CoCGAN: Contrastive Learning for Adversarial Category Text Generation

Xin Sheng'*, Linli Xu'*; Yinlong Xu?, Changcun Bao*, Huang Chen*, Bo Ren*
! Anhui Province Key Laboratory of Big Data Analysis and Application,

School of Computer Science and Technology, University of Science and Technology of China.
2 School of Computer Science and Technology, University of Science and Technology of China.
3 State Key Laboratory of Cognitive Intelligence. * Tencent Youtu Lab.
xins@mail.ustc.edu.cn, {linlixu,ylxu}@ustc.edu.cn,
{changcunbao, huaangchen, timren}@tencent.com

Abstract

The task of generating texts of different cat-
egories has attracted more and more atten-
tion in the area of natural language generation
recently. Meanwhile, generative adversarial
net (GAN) has demonstrated its effectiveness
on text generation, and is further applied to
category text generation in later works. Dif-
ferent from existing methods, which mainly
consider the pairwise relations between the text
embedding and the corresponding fixed one-hot
class label (data-to-class relations), this paper
proposes a novel Contrastive Category Gener-
ative Adversarial Net (CoCGAN) to incorpo-
rate contrastive learning into adversarial cate-
gory text generation, considering more flexible
data-to-class relations as well as relations be-
tween the multiple text embeddings in the same
batch (data-to-data relations). The discrimina-
tor of CoCGAN discriminates the authenticity
of given samples and optimizes a contrastive
learning objective to capture both more flexi-
ble data-to-class relations and data-to-data re-
lations among training samples. Accordingly,
the generator tries to produce more realistic
samples which can confuse the discriminator.
Experimental results on both synthetic and real
category text generation datasets demonstrate
that CoCGAN can achieve significant improve-
ments over the baseline category text genera-
tion models.

1 Introduction

Category text generation is the task of generat-
ing coherent and meaningful text with different
categories and has received increasing attention
in many natural language processing applications,
such as sentiment analysis (Li et al., 2018) and di-
alogue generation (Li et al., 2017). It is a further
expression of machine intelligence, and makes the
generated texts more friendly to humans. Category
text generation is a generalization of sentimental
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text generation and can be seen as a type of condi-
tional text generation. This task focuses on how to
integrate the auxiliary category information with
the conventional text generation frameworks. Re-
cently, generative adversarial net (GAN) (Good-
fellow et al., 2014), where the discriminator is de-
signed to guide the generator, is combined with
the reinforcement learning (RL) (Williams, 1992)
methods to generate discrete text sequences for
general text generation with some remarkable suc-
cesses (Yuetal., 2017; Guo et al., 2018; Caccia
et al., 2020). Different from the general text gener-
ation task, category text generation mainly focuses
on automatically generating a variety of control-
lable texts according to the specified categories.
However, it is challenging to incorporate the cate-
gory information into the sentences and design an
appropriate objective for generating texts of differ-
ent categories simultaneously.

In previous works, attempts have been made to
extend the general text generation models to cat-
egory text generation (Wang and Wan, 2018; Liu
et al., 2020; Li et al., 2018). However, they only
consider relations between the text embeddings
and the class labels with simple constraints (data-
to-class relations). Among them, SentiGAN (Wang
and Wan, 2018) heavily relies on the discriminator
based on a (k + 1)-class classifier, which classifies
between “generated” and k real classes. But it ig-
nores the fact that each generated sample involves
the degree of authenticity as well as the probability
of belonging to a certain category simultaneously,
therefore it is less reasonable to directly set the dis-
criminator as a (k + 1)-class classifier. To address
this issue, CSGAN (Li et al., 2018) splits the dis-
criminator into an authenticity discriminator and
a category classifier, and optimize the generator
with reward-based policy gradient strategy. Never-
theless, both the discriminators of SentiGAN and
CSGAN are still limited by the simple category
constraints (i.e., cross-entropy loss using fixed one-
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hot class label as target). More recently, CatGAN
proposes a category-aware model with a genera-
tor based on the relational memory core (RMC) to
generate category texts. However, its discriminator
still focuses on vanilla data-to-class relations and
ignores relations between these text embeddings in
the same batch (data-to-data relations).

