
Proceedings of the 29th International Conference on Computational Linguistics, pages 6447–6456
October 12–17, 2022.

6447

Noise-injected Consistency Training and Entropy-constrained Pseudo
Labeling for Semi-supervised Extractive Summarization

Yiming Wang1,2,3,
†
, Qianren Mao1,2,

†
, Junnan Liu1,2, Weifeng Jiang1,2,

Hongdong Zhu1,2, Jianxin Li1,2,∗
1 Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, China.

2 The State Key Laboratory of Software Development Environment, Beihang University, China.
3 Institute of Artificial Intelligence, Beihang University, China.

{wangym,maoqr,liujn,jiangwf,zhuhd,lijx}@act.buaa.edu.cn

Abstract

Labeling large amounts of extractive summa-
rization data is often prohibitive expensive due
to time, financial, and expertise constraints,
which poses great challenges to incorporat-
ing summarization system in practical applica-
tions. This limitation can be overcome by semi-
supervised approaches: consistency-training
and pseudo-labeling to make full use of un-
labeled data. Researches on the two, how-
ever, are conducted independently, and very
few works try to connect them. In this paper,
we first use the noise-injected consistency train-
ing paradigm to regularize model predictions.
Subsequently, we propose a novel entropy-
constrained pseudo labeling strategy to obtain
high-confidence labels from unlabeled predic-
tions, which can obtain high-confidence labels
from unlabeled predictions by comparing the
entropy of supervised and unsupervised predic-
tions. By combining consistency training and
pseudo-labeling, this framework enforce a low-
density separation between classes, which de-
cently improves the performance of supervised
learning over an insufficient labeled extractive
summarization dataset.

1 Introduction

Text summarization is a challenging task that gen-
erates a condensed version of an input text that
captures the original’s core meaning. In this pa-
per, we focus on extractive summarization since it
usually generates semantically and grammatically
correct sentences (Liu and Lapata, 2019; Zhong
et al., 2019a; Zhou et al., 2020; Zhong et al., 2020).
The extractive summarization typically requires
to label each sentence in massive documents for
model training. However, acquiring well-annotated
labels is a costly process, and labeling every sen-
tence would be labor-intensive and error-prone due
to subjective judgments of human. This motivates

† These two authors contributed equally.
∗ Jianxin Li is the corresponding author.

research on Semi-Supervised Learning (SSL) meth-
ods which focus on how to effectively utilizes abun-
dant unlabeled data, to further improve extractive
summarization performances.

Towards this goal, we first revisit an effective
semi-supervised method, consistency training (Xie
et al., 2020a). The consistency training leverages
voluminous unlabeled data and employs advanced
data augmentation methods to generate diverse and
realistic noisy source text, forcing the model to
be consistent with these noises. The consistency
training has been extensively applied on the classi-
fication problems, such as Text Classification (Xie
et al., 2020a; Liu et al., 2021a), Image Recogni-
tion (Laine and Aila, 2017; Tarvainen and Valpola,
2017; Miyato et al., 2019; Verma et al., 2019; Xie
et al., 2020b). However, how does the consistency
training work on semi-supervised extractive sum-
marization tasks is still unclear.

We investigate the noise-injected consistency
training for semi-supervised extractive summariza-
tion to encourage a consistent reason of model de-
cision (summary and non-summary) under data
perturbation. This framework makes sense intu-
itively because a good supervised model should be
robust to any slight change in an input example.
Namely, encouraging local change by injecting a
slight noise in a diverse perturbation manner can
improve the summarization effectiveness.

Nevertheless, the consistency regularized semi-
supervised framework usually suffers from insuf-
ficient supervision. When labeled data is limited,
the model is easy to over-fitting. Extensive unla-
beled data will then make the model suffer from the
gradual drift problem and impede further improve-
ments of the model. To address this problem, we
develop new methods of selection and exploitation
for pseudo labels to explore all unlabeled samples
for the semi-supervised summarization cycle.

Prior pseudo labeling work (Lee et al., 2013;
Sohn et al., 2020; Rizve et al., 2021) mainly fo-
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Figure 1: (a) Prediction probability distributions of the same sample in different epochs before and after convergence.
(b)The average entropy changing curve of labeled and unlabeled samples before convergence during training.

cuses on the confidence of the predictions to pick
up the class used as if they are accurate labels.
However, the summarization task exposes poten-
tial problems with this approach. The confidence
of the prediction results is hard to change signifi-
cantly along with model convergence (e.g., using
the BERT-based model). As shown in the second
sub-figure in Fig. 1(a), almost all prediction prob-
ability of sentences has achieved an undifferen-
tiated score between 0.12 to 0.16 in the conver-
gence epoch, which means almost all sentences are
mapped into a small area for classification. There-
fore, it is challenging to set a fixed threshold to
determine a proper confidence score, and it is easy
to produce low-quality pseudo labels. We divert
attention to entropy − a metric for measuring un-
certainty, to address this problem. As is shown in
Fig 1(b), the prediction entropy of supervised and
unsupervised data are comparable, which enables
us to constrain the unsupervised entropy with super-
vised entropy without any external threshold value.
We introduce entropy-constrained pseudo labeling
to avoid fixed threshold adoption, which ensures
the entropy of prediction results of unlabeled data
adjust that of labeled samples adaptively.

