploit the rich information hidden in the
pre-trained model and solve semantic drift problem
from a controlled generation perspective.

2.2 Controlled Generation

Two different types of control can be applied
over generation models: soft control and hard
control. Soft control aims at directing the option
or the general topic of the generated text. In
contrast, hard control aims at ensuring that some
explicit constraints are met, e.g., specific words
are contained in the text. The soft control can
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Figure 2: The overall architecture of our LFKQG. We firstly predict the question word and input both triples and
question word to the controlled generator with flag tag to generate the questions.

also be achieved via hard control, i.e., text that
contains a set of words related to a certain topic
should arguably revolve around that topic (Ziegler
et al., 2019; Keskar et al., 2019). While hard
control of constrained generation, such as machine
translation, can be attained with grid beam search
methods (Hu et al., 2019; Post and Vilar, 2018),
which is impractical to use the same approach
for hard control of unconstrained generation.
Furthermore, recent work uses stochastic search
(Sha, 2020) or mention flag (Wang et al., 2021) to
achieve hard control.

3 Methodology

In this section, we formalize the question gen-
eration over knowledge bases (KBQG) task and
introduce our methodology. In particular, we
describe our controlled generation framework for
KBQG and show the overall architecture in Figure
2. Following this, we describe our local fine-tuning
method and we show it in Figure 4.

3.1 Problem Formulation

The input to the KBQG task is a subgraph from
the knowledge bases, which is a set of connected
triples X = {71, ..,T,,} where the n is the number
of triples and T; = {S;, P;, O;} is a triple of the
form {subject, predicate,object}. The desired
goal of KBQG is to generate a question ¥ =
[y1, ..., yt] about entity S7 and the answer is entity
O,, conditioned on the whole subgraph.

3.2 Controlled Generation Framework

According to the existing research on question
generation (Sun et al., 2018b; Bi et al., 2020; Fei
et al., 2021), the entity word in the given input

and question word are vital for the semantics of
generated question. The critical entity and question
word must appear in the generated question to make
questions relevant to the whole subgraph. To this
end, we need a controlled generator G(Y'| X, W, E)
where X is the input sub-graph, W is the question
word, and E is the critical entity for the subgraph,
which must appear in the generated question. In
this section, we first describe the model to predict
question words and then describe a Transformer-
based controlled generator.

3.2.1 Question Word Predictor

It is essential to predict the correct question word to
control the question type and semantics (Zhou et al.,
2019). We count the number of different question
words on three KBQG datasets’ testing set, and
report the results in Table 1. We divide question
words into 9 categories, including 8 common
question words and an additional type "Others".

We use a BERT model (Devlin et al., 2018) to
predict the question word. We joint the triples
and answer entity with ‘[SEP]” and input it into the
BERT model. The question word predictor predicts
the question word as follow:

H = BERT(X) 1)
h? = Hcls (2)
P(Quw) = softmax(W,h?) 3)

where X is the input token, W, is a trainable
matrix, and we use the hidden state in CLS to
predict the question word and train the model as
follow:

Lq = —log(P(Qu)) @)

where L, is the loss of question word prediction
and @, is the target question word.
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3.2.2 Transformer-based Controlled
Generator

We employ the flag tag (Wang et al., 2021) to
achieve controlled generator. In detail, at decoding
step t, the flag tag indicates whether each lexical
constraint has been satisfied up until this step.
Notably, the flag tag for each token at step ¢ is
that:

0 z; ts not a constraint
1 x; does not appear in yi.
2 x; appear in yi.

flagi =

where flag! is the flag tag for ith input token at
decoding step t, and y;.; is the generated tokens
thus far. The tokens with the values 1 or 2 of
the flag is a lexical constraint and the token with
0 is not constrained to appear in the question.
Obviously, the flag tag for any token can only
remain unchanged or updated to value 2.

We input the subgraph and question word into
the controlled generator, so we set the question
word and the critical entity S; in triples as the
constrained tokens. As shown in Figure 3, the input
tokens X is that X = [Barmy, Army, founded, Paul,
Burnham, [SEP], Which] and the flag tag at the
beginning is that flag0 =11,1,0,0,0,0,1] because
the tokens are not constrained except key entity
Mendoza, and question word Which. At step 2, the
flags update to [1,1,0,0,0,0,2] because the token
Who has been generated but Barmy and Army have
not.

