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Abstract

Story generation has emerged as an interest-
ing yet challenging NLP task in recent years.
Some existing studies aim at generating flu-
ent and coherent stories from keywords and
outlines; while others attempt to control the
global features of the story, such as emotion,
style and topic. However, these works focus
on coarse-grained control on the story, neglect-
ing control on the details of the story, which
is also crucial for the task. To fill the gap,
this paper proposes a model for fine-grained
control on the story, which allows the gen-
eration of customized stories with characters,
corresponding actions and emotions arbitrar-
ily assigned. Extensive experimental results
on both automatic and human manual eval-
uations show the superiority of our method.
It has strong controllability to generate sto-
ries according to the fine-grained personalized
guidance, unveiling the effectiveness of our
methodology. Our code is available at https:
//github.com/victorup/CHAE.

1 Introduction

Story generation, one of emergent tasks in the field
of natural language generation, requires following
sentences given the beginning of the story. For hu-
man beings, it is believed that storytelling requires
strong logical thinking ability and organizational
competence, and for machines it may be even more
intractable. Nonetheless, works on story generation
can help machines communicate with humans and
drive improvements in natural language processing
(Alabdulkarim et al., 2021).

At present, most works on story generation fo-
cus on the coherence of the story generated ac-
cording to keywords, outlines and commonsense
knowledge (Yao et al., 2019; Guan et al., 2019;
Rashkin et al., 2020; Guan et al., 2020; Ji et al.,
2020). Some other works aim at generating sto-
ries controlled by overall emotion, style, and topic
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(Keskar et al., 2019; Xu et al., 2020; Brahman and
Chaturvedi, 2020; Kong et al., 2021). However, in
reality, people often expect more detailed designs
catering to their needs rather than a simple theme or
topic in the generated story. For example, a novel
with more complete elements, i.e., plot, character,
theme, viewpoint, symbol, and setting is usually
preferred to those made up out of thin air.

Taking the control in story generation as the cut-
ting point, GPT-2 (Radford et al., 2019) can fulfill
the story according to the beginning, but the pro-
cess of generation cannot be controlled by people,
resulting in unlogical outputs that lack practical-
ity. CTRL (Keskar et al., 2019) can specify the
generation of articles with different styles through
some style words, but such control stays at the
coarse-grained level, and makes a relatively weak
influence. CoCon (Chan et al., 2020) introduces
natural language to guide text generation. Fang
et al. (2021) propose a new task that guides para-
graph generation through a given sequence of out-
line events. However, the above two studies just
explicitly add some contents to the generated sen-
tences, which is similar to forming sentences with
given phrases, not using the input as a condition
guide for the generative models. SoCP presented by
Xu et al. (2020) can generate stories under change-
able psychological state control, while it does not
govern the detailed contents of the story.

In this paper, we consider more fine-grained
control on story generation, and propose a model,
CHAE for fine-grained controllable story gen-
eration, allowing the generation of stories with
customized CHaracters, and their Actions and
Emotions. Characters are the core of the story.
Their actions drive the story along, and their emo-
tions make the story lively and interesting. Con-
sequently, we take the characters along with their
actions and emotions as the control conditions. It is
a challenge that our model needs to control multiple
characters with their actions and emotions respec-

https://github.com/victorup/CHAE
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tively in a story, especially under the guidance in
the form of natural language. To crack the nut, a
novel input form conducive to fine-grained control
on story generation is introduced into CHAE. Con-
cretely, we use various prompts for fine-grained
control conditions in different aspects. Moreover,
we design different methods for different control
conditions to improve the control effect. Inspired
by multi-task learning, we incorporate a character-
wise emotion loss while training, thus enforcing
the relevance between the characters and their emo-
tions respectively.

The contributions of our work can be summa-
rized as follows:

• We first take the characters with their actions
and emotions of the story into account to con-
duct more fine-grained controllable story gen-
eration.

• We propose a model CHAE with a novel in-
put form that helps the model control the story
in various aspects, and a character-wise emo-
tion loss to relate the characters and the corre-
sponding emotions.

• The results of both automatic and human eval-
uation show that our model has strong control-
lability to generate customized stories.