In this paper, inspired by recent application of
contrastive learning in conditional image genera-
tion (Kang and Park, 2020), we propose a novel
adversarial category text generation framework,
namely Contrastive Category Generative Adversar-
ial Net (CoCGAN), to further exploit the category
information. Different from SentiGAN, which uses
multiple generators, we adopt a conditional genera-
tor (Hochreiter and Schmidhuber, 1997) to simplify
the model, where an additional class label embed-
ding is set as input to control the type of the gener-
ated category text. Following (Yu et al., 2017), we
consider the sequence generation procedure as a
sequential decision making process and the genera-
tor is regarded as a stochastic parametrized policy.
Regarding the discriminator, since each generated
sample is associated with a real class label and it is
rather rough to simply mark it as “generated”, the
proposed discriminator is divided into two parts:
an authenticity discriminator and a contrastive cat-
egory projector. The authenticity discriminator is a
conventional GAN discriminator which is designed
as a binary classifier to judge whether the input
text is real or not. As for the contrastive category
projector, we abandon the conventional way which
adopts the cross-entropy loss as the training objec-
tive and take class label embeddings into account
for more flexible learning. Specifically, the dis-
criminator leverages contrastive learning to pull
the text embeddings closer to their corresponding
class label embeddings. Furthermore, we also con-
sider relations between the text embeddings which
share the same class labels. In other words, the
contrastive category projector aims to pull the mul-
tiple text embeddings, which are in the same batch,
closer to each other when their class labels are the
same, while pushing away from each other other-
wise. As benefits of the novel contrastive learning
paradigm, the discriminator can capture not only
more flexible data-to-class relations but also data-
to-data relations among training samples. During
adversarial training, we adopt Monte Carlo tree
search to approximate the state-action value func-
tion and the penalty-based (Wang and Wan, 2018)

training objective is used to update the generator
with policy gradient strategy (Sutton et al., 2000),
where we integrate the output of the authenticity
discriminator and the contrastive category projector
to obtain the overall penalty.

We conduct category text generation experi-
ments on both synthetic and real category datasets
and adopt multiple metrics to evaluate the qual-
ity of the generated texts. We also compare the
proposed CoCGAN with several state-of-the-art
category text generation models, including Senti-
GAN and CatGAN. Experimental results on three
datasets (i.e., movie reviews, amazon reviews and
synthetic datasets) demonstrate that our model con-
sistently outperforms the state-of-the-art models.

The contributions of this work are three-fold:

* We adopt the conditional generator without
loss of generality and decouple the discrimi-
nator into two parts, which comprehensively
consider the authenticity and category infor-
mation of the input text.

* We propose the CoOCGAN which adopts con-
trastive learning to leverage not only more
flexible data-to-class relations but also data-
to-data relations among samples for category
text generation. To the best of our knowledge,
this work is the first attempt to introduce con-
trastive learning for category text generation.

» Extensive experiments are conducted on sev-
eral datasets and the results from multiple per-
spectives demonstrate the effectiveness of the
proposed model.

2 Related Work

Text generation is an important task in natural
language processing and has received more and
more attention in many fields recently (Sheng et al.,
2020; Bahdanau et al., 2014). Traditional text
generation models based on recurrent neural net-
work (RNN) (Graves, 2013) generate each token of
a sentence conditioned on the previous tokens and
the current hidden state. Nevertheless, the training
paradigm maximum likelihood estimation (MLE)
may suffer from exposure bias (Bengio et al., 2015),
which is due to the inherent difference between the
training stage and the inference stage of text gener-
ation models trained via MLE. Scheduled sampling
is proposed by (Bengio et al., 2015) to solve it but
soon proved to be inconsistent (Huszér, 2015). To
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alleviate this issue, some works adopt generative
adversarial net (GAN) (Goodfellow et al., 2014),
which has achieved significant successes on com-
puter vision (Radford et al., 2016; Brock et al.,
2018). In GAN, the discriminator learns to distin-
guish whether a given sample is real or not, and
the generator learns to confuse the discriminator by
generating high quality data. Nevertheless, GAN
is designed for differentiable data, which conflicts
with the discrete nature of text generation.

To tackle the above non-differentiability prob-
lem, reinforcement learning is introduced in Seq-
GAN (Yuetal., 2017) and LeakGAN (Guo et al.,
2018), where the discriminator guides the gen-
erator with the reward signal. And this train-
ing paradigm is widely adopted (Sheng et al.,
2022). Alternatively, MaskGAN (Fedus et al.,
2018) uses the actor-critic algorithm to fill in the
missing text conditioned on the surrounding con-
text. RankGAN (Lin et al., 2017) replaces the con-
ventional binary classifier with a ranking model
as the discriminator. A different direction to ad-
dress the non-differentiability problem is approxi-
mation methods. Specifically, (Zhang et al., 2017)
and (Chen et al., 2018) apply an annealed softmax
to approximate the argmax operation. While (Gu
et al., 2018) and (Nie et al., 2018) propose to use
the Gumbel-Softmax relaxation to approximate the
categorical distribution.