During the training of models, all the constraints

have been satisfied before stopping the generation.

This is a strong signal for the model to satisfy all
the constraints. In addition, the flag tag is simple
enough, which only adds the embedding with three
tokens.

To utilize the rich information in flag tag, we
employ a Transformer-based decoder as a generator
to incorporate it and construct a simple controlled
generation framework. We inject the flag tag into
the embedding vector and use this embedding
as the relative position embedding to bridge the
decoder and the encoder.

In particular, at decoding step ¢, we incorporate
the flag tag embedding by cross-attention in the
decoder. The conventional cross-attention module
is computed by:

Q'K
C K, V) = softmaz(Z—)V (5
ross(Q ) = softmazx( \/@) 3)

Output

Input </s> Who was the founder of the Barmy Army

step
Barmy 1 1 1 1 1 1 1 2 =

Army 1 11 |1
founded

[o]
v | [o] [o][o][o] [o]
[o]
o]

Burnham

sen | [o] [o] o] (o]

Who 1| (2|22 |2

Figure 3: An example for updates of flag tag.

where () is the decoder states, K and V' are encoder
states and d}. is the dimensions of K vectors.

We introduce the flag tag F* € R3*/"X at step
t where len X is the length of the input token, to
transformer decoder as relative position embedding
to compute the cross attention at step ¢ as follows:

cross — Softma:c(Et) (6)
i QUK +RHT
= 7
Nz (7

R' = Embedding(F") (8)

Oét

E

where Q! is the states of decoder at step ¢ and the
K is the outputs of encoder. And then the outputs
of cross module is:

Cross(Q', K, V,F") = o,

Cross

V C))

where V is the outputs of encoder.
We train our controlled generation model by the
negative log likelihood for the target sequence y:

T
- 1 _
Lye, yr) = —7 Zlng(yt =y)  (10)
=1

3.3 Local Fine-tuning Method

Some works on KBQG (Elsahar et al., 2018)
claim that there are many out-of-vocabulary (OOV)
predicates that are unseen at the training time in
the real knowledge bases, but most KBQG models
are hard to adapt. The OOV problem makes
most KBQG models difficult to use in real-world
scenarios.

Pre-trained generation model like BART (Lewis
et al., 2020) may be a good way to solve the OOV
problem. As we know, the pre-trained model has
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Question Word What  Which  Where Who  Whose Why When How  Others
SimpleQuestion 59.70 % 13.72% 1130% 1098% 0.01% 0.04% 05% 001% 3.98%
WebQuestion 5235% 1320% 585% 11.60% 0% 0% 07% 02% 16.10%
PathQuestion 71.00% 0.4 % 0.4 % 6.2 % 0 % 02% 0% 01% 21.70%

Table 1: Proportions of each type of questions on three datasets.

Question Backprop Question

T Initialize T

decoder

Backprop

Controlled Decoder

- 110

Encoder

Controlled Decoder

Frozen Features

Encoder

Figure 4: The describe of our local fine-tuning method.

seen a large number of predicates in the pre-training
stage. In a word, the information of most OOV
predicates is hidden in the pre-trained features.
However, the performance of the pre-trained model
on OOV data is still inferior. Recent works (Zhang
et al., 2021; Kumar et al., 2021) claim the standard
fine-tuning method has bad performance for few-
sample task. (Kumar et al., 2021) studys the OOV
samples in classifier tasks, and proves that the
standard fine-tune method distorts the pre-trained
features for OOV data, because the models over-fit
the features for training data while removing the
OOV features that were originally hidden in the
pre-trained models. Motivated by this, we propose
an optimization strategy for pre-trained generation
models called local fine-tuning to retain the OOV
features in the pre-trained models and address the
OOV problem. We show the two-stage of our local
fine-tuning method in Figure 4.

In detail, we first tune the parameters in the
decoder but freeze parameters in the encoder to
prompt the model to have the ability of KBQG
based on the original encoder with rich pre-trained
features as follow:

Y

Odecoder = arg min L(yta th)
edecoder
Then we tune all the model parameters with the
decoder adapt to the original encoder as follow:

emodel = arg min L(yt7 yNt) (12)

model
Since the model with the original encoder fits the
KBQG task, the fine-tuning method only changes
the pre-trained features a bit.