The final framework is CPSUM1, which com-
bines the Noise-injected Consistency training with
the Entropy-constrained Pseudo labeling for Semi-
supervised Extractive SUMmarization. Experimen-
tal results demonstrate that our approach achieves
the state-of-the-art in low-resource scenarios with
10, 100, and 1000 labeled examples on the target
corpus. The main contributions of our method are:

• To the best of our knowledge, this is the first
work to explore the feasibility of consistency-
training and pseudo-labeling for semi-supervised

1Code and data available at: https://github.com/
OpenSUM/CPSUM.

extractive summarization tasks.
• Proposing a novel threshold-free approach se-

lecting reliable pseudo-labels with the average
entropy comparison, which is well-adapted to
extractive summarization tasks.

• Extensive evaluations demonstrate that consis-
tency training and pseudo-labeling with unsu-
pervised corpus could greatly improve the per-
formance of the text summarization model on a
limited dataset.

2 Related Work

2.1 Extractive Summarization
Extractive summarization selects the most repre-
sentative sentences within a document and subse-
quently splices them into the final summary. Ap-
proaches for it are constantly updated. With clas-
sical networks, RNN-based (Nallapati et al., 2017;
Zhou et al., 2018), Transformer-based (Zhong et al.,
2019b; Liu et al., 2021b) are adopted. Pre-trained
summarization models have achieved great success,
such as the notable BERTSUMEXT (Liu and Lapata,
2019; Liu, 2019) which is the first work to use the
BERT (Devlin et al., 2019) for extractive summa-
rization. However, current extractive summariza-
tion models still heavily rely on many parallel data
to achieve salient performance. Little work has fo-
cused on low-resourced settings where handcrafted
labels for sentences are limited or even unavail-
able. To fill this gap, in this work, we introduce a
novel semi-supervised framework to alleviate the
dependence on labeled summaries.

2.2 Consistency Regularization
In recent work, consistency regularization meth-
ods for semi-supervised learning (Bachman et al.,
2014) have been shown to work well on many clas-
sification tasks (Xie et al., 2020a; Liu et al., 2021a).

https://github.com/OpenSUM/CPSUM
https://github.com/OpenSUM/CPSUM
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Their work can match and even outperform purely
supervised learning that uses affluent labeled data.

The consistency training methods regularize
model predictions invariant to noise applied to un-
labeled examples. Tarvainen and Valpola (2017)
prove that a model trained with noisy labeled data
learns to give consistent predictions around labeled
data points. Additionally, advanced data augmenta-
tion methods (Xie et al., 2020a) can improve con-
sistency training performance effectively.

2.3 Pseudo-labeling

Pseudo-labeling (Lee et al., 2013) is an efficient
semi-supervised learning method by generating
pseudo-labels to expand labeled data. For selecting
reliable pseudo-labels, FixMatch (Sohn et al., 2020)
creates a selection criterion based on the confidence
threshold. After that, considering poor network
calibration, UPS (Rizve et al., 2021) introduces
model uncertainty criterion based on prediction re-
sult confidence. U2PL (Wang et al., 2022) does the
opposite and fully considers the value of some unre-
liable pseudo-labels. However, the performance of
pseudo-labels on the extractive summarization task
remains to be evaluated, and the methods above are
not suitable for this task directly.

3 Proposed Framework

The overview illustration of our framework is
shown in Fig. 2. It is composed of two components:
noise-injected consistency training and entropy-
constrained pseudo labeling. Specific to extrac-
tive summarization, we use the base version of
BERT (Devlin et al., 2019) to implement our mod-
els in all experiments. We give detail description
of two components in Sec.3.1 and Sec.3.2.

3.1 Noise-injected Consistency Training

The consistent regularization of semi-supervised
learning leverages unlabeled data, employs data
augmentation methods to inject noisy data, and
enforces the summarization model by encouraging
consistent predictions.
Data Augmentation. The unlabeled noise exam-
ples, specifically those produced by advanced data
augmentation methods, have been proved to be cru-
cial for consistency training (Xie et al., 2020a). Our
augmentation method refers to Jiao et al. (2020).
We replace single-piece words (Wu et al., 2019) by
predictions of the BERT masked language model
and retrieve the most similar words as word replace-

ments for multiple-pieces words by using the word
embedding in GLOVE (Pennington et al., 2014).
Consistency Training. The robust summarization
model should also be invariant for documents with
similar content. Hence, we leverage consistency
learning to regularize model predictions to be in-
variant to slight noise applied to input examples.