The aforementioned methods mostly focus on
general text generation. For the task of category
text generation, CSGAN (Li et al., 2018) proposes
a descriptor which consists of a binary discrimi-
nator and a classifier that aims to distinguish the
categories of the given sentence. However, the ad-
versarial generator optimization of CSGAN still
adopts the reward-based training objective, which
is the same as SeqGAN and restricts the diver-
sity of the generated sentences. Meanwhile, Senti-
GAN (Wang and Wan, 2018) introduces multiple
generators where each generator focuses on gen-
erating samples with a specified sentiment label.
In addition, SentiGAN proposes a novel penalty-
based training objective to improve the diversity of
the generated samples. However, the multiple gen-
erators of SentiGAN will increase the complexity
of the model with the increase of category numbers.
More recently, CatGAN (Liu et al., 2020) intro-
duces a category-aware model for category text
generation. Nevertheless, the discriminator of Cat-
GAN still focuses on vanilla data-to-class relations.

As can be noticed, in all the methods discussed
above, data-to-data relations among the training
batch are ignored. Besides these GAN-based meth-
ods, some works also make various attempts to
improve the conventional conditional generative
models (Keskar et al., 2019; Chan et al., 2021; Li
et al., 2020), and they are orthogonal to our model
which focuses on improving the discriminator to
better guide the conditional generator. And these
models can replace the conditional generator of
our model for further improvements. Thus, in this
work, we mainly focus on the GAN-based methods.

Recently, many unsupervised representation
learning methods are proposed based on the princi-
ple of contrastive learning (Wu et al., 2018; Bach-
man et al., 2019; He et al., 2020; Henaff, 2020;
Chen et al., 2020a,b), and contrastive learning
paradigm is firstly adopted for adversarial image
generation in (Kang and Park, 2020). Besides, con-
trastive learning is also applied to conventional con-
ditional text generative models (Lee et al., 2021;
Qian et al., 2022). To effectively leverage the class
label information, the proposed CoCGAN makes
the first attempt to integrate contrastive learning
into the discriminator for adversarial category text
generation. By exploring both more flexible data-
to-class relations and data-to-data relations with
contrastive learning, CoOCGAN achieves significant
improvements over previous works, including the
state-of-the-art model CatGAN.

3 Methodology

In this section, we propose CoCGAN by adapt-
ing contrastive learning to adversarial category text
generation. We begin with introducing the frame-
work of the generator (Sec. 3.1). Then, in order to
consider both more flexible data-to-class relations
and data-to-data relations, we split the discrimina-
tor into an authenticity discriminator and a con-
trastive category projector (Sec. 3.2) to introduce a
label-incorporated contrastive loss. Accordingly, a
penalty-based contrastive learning paradigm is de-
signed to optimize the generator during adversarial
training (Sec. 3.3). Finally, we propose the Con-
trastive Category Generative Adversarial Net (CoC-
GAN) for category text generation (Sec. 3.4).

3.1 Conditional Generator

Following previous works (Yu et al., 2017; Wang
and Wan, 2018; Liu et al., 2020), we adopt the
generative model based on recurrent neural net-
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work (RNN) (Hochreiter and Schmidhuber, 1997).
An RNN maps the input embedding representations
X1,X2,...,x7 of the sequence =1, z3, ...,z into
a sequence of hidden states s1, 9, ..., by using
the update function g recursively. Different from
the SentiGAN which uses & conventional RNNs to
generate texts of k classes, we equip a single con-
ventional RNN with an additional label embedding
input ¢ to control the category of the generated text,
which can reduce the complexity of the generator,
and the hidden state s; is updated as follows:

St = g(stflaxtac) (1)

where x; and ¢ are concatenated as the input at
timestep t. Then, a softmax output layer maps the
hidden states into the output token distribution:

p(ye|z1, T2, . .., 1) = softmax(Vs, +b) (2)

where V and b are weight matrix and bias vector
respectively. It is worth noting that the generator
can be implemented as most of the RNN variants,
such as the Long Short-Term Memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997), the
gated recurrent unit (GRU) (Cho et al., 2014) and
the relational memory core (RMC) (Santoro et al.,
2018). For easy comparison with the state-of-the-
art model CatGAN, which uses RMC-based gener-
ator, we adopt both LSTM and RMC as the genera-
tors to conduct experiments.

3.2 Label-incorporated Contrastive
Discriminator

In SentiGAN, the discriminator is designed as a
(k + 1)-class classifier to distinguish between the
real texts with each category (k classes) and the
generated texts (1 class). However, it is overlooked
that each generated sample is simultaneously asso-
ciated with the degree of the authenticity and the
probability of belonging to a certain category.