2 Related Work

Story Generation Story generation has attracted
more and more researchers to explore in recent
years. There are many challenges in the task, such
as context coherence and control. For context co-
herence, some works are devoted to introducing
a series of keywords (Yao et al., 2019), outlines
(Rashkin et al., 2020), or incorporating external
knowledge (Guan et al., 2019, 2020; Ji et al., 2020)
into the story. For style and sentiment control,
Kong et al. (2021) generate stories with specified
style given a leading context. However, it only fo-
cuses on the global attributes of the story. Brahman
and Chaturvedi (2020) work on generating stories
with desired titles and the protagonists’ emotion
arcs, and Xu et al. (2020) generate stories consid-
ering the changes in the psychological state, while
they just control the emotion lines instead of the
detailed contents.

Controllable Text Generation We have wit-
nessed the great performance of SOTA models for
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Figure 1: The architecture of CHAE. The input is the
concatenation of two components, Context and Chae,
which will be further explained in Sec 3. The emotion
labels are used for calculating a character-wise emotion
loss to tie up the characters and their emotions respec-
tively.

text generation these years. Despite the progress
in coherence and rationality of the text generated,
controllability remains to be challenging, which
means generating text with specific attributes, such
as emotion, style, topic, format, etc. CTRL (Keskar
et al., 2019) can control the overall attributes such
as domain, style and topic of the generated text by
adding control codes and prompts. By plugging in
a discriminator, PPLM (Dathathri et al., 2020) can
guide text generation without further training the
language model. CoCon (Chan et al., 2020) fine-
tunes an intermediate block with self-supervised
learning to control high-level attributes i.e., senti-
ment and topic. Compared to the previous works,
our work places the emphasis on more fine-grained,
all-round control on the generating process, includ-
ing the control of characters with their emotions
and actions in the story.

3 Methodology

3.1 Problem Formulation

The process of fine-grained controllable story gen-
eration in this work is defined as follows.

The input of the task has two components. We
refer to the one as Context. Let Context =
(x1, x2, ..., xp) denote the beginning sentence of
the story, which will be the initial Context. The
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Figure 2: The input form of CHAE. The input starts with ⟨s⟩ and ends with ⟨/s⟩, comprising Context and Chae.
The latter is a sequence of k control conditions on the next sentence to be generated, and each condition controls a
character. We show two possible forms of the control conditions after the brace. The special tokens in Chae are
further explained in Table 1.

other component is Chae, a sequence of k fine-
grained control conditions on the next sentence.
Each condition in Chae is the combination of the
name Chari, n actions Acti1, Acti2, ..., Actin, and
emotion Emoi of a character appearing in the next
sentence to be generated, where n is not fixed and i
is the index of the character. Note that we use Italic
Chae to distinguish the special input component
from our model CHAE.

The model predicts one sentence denoted as
Y = (y1, y2, ..., yq) at a time by estimating the con-
ditional probability P (Y |Context, Chae). Here
we embody the idea of auto-regression by adopting
an iterative generation strategy, that is, the sen-
tence generated is then concatenated to Context
for next prediction. Especially, at training time, we
concatenate the gold sentences instead of generated
sentences to Context incrementally like teacher
forcing.

The goal of this task is to generate a story where
each sentence adheres to the input condition Chae
in terms of character, action, and emotion, through
which elevate the quality of generation in a fine-
grained manner.

3.2 Model Architecture

The architecture of our model CHAE is shown
in Figure 1. CHAE is built upon a BART model
(Lewis et al., 2020). As mentioned, our model em-
bodies the idea of auto-regression by adopting an
iterative generation strategy. On the one hand, the
iteratively updated Chae helps control the content
of each sentence at a detailed level of granular-
ity. On the other hand, the strategy ensures that
the model can always see the foregoing. Consid-
ering the incremental Context can be extra long,
we employ BART rather than GPT-2. GPT-2 is an
auto-regressive model fully based on transformer
decoder, while BART has a bidirectional encoder,
which might make it better in understanding and
encoding long input sequences. To confirm the

Special tokens Meaning

⟨SEP ⟩ The start token of a condition.
⟨soc⟩ The start token of a character’s name.
⟨soa⟩ The start token of actions.
⟨soe⟩ The start token of an emotion.
⟨sep⟩ The start token of a single action.
⟨no_action⟩ The token representing no action.