The inputs of the framework are labeled texts
x, unlabeled texts x

′
, and noise injected unlabeled

texts x
′′
. We use y∗ to denote the gold summaries

of labeled texts. Then we use fθ to represent the
distributions of model predictions, where θ refers
to the model’s parameters. Firstly, we feed the
labeled text x into the model to get the predictions
and calculate the supervised loss:

Ll =
1

|Xl|
∑
x∈Xl

l(y∗, fθ(y|x)), (1)

where Xl is a set containing |Xl| labeled data x.
We then generate a noised version x

′′
of the unla-

beled text x
′

using the aforementioned data aug-
mentation method. Both unlabeled texts and noised
unlabeled texts are fed to the summarization model,
and then we get the output distribution of original
unlabeled data fθ̃(y

′ |x′
) and the additional noised

version of augmented unlabeled data fθ(y
′′ |x′′

).
We then calculate the unsupervised loss between
unlabeled texts and augmented unlabeled texts:

Lu=
1

|Xu|
∑

(x′,x′′)∈Xu

l(fθ̃(y
′ |x′

), fθ(y
′′ |x′′

)), (2)

where Xu is a set of pairs containing |Xu| unla-
beled data x′ and the corresponding augmented
data x′′, and θ̃ is just a copy of the current param-
eters θ indicating that the back-propagation of the
gradient is truncated. We use KL divergence loss
to perform consistency training.

Finally, we combine supervised cross-entropy
loss and supervised consistency loss, and train the
model by minimizing the combined loss: Lf =
Ll + w(t)Lu, where w(t) is the ramp-up weight
balancing supervised and unsupervised learning.

3.2 Entropy-constrained Pseudo Labeling
Generally, the prediction results with the highest
predicted probability of unlabeled data could be
adopted as pseudo labels. However, low-quality
pseudo labels may harm model training.

To overcome this problem, we introduce a
method named entropy-constrained pseudo label-
ing to select reliable pseudo labels. We argue that if
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Figure 2: Illustration of CPSUM with Noise-injected Consistency Training and Entropy-constrained Pseudo
Labeling for Exactive Summarization. In the figure, θ refers to the parameters of the model, and θ̃ means it is just a
copy of θ and the gradient will not propagate through it. ŷ and ŷ′ refer to the logits by the softmax of labeled and
unlabeled samples, respectively,H is the symbol for entropy, and Z is the normalization factor.

the entropy of the predicted result of unlabeled data
is smaller than that of labeled data used at the cur-
rent training step, then the low noisy pseudo labels
generated by unlabeled data should be reserved.
Pseudo-label Selection. Either soft pseudo-labels
selection (Soft PlS) or hard pseudo-labels selection
(Hard PlS) can be adopted. We denote logit and
logit′ as the outputs of labeled and unlabeled data
after the sigmoid operation by the model.

For soft pseudo labels, they are equivalent to
the logit of unlabeled data, namely ysoft = logit′.
Hard pseudo labels are essentially the binary vec-
tors mapping soft pseudo labels to ‘0-1’ space. Sup-
pose that a document has K sentences which will
be tagged with K labels. C represents the number
of summary sentences. Then, hard pseudo labels
can be defined as: yhard = fope(ysoft) ⊆ {0, 1}K ,
where fope is the mapping operation converting the
top-C probability of ysoft to ‘1’ and the remaining
to ‘0’.
Adaptive Entropy Constraint. Unlike text classi-
fication problems focusing on the highest probabil-
ity (Kim, 2014), extractive summarizations must
consider the multiple highest probabilities. This
situation makes the selection criteria based on the
confidence threshold hard to work.

Intuitively, pseudo labels with smaller entropy
contribute more to the training process (Grandvalet
and Bengio, 2004). We can leverage the entropy

of labeled data to constrain that of unlabeled data,
thus adapting the unlabeled data to model training.
The noise introduced by low-confidence pseudo
labels will be avoided through the entropy con-
straint, which further ensures the performance of
the pseudo-labeling method. Besides, the adap-
tive constraint is more available due to eliminating
manual settings.