3.2.1 Auxiliary Classification Loss

In order to address the problem mentioned above,
we make a clear distinction between the authentic-
ity and the real category of the text. Specifically,
as shown in Figure 1(b), we divide the (k + 1)-
class SentiGAN discriminator (Figure 1(a)) into
two parts: an authenticity discriminator and a cat-
egory classifier. The authenticity discriminator is
designed as a binary classifier to distinguish be-
tween the real and generated samples, while the
category classifier is a k-class classifier to distin-
guish the categories of the given sample. We denote

the discriminator as Dy where ¢ is the trainable
parameter. Besides, we adopt part of the discrim-
inator network (D, ) before the fully connected
layer as the encoder network and use a multi-layer
perceptron network parameterized by ¢ as the body
of the category classifier. The training objective of
the discriminator is defined as follows:

['Dis :L:Auth + »CCat
L auth =Ex~p,logDy(X) — Ex~p.logDg(X)

Lcoat = — Ex,y)~p(x,v)108Cs, »(X,Y)
3)

where L g, and Lo, are the losses of the au-
thenticity discriminator and the category classifier
respectively. P, and P, represent the generated
texts and the real texts respectively, and P, (X,Y")
indicates the real text-label pairs (X and Y repre-
sent the real text and the corresponding class label
respectively). Dy (X) represents the probability
that X is real and Cy, ,(X,Y) represents the Y-
th index of the classifier output, which represents
the probability that X belongs to the real Y -th cat-
egory texts. Here, we comprehensively consider
the contributions of the authenticity discriminator
and the category classifier. However, the category
classifier still uses a cross-entropy loss, which only
captures data-to-class relations between a fixed one-
hot class label vector and a given text sample.

3.2.2 Label-incorporated Contrastive Loss

As shown in Figure 1(c), to exploit more flexible
data-to-class relations and data-to-data relations,
we adopt the training paradigm of self-supervised
contrastive learning and replace the vanilla k-class
classifier with the contrastive category projector.

Firstly, we construct a contrastive learning ob-
jective for the discriminator to explicitly control
the distances between the text embeddings and the
class label embeddings. Different from the con-
ventional contrastive learning NT-Xent loss, which
needs appropriate data augmentation and does not
take data-to-class relations into account, we lever-
age the class label embeddings of the categories
instead of data augmentation. Given a batch of
training text samples { X1, X»,..., X,,} and the
corresponding class labels {Y7,Ys,...,Y,,}, we
introduce an encoder S(-) and a projection layer h
to map the input text samples to the hypersphere:
[ = h(S(-)). Together with the label embeddings,
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—class
Classnﬁcatlon loss

(k + 1) —class
Classification loss

Authenticity loss

Authenticity loss Label-incorporated Contrastive loss

Dy

2

[ Dy, (X) H Projection h |

AN
| Dy, | Class1ﬁer|
~_—
[D¢1(X) [ Input label Y ]

(a) SentiGAN (b) CLSGAN (Ours)

| Label Embedding e |

[ Input text X ]

[ Input label Y ]

(c) CoCGAN (Ours)

Figure 1: Schematics of discriminators of three category text GANs. (a) SentiGAN (Wang and Wan, 2018) takes a
(k + 1)-class classifier as its discriminator to guide the generator to generate category texts. (b) CLSGAN improves
SentiGAN by explicitly divide the discriminator as a binary authenticity discriminator and a category classifier. (c)
The proposed CoCGAN extends the CLSGAN with a label-incorporated contrastive loss, which considers both
more flexible data-to-class relations and data-to-data relations in the same batch.

the contrastive loss is defined as follows:

~ log Rpac
Rpaoc + Rpoa

Rmc—exp(l( i) e(Yi)/T)

Rpoa = Z Losi - exp(L(X;) T 1(X5)/7)

s=1

4

where e(-) denotes the class label embedding func-
tion, 7 is a temperature scalar to control the pull
and push force. (4) pulls the sample X; nearer
to its corresponding class label embedding e(Y;)
and pushes the other samples away. In this work,
we adopt part of the discriminator (D, ) as the en-
coder S(-) and the multi-layer perceptron network
parameterized by ¢ as the projection layer h to
construct the mapping as [ = h(Dg, (-)). To fur-
ther exploit data-to-data relations, we should also
avoid pushing other samples which have the same
class label Y;. Thus, we add cosine similarities of
such samples to the numerator in (4) and get the
label-incorporated contrastive loss as follows:

Rpaoc + Rpop
Coy.o(Xi, Yir 7) = —log 220 T 02D
o1 ) gRDQC + Rpoa
RDZD—ZlYg —v;.si - exp(L(Xi) T1(X,) /7)

s=1
(&)
where Rpoc and Rpo4 are the same as in (4).
Besides reducing the distances between the text
embeddings and the corresponding class label em-
beddings, minimizing (5) will also reduce the dis-
tances between the multiple text embeddings with

the same class labels while maximizing the others.
It is obvious that (5) comprehensively considers
more flexible data-to-class relations I(X;) " e(Y})
and data-to-data relations [(X;)"/(X,). And the
objective of the discriminator can be redefined as:

Lpis =Lauth + Lcat
L puth =Ex~p,logDy(X) — Ex~p,logDs(X)

Loat =E(x v )P, (X,7) lp1,0(X, Y5 T)
(6)

where P,(X,Y) indicates the real text-label pairs
(X and Y represent the real text and the correspond-
ing class label respectively).