Local fine-tuning is a simple but effective
method for the OOV problem on the KBQG task,
and we analyze it in section 4.7.

4 Experiment

In this section, we conduct extensive experiments
to evaluate the effectiveness of our proposed model
for the KBQG task.

4.1 Data and Metrics

We conduct experiment on three widely-used
benchmark datasets: SimpleQuestion (Bordes et al.,
2015), PathQuestions (Zhou et al., 2018), and
WebQuestions (Kumar et al., 2019).

SimpleQuestion consists of over 108,000 sam-
ples, and the entities are represented by their
Freebase IDs (Bollacker et al., 2008). Each
instance in SimpleQuestion contains a triple and
a natural language question where the answer is
the object entity in triple. Following (Bi et al.,
2020) we first map these Freebase IDs to Wikidata
IDs and transfer them to the natural language by
Wikidata (Vrandeci¢ and Krotzsch, 2014), then we
extract the samples whose entity can not be found
in Wikidata. We randomly selected 70% of these
samples for training, 10% for validation, and 20%
for testing.

WebQuestions and PathQuestions use Freebase
as the underlying. The WebQuestions dataset
combines examples for WebQuestionsSp (Yih et al.,
2016) and ComplexWebQuestions (Talmor and
Berant, 2018) where both of them are KBQA
benchmarks that contain natural language ques-
tions, corresponding SPARQL queries, and answer
entities. The PathQuestions dataset is similar to
WebQuestions except that the KG subgraph in
PathQuestions is a path between two entities that
span two or three hops. (Kumar et al., 2019)
releases these two dataset. PathQuestion dataset
contains 9,793/1,000/1,000 and WebQuestions
contains 18,989/2,000/2,000 examples.

Following previous works (Elsahar et al., 2018;
Chen et al., 2020), we use BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
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Model SimpleQuestion

RNN-based (Indurthi et al., 2017) 19.98 28.43 46.02

WebQuestions PathQuestions

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
25.78 33.17 50.78

Zero-shot (Elsahar et al., 2018) 22.71 30.39 51.07 - - - 29.44 38.12 56.94

MHQG (Kumar et al., 2019) 25.98 34.14 56.03 11.57 29.69 35.53 25.99 33.16 58.94

BiGraph2Seq (Chen et al., 2020) 31.12 39.23 62.14 29.45 30.96 55.45 61.48 44.57 77.72

TS (Raffel et al., 2020) 35.32 40.16 64.97 28.78 30.55 55.12 58.95 44.72 76.58

IGND (Fei et al., 2021) 32.67 41.62 65.74 30.62 31.42 55.82 61.69 45.11 77.28

LFKQG 38.35 42.06 66.59

31.66 32.69 56.75 63.92 46.91 78.40

Table 2: The automatic evaluation for different models on three datasets.

ROUGE-L (Lin, 2004) as automatic evaluation
metrics. BLEU and METEOR were designed
for evaluating machine translation systems, and
ROUGE-L was developed for evaluating text
summarization systems.

4.2 Experimental settings

We use the BART-base model loaded from trans-
formers in huggingface library '. The embedding
size and head hidden size of the flag tag are 64. We
use the AdamW (Loshchilov and Hutter, 2018) as
the optimizer and the learning rate is set to 2e-5.
We stop the training if the validation BLEU-4 score
stops improving for 8 epochs. We clip the gradient
at length 10. The batch size is 64 and the beam
search width 5. All hyperparameters are tuned on
the development set.

4.3 Baselines

We compare our method with the following
baseline models.

RNN-based: a RNN-based question generation
model to generate natural language question-
answer pairs from a knowledge graph (Indurthi
etal., 2017).

Zero-Shot: a zero-shot KBQG model for OOV
predicates and entity types (Elsahar et al., 2018).

MHQG: an end-to-end neural network-based
method for automatic generation of complex multi-
hop questions over knowledge graphs (Kumar et al.,
2019).

BiGraph2Seq: a novel bidirectional Graph2Seq
model to generate questions from a KB subgraph
and target answers (Chen et al., 2020).

TS5: A strong pre-trained language model that is
a unified framework that converts every language
problem into a text-to-text format (Raffel et al.,
2020).