To be specific, at training step t, assuming that
labeled data x and unlabeled data x′ are adopted,
their respective outputs after the sigmoid operation
by the model are logit and logit′(namely y and y′),
ŷ and ŷ′ are labeled and unlabeled logits after the
softmax operation. We denote K as the number
of sentences in a document, then the labeled en-
tropy H(ŷ) and the unlabeled entropy H(ŷ′) can
be calculated as follows:

H(ŷ) =
K∑
k=1

ŷk log(ŷk),

H(ŷ′) =

K∑
k=1

ŷ′k log(ŷ
′
k),

(3)

where k-th element of ŷ and ŷ′ can be denoted as:

ŷk =
elogitk∑K

k=1(e
logitk)

,

ŷ
′
k =

elogit
′
k∑K

k=1(e
logit′k)

.

(4)



6451

Then, the final selection constraint would be:

sel(y′) =

{
1, H(ŷ′) < Z · H(ŷ),
0, otherwise,

(5)

where sel(y′) = 1 means that y′ is selected as a
pseudo label and 0 otherwise. Z is the normal-
ization factor and Z = dimx′/dimx, aimed at
alleviating the error propagation caused by incon-
sistent output vectors dimensions. dimŷ′ and dimŷ

denote the dimensions of ŷ′ and ŷ respectively.
Ramp-up Pseudo-labels Exploitation. Although
the reliability of entropy-constrainted pseudo-
labels has been improved, the downside is that
noises in them still exist, especially early in train-
ing. To mitigate this issue, we set a linearly in-
creasing probability pt in each epoch to select the
filtered pseudo labels again:

pt = min(1,
t

τepoch
), (6)

where t is the current epoch, and pt denotes that the
pseudo labels filtered in epoch t will be selected
with probability pt. τepoch is a hyper-parameter,
which can be set according to the labeled data size.

For the way of adding pseudo labels to the la-
beled dataset, we draw on the idea of early stop-
ping (Prechelt, 1996). As shown in the Algorithm 1
(lines 15-21), if ROUGE evaluated on the validation
set for three consecutive rounds is in a downward
trend, all filtered pseudo labels will be added to
the labeled dataset. This procedure can effectively
prevent the over-fitting phenomenon caused by re-
peated training of limited labeled data.

4 Experimental Setup

4.1 Datasets

We conduct experiments on the following two
datasets: (1) CNN/DailyMail (Hermann et al.,
2015) includes news articles and correspond-
ing extractive highlights. We use the standard
splits (Hermann et al., 2015) for validation and
testing. (2) BBC XSum (Narayan et al., 2018)
provides a high level of abstraction. It has one-
sentence summaries and is more abstractive than
the CNN/DailyMail dataset. We obtain both la-
beled and unlabeled data from the entire dataset.
Specifically, we divide parts of the original dataset
into labeled data. For the rest, we delete the labels
and treat them as unlabeled data.

Algorithm 1 Training Procedure for Consistency
Learning and Pseudo Labeling

Input: (x, y∗): the labeled data pair.
x′ and x′′: the unlabeled data and its aug-
mented data.
R: the ratio of unlabeled and labeled data in
each training step.
steptotal: the total training step.
val−interval: the cycle of validation.

1: t← 0; psd← []; val← []; pt ← 0
2: while t < steptotal do
3: y is the output of x after sigmoid by the

model
4: ŷ ← Eq. 4,H(ŷ)← Eq. 3
5: for r ← 1 to R do
6: y′ is the output of x′ after sigmoid by the

model
7: ŷ′ ← Eq. 4,H(ŷ′)← Eq. 3
8: Z ← dimŷ′/dimŷ

9: ifH(ŷ′) < Z · H(ŷ) then
10: Append (x′, y′) to psd according to pt
11: end if
12: end for
13: Ll ← Eq. 1; Lu ← Eq. 2; pt ← Eq. 6
14: L ← Ll + ω(t)Lu, update the model
15: if t % val−interval is 0 then
16: Append ROUGE of validation sets to val
17: end if
18: if the last three values of val monotonically

decrease then
19: Merge pse to the labeled dataset
20: Stop pseudo-labels exploitation
21: end if
22: t← t+ 1
23: end while

4.2 Baselines and Evaluation Metrics

We focus on leveraging BERTSUMEXT (Liu and La-
pata, 2019; Liu, 2019) for summarization 2. To ver-
ify the effectiveness of our semi-supervised learn-
ing method in low-resource scenarios, we com-
pare our method with the BERTSUMEXT of super-
vised learning. We also release the rule-based base-
lines — LEAD-3 on the CNN/DailyMail dataset
and LEAD-1 on the BBC XSum dataset(excluding

2BERTSUMEXT is the variant of BERT, which builds sev-
eral summarization-specific layers stacked on top of the BERT
outputs including Simple Classifier, Transformer, and RNN.
Our experiments mainly adopt BERT with the plainest Simple
Classifier layer due to insignificant performance differences
among the three layers.
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Method Labeled
Data