3.3 Penalty-based Contrastive Generator
Training

For adversarial generator training, instead of the
reward-based policy gradient strategy (Yu et al.,
2017), we adopt the penalty-based one (Wang and
Wan, 2018) to guarantee the diversity of generated
text samples. Specifically, the goal of the generator
Gy(X|S,Y) is to minimize the penalty:

LGen =
Y Go(XeralSeY) - Vip? (S, Xern)
t=0
where T is the length of X, Gp(X¢11|S:,Y) in-

dicates the probability of selecting the (¢ 4 1)-th
word given its current state and class label, denoted
as Sy and Y respectively, and V (St, Y, Xiy1) is
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the penalty for the sequence X1..11, which is cal-
culated by the discriminator. Here Y is the class
label corresponding to the label embedding ¢ in (1).
Monte Carlo tree search is applied with the roll-out
policy Gy to calculate the penalty function of the
generator:

N
1
—» (1-r") t<T
Ve (S-1,Y, X)) = N Z_:l
1—r t="T
®)

where T is the length of X, ™ and r are given
by the specified discriminator with the n-th Monte
Carlo tree search result X, and the completely
generated sentence X as input, respectively.

For the discriminator with auxiliary classifica-
tion loss proposed in Sec. 3.2.1, r (analogy to ™)
is defined as follows:

1
r=3(D6(X) + Copp(XY)). )

And for the discriminator with label-incorporated
contrastive loss introduced in Sec. 3.2.2, r (analogy
to r™) is redefined as follows:

r= %(Dd)(X) + exp(—lg, (X, Y5 7))).

It is worth noting that, for both (9) and (10), X
represents the generated text and Y is the corre-
sponding input class label.

(10)

3.4 Contrastive Category Generative
Adpversarial Net

With the proposed label-incorporated contrastive
loss, we build the framework of CoOCGAN. Sim-
ilar to the training procedure of GAN, CoCGAN
has a discriminator step and a generator step which
constitute adversarial training. Besides, CoOCGAN
calculates the label-incorporated contrastive loss
with a set of real or generated samples. Algorithm
1 in Appendix A.3 summarizes the complete train-
ing procedure of the proposed CoOCGAN. We also
define the framework with auxiliary classification
loss as CLSGAN, and Algorithm 2 in Appendix
A.3 shows its training procedure. Different from
CSGAN, CLSGAN adopts the penalty-based pol-
icy gradient strategy instead of the reward-based
one. For both CoOCGAN and CLSGAN, the training
samples fed into the contrastive category projector
and the category classifier are different for discrim-
inator and generator step (i.e., real samples for

discriminator step and generated samples for gen-
erator step). And for each discriminator iteration,
the amount of generated samples is set the same
as that of the real samples in a batch to guarantee
sufficient training.

In CoCGAN, the discriminator can minimize
the distances between the multiple real text embed-
dings from the same class label while maximizing
it otherwise and capture more flexible relations
between the real text embeddings and the corre-
sponding class label embeddings. Besides, the re-
lations between the current text embeddings and
the wrong class label embeddings are also consid-
ered in (5). Specifically, since the wrong class
label embeddings are pulled near to their corre-
sponding text embeddings and the text embeddings
from wrong class labels are pushed away from the
current text embeddings, the wrong class label em-
beddings are pushed away from the current text
embeddings implicitly. Therefore, the discrimina-
tor can learn better representations of the given
samples, and the conditional generator can be fur-
ther improved to generate more realistic category
texts with the knowledge of the discriminator.

4 Experiments

4.1 Datasets

Without loss of generality, we set the number of
categories as 2 and conduct experiments on both
synthetic and real datasets, as in previous work (Liu
et al., 2020). The synthetic data includes 20,000
samples, and each 10,000 samples are obtained
from different oracle-LSTMs to construct category
text data. The real data includes two English re-
view datasets: movie reviews (MR) (Socher et al.,
2013) and amazon reviews (AR) (McAuley et al.,
2015). MR has two sentiment classes (negative and
positive), and AR has two types of product reviews
(book and application). We follow the same pre-
processing steps as in LeakGAN (Guo et al., 2018).
MR has 4,503 samples, including 3,153 samples
for training and 1,350 samples for testing. As for
AR, each review category includes 100,000 sam-
ples for training and 10,000 samples for testing,
and each sample may consist of multiple sentences.

4.2 Evaluation Metrics

There exist many evaluation metrics to measure the
performance of adversarial text generation mod-
els. Among them, (Yu et al., 2017) introduces the
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Model | SentiGAN CSGAN CatGAN CLSGANp CoCGANp CLSGANr CoCGANg
20 6.953 8.522 6.631 6.903 6.611 6.712 6.314
40 6.877 7.703 6.392 6.663 6.384 6.445 6.094

Table 1: The NLLg;acle scores on synthetic dataset. For the NLL;,c1e scores, the lower the better.