IGND: A QG model that propose a novel
iterative graph-based decoder to use the rich

"huggingface.co/transformers

Model Syntactic Complexity Relevance
T5 4.23 3.26 3.14
BiGraph2Seq 3.61 3.56 3.47
IGND 3.72 3.65 3.52
LFKQG 4.31 3.81 3.96
Ground Truth 4.89 4.92 4.87

Table 3: The human evaluation results.

structure information hidden in the text (Fei et al.,
2021).

4.4 Main Results

The results of the automatic evaluation are shown in
Table 2. We compare our proposed models against
other state-of-the-art methods on SimpleQuestion,
WebQuestions, and PathQuestions test sets. We can
see that our models outperform all QG baselines by
a large margin on all benchmarks, which verifies
the effectiveness of our model. Our model achieves
the state-of-the-art on three benchmarks. Not only
in BLEU-4, but our model also achieves the best
performance and shows significant improvement in
all metrics.

4.5 Human Evaluation

Metrics for automatic evaluation based on n-grams
may not truly reflect the quality of generated
questions. Hence, we further randomly sample 300
examples in the test set of SimpleQuestion dataset
for human evaluations.

Generated questions are rated in the range 1-5
based on whether they are syntactically correct,
complexity, and relevant to the given sub-graph.
Following (Chen et al., 2020), we ask 5 human
evaluators to give feedback on the quality of
questions generated by different models. For each
sample, given a sub-graph, target answers, and
model output, we ask the evaluators to rate the
quality of the generated questions to answer the
following three questions: 1) is this generated
question syntactically correct? 2) is this generated
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Model BLEU-4
LFKQG 38.35
LFKQG w/o controlled decoder 35.19
LFKQG w/o local fine-tuning method 37.29
LFKQG w/o fine-tuning all the model parameters 37.64
LFKQG w/o controlled decoder + local fine-tuning 34.21

Table 4: The ablation test results on SimpleQuestion
dataset.

question need all the information in the subgraph to
answer? And 3) is this generated question relevant
to the sub-graph and target answers? The rating
scale is from 1 to 5 to measure the quality of
questions, and a higher score means better quality.)
We average the scores from raters on each question
and report the performance of Ground-truth, IGND,
TS5, BiGraph2Seq, and our model. Workers were
unaware of the identity of the models in advance.
We show the results in Table 3.

We can see that pre-trained model TS5 has much
better than BiGraph2Seq and IGND syntactically.
But Bigraph2Seq and IGND employ a graph
network to use the rich structure information
hidden in the subgraph, so they can understand the
input sub-graph better and generate the questions
with the higher score in relevance and complexity.
Our controlled generation framework with local
fine-tuning achieves the best performances in all
aspects. Our model guarantees that the critical
entity and correct question words appear in the
questions, significantly improving relevance and
complexity performance. Local fine-tuning help
the model understand input better and improve
relevance performance.

Model BLEU-4
BART with fine-tuning 20.12
BART only fine-tuning decoder 20.51
BART with local fine-tuning 22.29
LFKQG with fine-tuning 21.65
LFKQG Generator only fine-tuning decoder ~ 22.17
LFKQG with local fine-tuning 24.62

Table 5: The results of different optimization strategy
for OOV samples.

Model  Question Word Accuracy Key Entity Converage Percentage
BART 61.34% 67.92%
LFKQG 74.61% 81.74%

Table 6: Experiments of the question word accuracy and
key entity converage percentage.

4.6 Ablation Study

To further evaluate and investigate the performance
of different components and strategies in our
model, we perform the ablation study in the
SimpleQuestion test set and show the results in
Table 4.

LFKQG w/o controlled decoder The model
removes the controlled decoder and employs the
standard BART model with the local fine-tuning
method.

LFKQG w/o local fine-tuning method We fine-
tune all parameters in our model with a controlled
decoder rather than two-stage local fine-tuning.

LFKQG w/o fine-tuning all the model pa-
rameters We only fine-tune the parameters in the
decoder but freeze parameters in the encoder.

LFKQG w/o controlled decoder + local fine-
tuning The model removes the controlled decoder
and local fine-tuning method.

Firstly, there is a huge gap between LFKQG
and LFKQG w/o controlled decoder + local
fine-tuning, demonstrating that our controlled
generation framework with the local fine-tuning
method plays an important role. Comparing
LFKQG and LFKQG w/o controlled decoder, we
find that the controlled decoder is the critical
module in our model.