CNN/Daliy Mail
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

ORACLE 43.63 58.77 48.35 23.88 31.77 26.28 40.30 54.13 44.61
LEAD-3 34.50 51.94 40.04 14.81 22.44 17.21 31.16 46.86 36.14

Supervised (BERT) 10 31.47 41.92 34.42 11.84 15.65 12.89 28.29 37.61 30.91
100 34.60 49.93 39.35 14.80 21.37 16.81 31.25 45.03 35.51
1000 35.06 52.30 40.38 15.33 22.93 17.70 31.75 47.32 36.69

10 31.53 42.44 34.62 11.45 15.58 13.09 28.28 38.06 31.10
100 34.77 52.04 40.22 15.02 22.56 17.37 31.42 46.96 36.32CPSUM w. Soft PlS 1000 35.17 53.23 40.93 15.48 23.49 18.01 31.85 48.14 37.04

10 31.69 42.78 34.94 11.63 15.78 13.26 28.58 38.33 31.37
100 34.92 52.57 40.52 15.23 22.98 17.67 31.56 47.45 36.60CPSUM w. Hard PlS
1000 35.21 53.26 41.02 15.51 23.53 18.08 31.89 48.16 37.10

Method Labeled
Data

BBC XSum
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

ORACLE 31.37 30.51 29.57 9.74 9.07 8.86 22.96 22.07 21.47
LEAD-1 17.12 16.69 16.32 1.68 1.66 1.60 12.59 12.24 11.96

Supervised (BERT) 10 18.21 15.92 16.13 2.17 1.86 1.90 13.68 11.81 12.01
100 18.06 16.49 16.43 2.20 1.90 1.93 13.84 11.85 12.14
1000 18.23 17.55 16.94 2.28 2.24 2.14 13.52 12.82 12.44

10 18.27 15.98 16.23 2.21 1.95 1.95 13.70 11.82 12.04
100 18.75 16.54 16.82 2.29 2.02 2.04 13.96 12.10 12.35CPSUM w. Soft PlS
1000 18.95 17.35 17.22 2.38 2.22 2.17 14.05 12.77 12.71

10 18.29 15.98 16.25 2.21 1.96 1.95 13.68 11.83 12.05
100 18.79 16.57 16.93 2.31 2.05 2.08 14.00 12.15 12.40CPSUM w. Hard PlS
1000 18.97 17.41 17.29 2.39 2.26 2.18 14.09 12.76 12.73

Table 1: Low-resource performance of ROUGE results on CNN/DailyMail and BBC XSum dataset. The best
results for each group on all target corpora with 10, 100, and 1000 labeled examples are in-bold.

the one-line summary (Narayan et al., 2018)). The
ground truth labels, which we call ORACLE, are
extracted using the greedy approach. We use
10/100/1000 labeled data for supervised learning,
and evaluate the summarization performance by
ROUGE (Lin, 2004) in this paper, where R-1, R-2,
and R-L are variants used to measure the overlap
of unigrams, bigrams, and longest common subse-
quences between system and reference summaries.

4.3 Implementation Details

During training on the CNN/DailyMail dataset,
the documents are truncated to 512 tokens, and
the summaries are limited to 128 tokens. These
two numbers are 512 and 64 for the BBC XSum
dataset. Generally, semi-supervised learning per-
forms a larger data size on unlabeled data than la-
beled data to fully use large quantities of unlabeled
data. Therefore, we feed 1 batch of labeled data
and 4 batches of unlabeled data into the framework
in each training step, which is found to perform ef-
fectively by implementing the different proportions
of labeled and unlabeled data. We use a batch size

of 4 for labeled and unlabeled data.
We set τepoch to 30/15/5 epochs for training

10/100/1000 labeled data. All models are trained
for 500/5000/20000 steps with 10/100/1000 labeled
data on 3 Tesla V100 GPUs. The learning rate
starts at 2e-3 and decay every 1000 steps. We also
perform a linear warmup method to increase the
learning rate smoothly from 0 to 2e-3 during 2000
steps at the beginning of training.

5 Experimental Results

5.1 Results on Dataset with long Summaries

The upper part of Table 1 shows the results on the
CNN/DailyMail dataset. As shown, the model’s
performance improves as more labeled data be-
comes available. In the case where the data size is
1000, our method CPSUM achieves a +0.89 point
improvement in R-1 and a +0.90 point improve-
ment in R-L, compared with the traditional rule-
based LEAD-3 on the CNN/DailyMail dataset.

Compared with the supervised baseline, CPSUM
performs salient in all data sizes. The improve-
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Table 2: Ablation study on the effectiveness enhancement with ROUGE (F1) from different components based
on CNN/DailyMail and BBC XSum dataset of 100 labeled data with hard pseudo labels, including supervised
learning, consistency regularization (CR), all pseudo labels (PlS [all]), and filtered pseudo labels (PlS [filtered]).