Model MR AR
B@2 B@3 B@4 B@5 Ng Ng B@2 B@3 B@4 B@5 Ng Ng

SentiGAN 0.525 0.287 0.162 0.144 2501 0472 | 0.858 0.811 0.712 0.537 3.367 00916
CSGAN 0.447 0.199 0.120 0.089 2.937 0.243 | 0.863 0.677 0.431 0.239 3373 1.104
CatGAN 0.592 0330 0.195 0.162 1.679 0.521 | 0965 0910 0.855 0.721 3.143 1472
CLSGANy | 0557 0.327 0.183 0.161 2313 0491 | 0933 0.892 0.810 0.622 3.306 1.112
CoCGANy, | 0.588 0.342 0.213 0.173 1.686 0.526 | 0958 0913 0.851 0.729 3.152 1.231
CLSGANg | 0.573 0344 0201 0.167 1958 0.517 | 0943 0903 0.841 0.663 3.195 1.289
CoCGANg | 0.632 0383 0.227 0.182 1.462 0.536 | 0.984 0.957 0.882 0.764 3.024 1.537

Table 2: The comparison of performance on MR and AR. B@n denotes BLEU scores of n-gram. For all BLEU
scores, the higher the better. For NLLgc,, scores (denoted as N, ), the lower the better. For NLLg;, scores (denoted

as Ny), the higher the better.

negative log-likelihood NLL; 1 to measure the
quality on the synthetic data as follows:

NLLoracle - _EngPg [logPr(YG)] (11)

where Pj is the generated data distribution and P,
is the real data distribution.

As for the real data, we adopt NLLgen (Zhu et al.,
2018) and NLLg;, (Liu et al., 2020) as the diversity
metrics, and define them as follows:

NLLgen = —Ey, ~p, [logPy(Y;)],
NLLdiv = _EY9~P9 [logP9 (}/b)]

(12)
13)

To measure the quality on the real data, since we
cannot access the distribution of the real data, we
adopt BLEU scores (Zhu et al., 2018) to mea-
sure the performance of the models instead of
NLLgpacle- And we follow (Liu et al., 2020) to
use harmonic mean values of all automatic met-
rics on each category to evaluate the category text
generation models.

4.3 Baselines

We conduct experiments to compare the proposed
model with several state-of-the-art methods. For
automatic evaluation metrics, we select Senti-
GAN (Wang and Wan, 2018), CSGAN (Li et al.,
2018) and CatGAN (Liu et al., 2020) as baseline
models. All models are pre-trained with standard
MLE training before adversarial training. All the
models are run with 5 random seeds on all experi-
ments and the mean is presented as the final score
(see Appendix A.1 for more detailed settings). For
the proposed CoCGAN and CLSGAN, we adopt
both LSTM and RMC as the generators to conduct
experiments.

4.4 Quantitative Results

In this section, for CLSGAN and CoCGAN,
we report the results of LSTM-based genera-
tor and RMC-based generator (i.e., CLSGANt,
CLSGANgR, CoCGANy, and CoCGANR).

4.4.1 Results on the Synthetic Data

We conduct experiments on the synthetic data with
the sequence length set as 20 and 40 respectively.
Table 1 shows that, CoOCGAN equipped with RMC-
based generator consistently outperforms other
models in terms of NLL,,cle, including the state-
of-the-art model CatGAN, which demonstrates that
CoCGAN can further exploit the category informa-
tion with better quality on all categories.

4.4.2 Results on the Real Data

As for the real data (i.e., MR and AR), we use
several metrics to measure the quality and the di-
versity of the generated sentences. After the same
preprocessing steps, MR dataset consists of 6,216
unique words with the maximum sentence length
15, and AR dataset contains 6,416 unique words
with the maximum sentence length 40. We report
the results of CLSGAN and CoCGAN with dif-
ferent generators as on the synthetic data, and the
results are presented in Table 2. It is obvious that
CLSGANT, shows its superiority on all metrics
compared with CSGAN, since the penalty-based
training paradigm adopted by CLSGANTY, can im-
prove the performance compared with the reward-
based one of CSGAN. CoCGAN further exploits
more flexible data-to-class relations and data-to-
data relations to achieve significant improvements
over CLSGAN. When equipped with the RMC-
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Model | (A) B) © (D)
B@2 | 0.943 0.984 00952 0.963
B@3 | 0903 0.957 0917 0.931
B@4 | 0.841 0.882 0.855 0.847
B@5 | 0.663 0.764 0.734 0.751

Ng 3.195 3.024 3.132 3.103
Nq 1.289 1.537 1.368 1.475

Table 3: The ablation Study on AR. (A), (B), (C) and
(D) represent CLSGAN, CoCGAN, CoCGAN w/o D2D
and CoCGAN w/o D2C, respectively. All the models
are equipped with RMC-based generator. B@n denotes
BLEU scores of n-gram. For all BLEU scores, the
higher the better. For NLLg,,, scores (denoted as Ny),
the lower the better. For NLLg;, scores (denoted as Ng),
the higher the better.