Table 1: The meanings of the special tokens in Chae.

hypothesis, we also compared BART with GPT-2
on the benchmark dataset in Sec 4, and found that
BART outperformed GPT-2 in story generation.

3.3 Generation Based on Fine-Grained
Control Conditions

To generate a story with the characters, their ac-
tions and emotions specified, we need to remind
the BART model of the elements controlled cur-
rently from time to time. Inspired by the practice of
leveraging special tokens for controllable genera-
tion (Fang et al., 2021; Keskar et al., 2019; Tsutsui
and Crandall, 2017), we propose a novel form of
input (titled Chae), which is a sequence of k fine-
grained control conditions on the next sentence to
be generated. Each condition in Chae controls a
character, and each segment in the condition con-
trols an element (i.e., character’s name, action, and
emotion) of the corresponding character. Note that
any number of actions can be assigned in a condi-
tion. The nested sequence form of Chae facilitates
the neat combination of various fine-grained con-
trol conditions.

We design several special tokens and add them
between each segment as the control prompts (see
Figure 2). In this study, 6 special tokens are used to
prompt the model. They are ⟨SEP ⟩, ⟨soc⟩, ⟨soa⟩,
⟨soe⟩, ⟨sep⟩, and ⟨no_action⟩. The meanings of
the tokens are shown in Table 1.

Then, we encode the input Context and Chae
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as henc by the BART encoder:

henc = Enc(ec), (1)

where ec is the embedding of Context and Chae.
The vocab generation probability is calculated by
the BART decoder as:

Pvoc(y) = P (yt|y<t, Context, Chae)

= softmax(W vochdec),
(2)

hdec = Dec(ey<t,henc), (3)

where ey<t is the embeddings of the generated
tokens before timestep t, and W voc is a trainable
parameter.

After fine-tuning with these special tokens, the
model is aware of the elements controlled by each
segment of each condition.

3.4 Improvement in Control Effect
3.4.1 Character and Action Control
For characters and their actions, we expect to see
the characters and their actions in current Chae
appear in the coming sentence. Inspired by the
usage of copy mechanism (See et al., 2017; Deaton
et al., 2019; Prabhu and Kann, 2020) in copying
significant tokens from the input sequences, we
add a copy pointer to BART for the information in
Chae. The attention distribution on Chae denoted
by ã is attained by averaging the multiple heads in
the cross attention block of BART decoder:

ã =

∑h
i=1 ai
h

, (4)

where h is the number of the attention heads, and
ai denotes the attention distribution on Chae from
the i-th attention head.

When generating stories, we first combine the
hidden state of the decoder hdec, the context vector
hcon, and the embedding of the decoder input ey.
Secondly, we calculate a generation probability
pgen, which is a soft switch to choose a word from
the vocabulary according to Pvoc, or to copy a word
from Chae by sampling from the mean attention
distribution ã. The final distribution of a word can
be represented as follows:

P (y) = pgenPvoc(y) + (1− pgen)
∑

j:yj=y

ãj , (5)

pgen = σ(W⊤
p [hdec;hcon; ey]), (6)
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Figure 3: Statistics of emotion categories of sentences
in all stories.

where W p is a trainable parameter. In this way, the
characters and actions in Chae will be produced
with higher probability, and the output can be flexi-
bly changed according to the different input.

3.4.2 Character-Wise Emotion Control
For characters’ emotions, we additionally incorpo-
rate a character-wise emotion loss, by which the
model is forced to generate sentences with speci-
fied emotions tied up with corresponding charac-
ters. We add k emotion classification heads to the
top of the decoder output layer (Ide and Kawahara,
2021), and k is equivalent to the number of con-
ditions in Chae. It provides direct supervision on
emotion control to predict the emotion of every
character in the story.