Components Datasets
CNN/Daily Mail XSum

Supervised CR PlS [all] PlS [filtered] ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

✓ 39.35 16.81 35.51 16.43 1.93 12.14
✓ ✓ 39.62 16.94 35.79 16.52 1.96 12.04
✓ ✓ ✓ 39.39 16.68 35.40 16.15 1.90 12.00
✓ ✓ ✓ 40.52 17.67 36.60 16.93 2.08 12.40

Table 3: The number of pseudo labels w/o or w. ([all] or
[filtered]) entropy-constrained filtering and the epochs
to start appending pseudo labels for training.

CNN/Daily Mail

Labeled Data PlS [all] PlS [filtered] Epoch

10 960 9600% 248 2480% 24
100 9600 9600% 248 2480% 24
1000 28000 2800% 4675 467.5% 7

BBC XSum

Labeled Data PlS [all] PlS [filtered] Epoch

10 1200 12000% 288 2880% 30
100 12000 12000% 4043 4043% 30
1000 44000 4400% 11737 1173.7% 11

ments are most evident in the case of 100 labeled
data with hard pseudo labels, where R-1/R-2/R-L
increase +1.17/+0.86/+1.09 points compared with
the supervised ones, far exceeding the baseline per-
formance. These results all indicate the effective-
ness of CPSUM in low-resource scenarios.

Moreover, soft or hard PlS also affects perfor-
mance differently. We take 100 labeled data as
an example. Although when soft labels are se-
lected, CPSUM has obtained a +0.87 point im-
provement in R-1 compared with supervised learn-
ing, the adoption of hard pseudo labels still allows
R-1 to continue to increase a +0.30 point upon soft
pseudo labels. The results occur probably because
soft labels are more ambiguous and have less in-
formation for extractive summarization than hard
labels, so the use of hard pseudo labels will result
in better performance than soft labels.

5.2 Results on Dataset with Short Summaries

We also conduct experiments to verify if CPSUM
would be equally effective on the abstractive BBC
XSum dataset, as shown in the lower part of Table 1.
Identically, CPSUM outperforms supervised learn-
ing in all data sizes. For the better-performing hard
pseudo labels, when labeled data sizes are 100 and

1000, CPSUM achieves remarkable performance.
When there are only 10 labels, the performances of
soft and hard PIS are indifferent, but they are bet-
ter than the supervised method and LEAD-1. The
results on XSum represent that CPSUM is also
effective in generating extractive summaries.

5.3 Analysis and Discussion

The Size of Selected Pseudo Labels. Table 3
shows the number of pseudo labels and the epochs
to start adding pseudo labels with different labeled
data sizes. In the case where labeled data sizes are
10 and 100, the numbers of filtered pseudo labels
are much larger than that of labeled data.

Nevertheless, when the labeled data size is 1000,
the filtered pseudo labels increase by only 467% rel-
ative to labeled data on the CNN/DailyMail dataset,
which means the demand for pseudo data can be
relatively reduced in the case of training on 1000
labeled data. The condition occurs because when
the labeled data size is large, the speed of conver-
gence is faster compared with a smaller labeled
data size, according to the epoch determined by the
pseudo label exploitation strategy (shown in the
last column of Table 3).
Various Components Study. This study aims to
verify the effectiveness enhancement of different
components, including supervised learning, consis-
tency regularization, all pseudo labels, and filtered
pseudo labels in Table 2 . All the ablations are
conducted with 100 labeled data in both datasets.

We take the CNN/DailyMail dataset as an exam-
ple for analysis. The purely supervised learning is
treated as the baseline, which achieves R-1/R-2/R-
L of 39.35/16.81/35.51. After adding the consis-
tency regularization method, R-1/R-2/R-L slightly
have increased by +0.27/+0.13/+0.28 points. This
means that although consistent learning will im-
prove supervised learning, there are still factors
that limit its performance, possibly the disadvanta-
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Figure 3: The first 1000 steps change curve of ROUGE (F1) metrics on the CNN/DailyMail dataset of 100
labeled data. All the experiments are validated every 50 steps. Before adding pseudo labels, the performance of
consistency learning achieves the best at step 500(epoch 20), and subsequently, three consecutive validation results
monotonically decrease, so we add pseudo labels at step 650. In all three metrics line charts, the red lines and
skyblue lines rise after step 650 due to the addition of pseudo labels.

Table 4: Ramp-up hyper-parameters τepoch explo-
ration based on the CNN/DailyMail dataset of 100
labeled data with hard pseudo labels.