T 0.1 1.0 2.0 4.0
B@2 | 0.873 0.984 0.972 0.951
B@3 | 0.792 0.957 0.938 0.893
B@4 | 0.698 0.882 0.877 0.845
B@5 | 0573 0.764 0.752 0.710

Ny | 3405 3.024 3.121 3.303
Nq | 1.372 1.537 1.475 1.402

Table 4: Tuning of temperature 7. The experiment is
conducted on AR. B@n denotes BLEU scores of n-gram.
For all BLEU scores, the higher the better. For NLLgey,
scores (denoted as N, ), the lower the better. For NLLg;y
scores (denoted as Ng), the higher the better.

based generator, for both CoOCGAN and CLSGAN,
the performance is further improved compared with
the one when equipped with the LSTM-based gen-
erator. It is noteworthy that CoCGAN using RMC-
based generator outperforms the state-of-the-art
model CatGAN with better quality and diversity on
all categories as well.

4.4.3 Ablation Study

To investigate the contributions of different parts in
the label-incorporated contrastive loss (discussed
in Sec. 3.2.2), we conduct ablation study on AR.
Here, we remove data-to-class relations from CoC-
GAN as CoCGAN w/o D2C (i.e., remove Rpoc
from both denominator and numerator of (5) in
Sec. 3.2.2), and data-to-data relations are removed
from CoCGAN as CoCGAN w/o D2D (i.e., (4) in
Sec. 3.2.2). We also report the results of CLSGAN
to compare the performance between the fixed one-
hot class label vector and the trainable class label
embedding. All the results are shown in Table 3.
On the one hand, compared with the fixed one-hot
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Figure 2: Comparison of human evaluation on a random
subset of the AR dataset.

class label vector (i.e., CLSGAN), flexible class
label embedding (i.e., CoOCGAN w/o D2D) can
achieve better performance. On the other hand,
data-to-class relations and data-to-data relations
are complementary to each other. Without either of
them, the performance of COCGAN shows a signifi-
cant degradation on all metrics (i.e., both CoOCGAN
w/o D2D and CoCGAN w/o D2C show worse per-
formance compared with complete CoOCGAN). Be-
sides, both CoCGAN w/o D2D and CoCGAN w/o
D2C still outperform CLSGAN.

4.4.4 Tuning of Temperature 7

Temperature 7 used in (5) is the hyper-parameter
to control the pull and push force in contrastive
learning and an appropriate temperature can help
to capture better data-to-class relations and data-to-
data relations. We investigate the impact of 7 on
AR with a grid search to find a proper value of 7.
As shown in Table 4, we experimentally find that
the temperature 7 of 1.0 yields the best results.

4.5 Qualitative Results

For the qualitative experiments, we adopt RMC-
based generator to construct CoOCGAN, and only
report the results of CoOCGAN to compare with
baselines (i.e., CSGAN, SentiGAN and CatGAN).

4.5.1 Human Evaluation

To further evaluate the quality of the generated sen-
tences, we randomly select 50 generated samples
from each category for human evaluation. The
scores from 1 to 5 are assigned to each generated
sample, which measures the fluency and the se-
mantic correctness (see Appendix A.2 for more
detailed evaluation protocols). The scores of 1 and
5 indicate the worst quality and the best quality
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Dataset SentiGAN CSGAN CatGAN CoCGAN

MR Negative: it’s an ex- | Negative: an enjoyable | Negative: the movie | Negative: bad movie is
tremely unpleasant film. experience. (wrong cat- | doesn’t add anything | that is, it’s just a bet-

egory) fresh to sustain its clever | ter travelogue than find-

concept. ing solutions.
Positive: it’s not smart. | Positive: just intelligence. | Positive: it’s a romantic. | Positive: a very well-
(wrong category) (short) (short) made and entertaining
picture.
AR Book: i love this book so | Book: my 4 is on the | Book: this was an awe- | Book: i absolutely loved

much. it is one of book
that you can not put down.
very well written.

Application: this game is
addictive and fun. (short)

front of that day seeing
travel.  just not great,
though .. (Unreadable)

Application: this is a fun
game. my husband and i
both love to play it a lot.

some book. i loved the
book, every page kept me
entertained and finished it
in two days!
Application: i really love
these games. (short)

this book. i am so glad
to read the other books in
this series. i can’t wait for
the next one.
Application: i love this
game. it is a great way to
pass the time.