However, as shown in Figure 3, the emotion cat-
egories present a long tail distribution. To relieve
the class-imbalance problem, we use a Weighted
Cross-Entropy (WCE) loss between the predicted
emotion distribution Pemo and the emotion labels
le:

LEMO = −αele log(Pemo), (7)

Pemo = softmax(W emohdec), (8)

αe =
N

e ∗ count(le)
, (9)

where W emo is a trainable parameter, αe denotes
the weights of emotion classification labels. N is
the number of the training samples, e is the number
of emotion categories, and count(·) is a function to
calculate the number of samples in each emotion
category. Now, the model has both explicit control
from emotion in Chae and implicit control from
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the emotion loss to generate sentences with target
emotions.

3.5 Objective Function
We minimize the Negative Log-Likelihood (NLL)
loss of the target story sentence Y with the input
Context and Chae:

LNLL = −
T∑
t=1

logP (yt|y<t, Context, Chae),

(10)
The total loss L is as follow:

L = LNLL + λLEMO, (11)

where λ is a hyper-parameter. After training with
the above two objectives, our model can generate
fluent stories under desired conditions.

4 Experiments

4.1 Dataset
We use ROCStory with labeled characters’ emo-
tions and actions as our dataset (Rashkin et al.,
2018), which contains 14738 five-sentence stories,
including 9885 stories for training, 2483 stories for
validation and 2370 stories for testing. To conform
to the iterative generation, we divide the stories
into 39540 / 9932 / 9480 sentence pairs for train-
ing/validation/testing. Each pair of sentences con-
sists of two adjacent sentences in the story. The
characters with their actions and emotions in the
dataset are labeled by three crowdsourced work-
ers from Amazon Mechanical Turk. The emotions
come from Plutchik psychology theory (Plutchik,
1980), including 8 species, such as “joy”, “anger”,
etc. Most actions represent the character’s under-
lying motivations, and they generally take the in-
finitive such as “to win all games” and “to have
fun”.

In preprocessing, we integrate the annotations
of the three workers, and take the emotions with
the highest confidence as the final labels. However,
we still notice that some emotion labels have exces-
sively low confidence, indicating subtle emotion
tendencies. We modify them to “neutral” to avoid
distortion of the emotions. Moreover, we find that
9885 stories in the training set are not labeled with
emotions, but only with actions. As a remedy, we
fine-tune the model on these 9885 stories to keep
the fluency of the story. Later, we re-divide all the
stories with labeled emotions in the validation set
and testing set into another 3 splits. Finally, we
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fine-tune the model on the new training set to cap-
ture emotional information. The re-divided dataset
includes 15528 / 1944 / 1940 sentence pairs by
8:1:1 for training/validation/testing.

4.2 Baselines

We compare our model with a carefully selected
set of baselines as shown below.

GPT-2 (Radford et al., 2019): GPT-2 is a
transformer-based model pre-trained on a very
large corpus, which is very commonly used in nat-
ural language generation. A lot of works witness a
good performance of GPT-2 in dialogue, story and
other text generation in recent years, demonstrating
its auto-regression quality.

BART (Lewis et al., 2020): BART is a
transformer-based seq2seq pre-training model with
a bidirectional (BERT-like) encoder and an autore-
gressive (GPT-like) decoder. A lot of text genera-
tion tasks, like neural machine translation and auto-
matic summarization, can achieve effective results
by fine-tuning on BART.

SoCP (Xu et al., 2020): Stories with multi-
characters and multi-psychology generated by
SoCP can change with the emotional lines of as-
signed characters. In addition, SoCP can generate
stories with different emotional intensities. It also
designe a metric to evaluate the accuracy of con-
trolling emotions of roles.

Stylized-Story-Generation (SSG) (Kong et al.,
2021): SSG can generate stories with specified
style given a leading context by first planning the
stylized keywords and then generating the whole
story with the guidance of the keywords. Two story
styles are considered in SSG, including emotion-
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Models PPL ↓ B-1 ↑ B-2 ↑ D-1 ↑ D-2 ↑ ACC ↑

SoCP 101.33 22.93 7.32 0.478 0.650 0.893
SSG 15.22 26.74 10.77 0.573 0.904 -

GPT-2 29.21 21.30 6.35 0.744 0.960 -
BART 14.00 24.15 7.93 0.729 0.964 -

CHAE 11.58 27.10 10.20 0.750 0.971 0.941
w/o copy 11.65 26.53 9.67 0.754 0.972 0.879
w/o emo 11.75 27.51 10.61 0.732 0.965 -

w/o copy w/o emo 11.70 27.19 10.79 0.735 0.967 -

Table 2: Automatic metrics.