τepoch PlS size ROUGE-1 ROUGE-2 ROUGE-L

10 4273 40.46 17.63 36.54
12 4072 40.47 17.64 36.55
15 3514 40.52 17.67 36.60
18 3698 40.47 17.64 36.55
20 3514 40.46 17.60 36.53
22 3316 40.41 17.55 36.46

geous noise of the augmented data.
Further, we compare two programs of select-

ing pseudo labels for labeled samples exploita-
tion. First, all the pseudo labels are selected with-
out filtering (in the 3-rd row), which obtains a
slight improvement in R-1 but declines in R-2/R-L
due to plenty of unreliable pseudo labels. The fi-
nal method, which combines all our contributions,
including consistency regularization and filtered
pseudo labels (in the 4-th row), achieves superior
results with +1.17/+0.86/+1.09 improvements in R-
1/R-2/R-L, compared with the supervised baseline.

Fig. 3 shows the changing trend of ROUGE of all
the ablations in the validation set during the first
1000 steps. As shown by the curve correspond-
ing to the pseudo-labeling method, our frameworks
with pseudo labels can sufficiently alleviate the
overfitting caused by few-sample data. Addition-
ally, Compared with not filtering reliable pseudo
labels, the entropy-constrained method enables the
model to improve upon the baseline effectively.
Ramp-up hyper-parameters Exploration. Our
entropy-constrained pseudo labeling method intro-
duces a hyper-parameter τepoch in the procedure of
the ramp-up pseudo-labels exploitation. We tweak
the hyper-parameter in a rational range and select

it based on the CNN/DailyMail dataset with 100
labeled data. As shown in Fig. 4, results show that
when τepoch is 15, CPSUM performs best. We find
that in the supervised learning with 100 labeled
data, CPSUM achieves the best in the 20-th epoch
on the validation set. This indicates that in the case
where the hyper-parameter τepoch is slightly smaller
than the optimal training epoch, the performance
will be the best. If τepoch is too tiny, the pseudo
label data increase but become noisier. If τepoch is
too large, the pseudo label data will decrease, and
then high-quality pseudo labels will also decrease.

6 Conclusions

In this paper, we present a new perspective on ef-
fectively using consistency training and pseudo
labeling to improve low resource extractive sum-
marization over an insufficiently labeled dataset.
With substituting simple noise injection operations
with advanced data augmentation and constraining
pseudo label selection with average entropy, our
method brings substantial improvements compared
with the supervised learning frameworks. Since our
proposed model is orthogonal to the methods that
using pre-trained models, we believe our model
can be further boosted by taking other salient pre-
trained models to initialize the text representations.
Additionally, although we use ramp-up exploita-
tion to control the adverse entropy effect brought
by the early model, incorrect prediction cannot be
avoided. An impeccable minimum entropy regular-
ization method can be exploited in the future.

Acknowledgements

This work is supported in part by the National Nat-
ural Science Foundation of China (No.U20B2053).



6455

References
Philip Bachman, Ouais Alsharif, and Doina Precup.

2014. Learning with pseudo-ensembles. In NeurlPS,
pages 3365–3373.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186. Associ-
ation for Computational Linguistics.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization. In
NeurlPS, pages 529–536.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NeurlPS, pages 1693–1701.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language un-
derstanding. In EMNLP (Findings), volume EMNLP
2020, pages 4163–4174. Association for Computa-
tional Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751. Association for Computational Linguistics.

Samuli Laine and Timo Aila. 2017. Temporal ensem-
bling for semi-supervised learning. In ICLR, poster.
OpenReview.net.

Dong-Hyun Lee et al. 2013. Pseudo-label: The simple
and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in
representation learning, ICML, volume 3, page 896.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chen Liu, Mengchao Zhang, Zhibing Fu, Panpan Hou,
and Yu Li. 2021a. Flitext: A faster and lighter semi-
supervised text classification with convolution net-
works. In EMNLP, pages 2481–2491. Association
for Computational Linguistics.

Yang Liu. 2019. Fine-tune BERT for extractive summa-
rization. CoRR, abs/1903.10318.

Yang Liu and Mirella Lapata. 2019. Text summarization
with pretrained encoders. In EMNLP-IJCNLP, pages
3728–3738. Association for Computational Linguis-
tics.

Ye Liu, Jianguo Zhang, Yao Wan, Congying Xia, Lifang
He, and Philip S. Yu. 2021b. HETFORMER: hetero-
geneous transformer with sparse attention for long-
text extractive summarization. In EMNLP, pages
146–154. Association for Computational Linguistics.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2019. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning. IEEE Trans. Pattern Anal. Mach.
Intell., 41(8):1979–1993.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. In AAAI, pages 3075–3081. AAAI Press.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In EMNLP, pages 1797–1807.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543. Asso-
ciation for Computational Linguistics.