Table 5: Generated samples of different models on the real dataset.

respectively. Each generated sample is rated by
10 invited human evaluators who are capable of
reading English proficiently. And the harmonic
mean values of the average score on each category
are shown in Figure 2. It can be observed that,
multiple generators help SentiGAN to obtain com-
petitive results, while CatGAN has achieved better
performance. And the results of COCGAN demon-
strate that the contrastive learning paradigm helps
to consistently outperform these baselines.

4.5.2 Case Study

We select SentiGAN, CSGAN and CatGAN as ref-
erences to analyze the effectiveness of the proposed
label-incorporated contrastive objective. With
trained on MR and AR, the generated samples of
these models are listed in Table 5, and we can find
some problems with the generated sentences of
these baselines (e.g., unreadable and wrong cat-
egory). In contrast, the proposed CoOCGAN can
produce sentences with better quality.

5 Conclusion

This paper proposes a novel contrastive learn-
ing paradigm for adversarial category text gen-
eration (CoCGAN). In CoCGAN, a novel label-
incorporated contrastive loss is introduced to fur-
ther exploit more flexible data-to-class relations
and data-to-data relations in the training batch, and
the category text generation model is enhanced
accordingly. It is worth noting that CoOCGAN fo-
cuses on the perspective of adversarial learning,
therefore it is orthogonal to some works which try
to optimize the conditonal text generative models
themselves, and can be applied to them for further
improvements. Extensive experiments demonstrate

that our proposed model outperforms the state-of-
the-art adversarial category text generation models
with better quality and diversity.
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A Appendix

A.1 Experimental Settings

* We implement the baselines based on
TextGAN benchmark !.

e In the CNN based discriminator, the sizes of
filter windows are set to be {2, 3,4, 5} and the
dimension of each feature map is set as 300.

e The batch size is set to be 64 for all models.
The embedding size for the generator is set as
32 and that for the discriminator as 64.

* Adam optimizer with the same hyper-
parameters (i.e., 51 = 0.9 and By = 0.999)
are employed to optimize all models.

For MLE pre-training, we run 150 epochs
with learning rate set as 0.01.

* For discriminator pre-training, the learning
rate is set to be 0.0001.

* For adversarial training, the learning rate is
set to be 0.0001 for both the generator and the
discriminator.

¢ All models are trained on a RTX 3090 GPU.

A.2 Human Evaluation Protocols

For category text generation, we conduct human
evaluation based on fluency and semantic correct-
ness. The detailed protocols are shown as follows:

* 5-Excellent. Right category, well fluency, and
making sense.

* 4-Good. Right category, acceptable fluency
with some grammatical errors, and making

sense.

* 3-Fair. Right category, no fluency, but convey-
ing some meanings from some parts.

* 2-Poor. Right category, making no sense.

* 1-Bad. Wrong category, making no sense.

"https://github.com/williamS Y SU/TextGAN-PyTorch
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A.3 Algorithms

The training procedures of CoCGAN and CLS-
GAN are shown in Algorithm 1 and Algorithm 2,
respectively. For both CoOCGAN and CLSGAN, the
training samples fed into the contrastive category
projector and the category classifier are different
for discriminator step and generator step (i.e., real
samples for discriminator step and generated sam-
ples for generator step). For sufficient training of
discriminator, at each discriminator iteration, half
of a training batch are real samples while the other
half are generated samples.

Algorithm 1 The training procedure of CoOCGAN

Require: Real text dataset 7' with corresponding
class labels; The number of class labels k; Gen-
erator Gg; Discriminator Dy .,; Temperature 7

I: Initialize Gy, Dy , with random weights

2: Pre-train Gg using MLE on T’

Generate fake samples F' with random class
labels using Gg

w

4: Pre-train Dy , via minimizing (6) on {T’, F'}

5: while Gy not converged do

6:  for g-steps do

7: Generate fake samples F' with random
class labels using Gy

8: Calculate penalty ngv by (8) and (10)
on F

9: Update GGy by minimizing (7)

10:  end for
11:  for d-steps do

12: Generate fake samples F' with random
class labels using Gy

13: Update Dy, via minimizing (6) on
(T, F}

14:  end for
15: end while

Algorithm 2 The training procedure of CLSGAN

Require: Real text dataset 7" with corresponding
class labels; The number of class labels k; Gen-
erator Gg; Discriminator Dy, ,

I: Initialize Gy, Dy , with random weights
2: Pre-train Gg using MLE on T’

Generate fake samples F' with random class

labels using Gg

w

4: Pre-train Dy, , via minimizing (3) on {7T’, F'}

5: while G¢ not converged do

6:  for g-steps do

7: Generate fake samples F' with random
class labels using Gy

8: Calculate penalty ng’w by (8) and (9) on
F

9: Update GGy by minimizing (7)

10:  end for
11:  for d-steps do

12: Generate fake samples F' with random
class labels using Gy

13: Update Dy, via minimizing (3) on
{T, F}

14:  end for
15: end while
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