Setting B-1 ↑ B-2 ↑ D-1 ↑ D-2 ↑

Greedy 31.08 15.65 0.586 0.797
Beam=2 31.96 15.61 0.595 0.811
Beam=3 32.04 15.89 0.584 0.804
Beam=4 31.86 15.84 0.578 0.801
Beam=5 31.60 15.40 0.576 0.802

Top-k=30, Temperature=0.8 30.86 13.63 0.697 0.939
Top-k=50, Temperature=0.8 30.58 13.64 0.702 0.939
Top-k=30, Temperature=1 29.36 12.00 0.720 0.957
Top-k=50, Temperature=1 29.22 11.94 0.730 0.962

Top-k=30, Temperature=1.2 27.68 10.49 0.745 0.968
Top-k=50, Temperature=1.2 27.10 10.20 0.750 0.971

Table 3: Decoding strategies adjustment.

driven and event-driven stories.

4.3 Implementation Details

We build our model based on BART using the Hug-
gingface’s Transformers library in Pytorch (Wolf
et al., 2019). We initialize our model with the pub-
lic checkpoint of bart-large-cnn 1. The batch size
during training is 8. We use the AdamW optimiza-
tion (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.999 and the initial learning rate is 5e − 5.
According to the statistics of characters in the sto-
ries shown in Figure 4, most stories contain two
characters, so we fix the number of characters in
each story k to 2. The hyper-parameter λ defaults
to 1.0.

For all models, We generate stories by using top-
k sampling (Fan et al., 2018) with k = 50 and a
softmax temperature of 0.8.

4.4 Automatic Evaluation

Evaluation Metrics We use the following metrics
for automatic evaluation: (1) Perplexity (PPL):
PPL represents the general quality of the gener-
ated stories, which estimates the probability of sen-
tences according to each word. (2) BLEU (B-n)
(Papineni et al., 2002): We use BLEU to compare
the coverage n-gram in the candidate stories and

1https://huggingface.co/facebook/
bart-large-cnn/tree/main

the reference stories because the words in Chae
usually appear in the reference stories. (3) Distinct
(D-n): (Li et al., 2016): Distinct is used to evaluate
generation diversity by calculating the percentage
of unique n-grams. (4) Accuracy of emotions
(ACC): We use emotion labels to calculate the ac-
curacy of the emotions of generated sentences to
reflect the controllability of emotion.

Results Table 2 shows the automatic evaluation
results. All baseline models are trained on our
dataset ROCStory. Our model achieves the lowest
Perplexity, which reflects the high quality of the
stories generated by CHAE. Besides, the BART-
based models (BART and SSG) are better than the
GPT-2 model. The traditional seq2seq model SoCP
has worse performance. The greater BLEU scores
of CHAE and its varieties imply stories closer to
the golden truth, proving that the introduction of
fine-grained control, mainly by means of the spe-
cial input Chae, is conducive to improving the
quality of the generated stories. As for Distinct,
the pre-trained models show excellent performance
compared with the traditional seq2seq model. Our
model attains the best score, which demonstrates
CHAE’s ability in generating more diverse stories.
We further compare the ACC with SoCP, and our
model gets higher emotion accuracy.

Additionally, we also explore some decoding
strategies including greedy search, beam search,
top-k, and temperature, as shown in Table 3. The
BLEU scores reach the best when we use the beam
size equal to 3, while we get the best Distinct scores
with the top-k equal to 3 and the temperature equal
to 1.2. The BLEU scores decrease with the increase
of beam size. The BLEU scores with top-k are
lower than beam search, but the Distinct scores
are higher. When top-k is fixed, the higher the
temperature, the lower the BLEU and the higher the
Distinct. When the temperature is fixed, the higher
the top-k, the lower the BLEU and the higher the
Distinct.