Lutz Prechelt. 1996. Early stopping-but when? In
Neural Networks: Tricks of the Trade, volume 1524
of Lecture Notes in Computer Science, pages 55–69.
Springer.

Mamshad Nayeem Rizve, Kevin Duarte, Yogesh Singh
Rawat, and Mubarak Shah. 2021. In defense of
pseudo-labeling: An uncertainty-aware pseudo-label
selection framework for semi-supervised learning. In
ICLR. OpenReview.net.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. 2020. Fix-
match: Simplifying semi-supervised learning with
consistency and confidence. In NeurIPS.

Antti Tarvainen and Harri Valpola. 2017. Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning re-
sults. In ICLR, Workshop. OpenReview.net.

Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Ben-
gio, and David Lopez-Paz. 2019. Interpolation con-
sistency training for semi-supervised learning. In
IJCAI, pages 3635–3641. IJCAI.org.

Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing
Fei, Wei Li, Guoqiang Jin, Liwei Wu, Rui Zhao,
and Xinyi Le. 2022. Semi-supervised semantic seg-
mentation using unreliable pseudo-labels. CoRR,
abs/2203.03884.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. Conditional BERT contextual
augmentation. In ICCS (4), volume 11539 of Lecture
Notes in Computer Science, pages 84–95. Springer.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020a. Unsupervised data augmenta-
tion for consistency training. In NeurIPS.

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and
Quoc V. Le. 2020b. Self-training with noisy student
improves imagenet classification. In CVPR.

https://proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/D14-1181/
https://aclanthology.org/D14-1181/
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge
https://www.researchgate.net/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks
https://www.researchgate.net/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks
https://www.researchgate.net/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2021.emnlp-main.192
https://doi.org/10.18653/v1/2021.emnlp-main.192
https://doi.org/10.18653/v1/2021.emnlp-main.192
https://arxiv.org/abs/1903.10318
https://arxiv.org/abs/1903.10318
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/2021.emnlp-main.13
https://doi.org/10.18653/v1/2021.emnlp-main.13
https://doi.org/10.18653/v1/2021.emnlp-main.13
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14636
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14636
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14636
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1007/3-540-49430-8_3
https://openreview.net/forum?id=-ODN6SbiUU
https://openreview.net/forum?id=-ODN6SbiUU
https://openreview.net/forum?id=-ODN6SbiUU
https://proceedings.neurips.cc/paper/2020/hash/06964dce9addb1c5cb5d6e3d9838f733-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/06964dce9addb1c5cb5d6e3d9838f733-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/06964dce9addb1c5cb5d6e3d9838f733-Abstract.html
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://openreview.net/forum?id=ry8u21rtl
https://doi.org/10.24963/ijcai.2019/504
https://doi.org/10.24963/ijcai.2019/504
https://doi.org/10.48550/arXiv.2203.03884
https://doi.org/10.48550/arXiv.2203.03884
https://link.springer.com/chapter/10.1007/978-3-030-22747-0_7
https://link.springer.com/chapter/10.1007/978-3-030-22747-0_7
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Xie_Self-Training_With_Noisy_Student_Improves_ImageNet_Classification_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Xie_Self-Training_With_Noisy_Student_Improves_ImageNet_Classification_CVPR_2020_paper.html


6456

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In ACL, pages 6197–
6208. Association for Computational Linguistics.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuanjing Huang. 2019a. Searching for effective
neural extractive summarization: What works and
what’s next. In ACL , Volume 1: Long Papers, pages
1049–1058. Association for Computational Linguis-
tics.

Ming Zhong, Danqing Wang, Pengfei Liu, Xipeng
Qiu, and Xuanjing Huang. 2019b. A closer look at
data bias in neural extractive summarization models.
CoRR, abs/1909.13705.

Qingyu Zhou, Furu Wei, and Ming Zhou. 2020. At
which level should we extract? an empirical analysis
on extractive document summarization. In COLING,
pages 5617–5628. International Committee on Com-
putational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. In ACL (1), pages 654–663. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.552
https://doi.org/10.18653/v1/2020.acl-main.552
https://doi.org/10.18653/v1/p19-1100
https://doi.org/10.18653/v1/p19-1100
https://doi.org/10.18653/v1/p19-1100
https://arxiv.org/abs/1909.13705
https://arxiv.org/abs/1909.13705
https://doi.org/10.18653/v1/2020.coling-main.492
https://doi.org/10.18653/v1/2020.coling-main.492
https://doi.org/10.18653/v1/2020.coling-main.492
https://aclanthology.org/P18-1061/
https://aclanthology.org/P18-1061/
https://aclanthology.org/P18-1061/