Secondly, LFKQG is higher than LFKQG w/o
local fine-tuning method 1.06 of BLEU-4 points.
We can find that the local fine-tuning method
remain the OOV features hidden in the pre-trained
models and improves OOV samples’ performance.

Thirdly, LFKQG w/o fine-tuning all the model
parameters is lower than our model, only 0.71 of
BLEU-4, and it is even higher than LFKQG w/o
local fine-tuning method. This exciting comparison
shows the pre-trained features in the encoder
without fine-tuning are good enough for KBQG,
and the fine-tuning is not the best optimization
strategy for KBQG.

4.7 Analysis for Local Fine-tuning Method

In this section, we analyze the effectiveness of the
local fine-tuning Method for OOV samples. At
first we mimic the real world to construct the OOV
dataset based on the annotated dataset. In detail,
we extract the samples whose predicates are never
seen in the training set from the SimpleQuestion
testing set. Then we conduct some experiments to
evaluate the performance of different optimization
strategies on the OOV dataset. We show the results
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Input: <I Saw the Light, lyrics by, Hank Williams>
Gold: Who was the lyricist from I Saw the Light?
Baseline: Who wrote I Saw the Light ?

LFKQG: Who is the lyricist of I Saw the Light?

Input: <Mendoza, contains administrative territorial entity, Lavalle Department>
Gold: Which location is the administrative child of Mendoza province ?
Baseline: What is the Mendoza’s territorial entity?

LFKQG: Which location is the administrative of Mendoza province ?

Input: <Alice Betty Stern, children, Otto Frank>, <Otto Frank, religion, jew>
Gold: What type of religion does Alice Betty Stern’s heir have?

Baseline: What religion does Otto Frank’s children have ?

LFKQG: What religion does Alice Betty Stern’s child have?

Table 7: Case study of three examples from SimpleQestion and PathQuestions test set. We indicate the key entities
by blue, the OOD predicates by cyan, and the answer entity by red.

of two models, our controlled generator and BART-
base model (Lewis et al., 2020), with different
optimization strategies in Table 5.

We can see that the local fine-tuning method
improves the performance of OOV on both two
models significantly. In addition, compared to the
models with fine-tuning, the models only tuning
decoder also obtain a higher BLEU-4 score for
OOV. We think the results prove the phenomenon,
fine-tuning method distorts the pre-trained features
that happened in the classifier task, also appear in
the KBQG task. The results also show our local
fine-tuning method retains the OOV features in the
pre-trained models to improve the performance of
OOV.

4.8 Analysis for Controlled Generator

We conduct some experiments to analyze the
controlled generator on SimpleQuestion dataset
in this section. We evaluate different models in
terms of question word accuracy. This metric
measures the ratio of the generated questions that
share the same beginning word with the references
which begin with a question word Similarly, we
evaluate the critical entity coverage percentage,
which measures the ratio of the critical entity 57,
we describe in section 3.1, appears in the generated
questions. The two metrics can show the ability of
controlled generator, and we report the results in
Table 6. We can find that our model’s two metrics
are much higher than other models. This result
shows that our controlled generator improves the
control of the model generation process.

4.9 Case Study

To intuitively show the generation quality of our
model, we provided some generated cases in Table

7. Our model can generate high-quality texts that
describe the knowledge graph more completely and
faithfully.

It is clearly shown the three questions generated
by the baseline model face the two main challenges
for KBQG. In contrast, our model generates the
questions without these problems. These three
examples show our model can 1) retain the pre-
trained features to handle the OOV data as shown
in the first example and second example, 2) predict
the correct question word and make it appear in
the question to control the type of question as
shown in the second example, 3) make the critical
entity appear in the question relevant to the whole
subgraph as shown in the third example.

5 Conclusion

The KBQG task is challenging and worthy of
exploration. To address the two main challenges
of KBQG, we propose LFKQG, including the con-
trolled generation framework and local fine-tuning
method. The controlled generation framework
makes the given question word, and critical entity
in the subgraph appear in the question to control
the semantic and the type of question. The local
fine-tuning method can retain the OOV features
hidden in the pre-trained models. In addition, we
find that the phenomenon that fine-tuning method
distorts the pre-trained features also appears in the
KBQG task. It may be an exciting way to study the
pre-trained generation models.
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