4.5 Ablation Studies

As shown in Table 2, we also conduct the ablation
studies to verify the effectiveness of the additional
control methods in our model. When we remove
the copy mechanism (w/o copy), the BLEU de-
creases and the Diversity increases, which suggests
that the copy mechanism is beneficial in control-
ling content, but it also affects the diversity at the

https://huggingface.co/facebook/bart-large-cnn/tree/main
https://huggingface.co/facebook/bart-large-cnn/tree/main
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Models Fluency Coherence Informativeness
Win(%) Lose(%) Tie(%) Win(%) Lose(%) Tie(%) Win(%) Lose(%) Tie(%)

CHAE vs. SSG 56.0 30.0 14.0 52.0 30.0 18.0 90.0 6.0 4.0
CHAE vs. BART 40.0 40.0 20.0 38.0 36.0 26.0 46.0 42.0 12.0
CHAE vs. GPT2 38.0 36.0 26.0 40.0 40.0 20.0 72.0 12.0 16.0

Controllability of CHAE 65.0%

Table 4: Human evaluation results. It shows the percentage of win, lose and tie of CHAE compared with other
baselines. The controllability of CHAE indicates the average percentage of sentences in a story that can be controlled
by control condition Chae.

Context Jessica had to go to the city.

SoCP She was very excited to see a new . She was very proud of her friends . She was very happy . She was
happy she was going to get .

GPT-2 She left her friends and their cars behind. They waited outside the station for her. She knew she’d go to a
bar one day. Unfortunately they all stayed away.

BART She told her mom to take a bus. The bus didn’t have enough time to get back to the stations. When she
came back her mother was upset. Jessica was upset that everyone didn’t believe her to go now.

SSG She was leaving the bus at ten o’clock. She saw a traffic light coming up in the distance. But she got in
the way quickly. She was late late to her bus stop so she had to wait.

Chae

1. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to learn new things ⟨sep⟩ to see the museums ⟨sep⟩ to learn something
⟨soe⟩ joy
2. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to go out to some interesting place ⟨soe⟩ joy
3. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to save the artwork ⟨sep⟩ to remember what she had seen ⟨soe⟩ joy
4. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to photoshoot ⟨sep⟩ to see the artistic beauty inside the famous museum
⟨soe⟩ joy

CHAE She had always enjoyed going to a museum. However, she could not walk with better to the museum.
She had to remember all her paintings from this one place. Jessica noticed an amazing view that her
camera had of a gallery.

Gold She went to some museums. She really enjoyed the artwork at the MET. She took a lot of photographs.
She was there for hours.

Table 5: Case study of the generated stories by our model and the baselines. The Chae represents the assigned
control conditions including characters, actions and emotions.

same time. In addition, we also observed that the
copy mechanism can help the model to improve the
accuracy of emotions. On the contrary, when we
remove the emotion loss (w/o emo), the BLEU in-
creases and the Diversity decreases, which reflects
that the emotion loss does improve the diversity of
the stories, but sacrifices controllability. Further-
more, we remove both the copy mechanism and the
emotion loss (w/o copy w/o emo), which means
just introducing the conditions Chae to the vanilla
BART. The results are still better than BART, il-
lustrating the benefit brought by the fine-grained
control conditions.

In general, the copy mechanism and the emo-
tion loss complement each other. The results show
that the integrated model (CHAE) can obtain good
scores and relatively balance on BLEU and Di-
versity, and has the best performance on PPL and
ACC.

4.6 Human Evaluation

We conduct a human evaluation to compare CHAE
with baselines on the following three metrics. (1)
Fluency: The fluency of a sentence can reflect the
quality of intra-sentence. (2) Coherence: The co-
herence of the story can reflect the cohesion of
context and the quality of inter-sentence. (3) Infor-
mativeness: The good performance of a story in
terms of informativeness indicates that there are a
variety of rich words in the story. We recruit six
annotators and divided them into two groups to an-
notate 50 stories randomly sampled. Each story is
annotated by three workers to ensure fairness. The
workers have two tasks: one is to compare the re-
sults generated by CHAE and other baselines, and
the other is to score the controllability of CHAE
according to whether the predicted sentences ad-
here to the assigned conditions Chae. The majority
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Context A polite thief was making robberies in the small town.

Chae1 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Man ⟨soa⟩ to catch the thief ⟨soe⟩
anger

Result1 One day, a man walked up to him and asked him to stop .
Chae2 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Man ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ joy
Result2 The man who was supposed to stop him was a nice man .
Chae3 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Tom ⟨soa⟩ to catch the thief ⟨soe⟩

anger
Result3 Tom decided to investigate and caught the thief .
Chae4 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ call the police ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Tom ⟨soa⟩ call the police

⟨soe⟩ anger
Result4 Tom called the police and they told him to call the police .

Table 6: Case study of controllability.

votes among the annotators will be the final deci-
sions for the first task and we average the scores of
all annotators for the second task. The results are
shown in Table 4. Our model achieves the best per-
formance in each metric compared with baselines
and has 65% controllability.

4.7 Case Study

Comparison Table 5 shows the stories gener-
ated from our model and the baselines. The story
generated by the SoCP model reflects that the re-
sults generated by the models built on the seq2seq
architecture are usually simple, short and less in-
formative. The transformer-based models, such as
GPT-2, BART, and SSG, show strong generative
capabilities, which can generate coherent and in-
formative stories. However, the content of these
stories can not be controlled, and the characters’
emotions and actions in the stories are not obvious.

For our model, we can specify the characters,
actions and emotions in the story that we desired,
and the model can generate stories based on this
information, i.e. Chae. The meaning of the four
Chae is to control the content of the next four sen-
tences respectively. The first sentence reflects that
the character’s action is to go to the “museum”, and
the word “enjoyed” reflects the emotion of “joy”.
The word “remember” and “artwork” in the third
sentence corresponds to “remember” and “paint-
ings” in Chae3. The model is connected to the
“camera” from the “photoshoot” in Chae4, and the
phrase “noticed an amazing view” corresponds to
“to see the artistic beauty”, and the character “Jes-
sica” appears in the sentence. The results show that
our model can generate coherent and informative
stories according to the control information.

Controllability Table 6 shows the examples of
controllability. We use beam search (beam=2) to
generate results instead of top-k, because the top-
k method usually generates diverse words, which
can not ensure controllability. Our model gener-
ates sentences based on the same context and the
given different Chae. The first two examples show
that for the same character “Man”, given the emo-
tion “anger” and “joy”, the model can generate
sentences with corresponding emotions, such as
the phrase “asked him to stop” and “he was a nice
man”. In the third example, we change the char-
acter to “Tom”, and the generated sentence is also
changed from “Man” to “Tom”, and the phrase
“caught the thief” also reflects the action “to catch
the thief”. In the last example we change Tom’s
action to “call the police”, and the resulting change
from “caught the thief” to “called the police”. Also,
we set people’s actions as “call the police” and the
emotion is fear, which results in the expression
“they told him to call the police.” The above re-
flects that our model has a good control effect on
characters, actions and emotions.

5 Conclusion and Future Work

Through our model CHAE, we can create stories
with fine-grained control according to the specified
characters and corresponding actions and emotions,
which is more convenient for practical applications,
such as the creation of script novels, providing
inspiration for screenwriters, and even acting as
screenwriters in the future.

However, our model also has some disadvan-
tages: (1) The dataset contains only stories with
5 sentences, which is not enough for learning to
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generate longer stories. (2) The training of our
model heavily relies on the annotations of charac-
ters, emotions, and actions in the dataset, while it
is very expensive to obtain the annotated data. (3)
The Chae in the dataset actually has some noise,
i.e., some descriptions in Chae are not reflected
in the corresponding sente nces. (4) Our iterative
generation method will result in a long time to train
a story and may cause a cascade problem, which
affects the overall quality of story generation.

In future work, we will adopt datasets with much
more data and longer stories, such as Writing-
Prompts (Fan et al., 2018) and WikiPlots2. In
addition, we will consider using commonsense rea-
soning techniques to reason about the emotions
and actions of the characters in the story before
further generating the story. Regarding the noise
of Chae, we plan to conduct denoising in prepro-
cessing to filter out the samples whose Chae are
inconsistent with the corresponding sentence. The
problem can also be alleviated by dynamically con-
trolling the weight of the conditions. We are also
further exploring more convenient and effective
training methods to generate controllable stories by
inputting control conditions in one go, rather than
iterative generation.
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