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Abstract

A personification is a figure of speech that en-
dows inanimate entities with properties and
actions typically seen as requiring animacy.
In this paper, we explore the task of person-
ification generation. To this end, we pro-
pose PINEAPPLE: Personifying INanimate
Entities by Acquiring Parallel Personification
Data for Learning Enhanced Generation. We
curate a corpus of personifications called Per-
sonifCorp, together with automatically gener-
ated de-personified literalizations of these per-
sonifications. We demonstrate the usefulness
of this parallel corpus by training a seq2seq
model to personify a given literal input. Both
automatic and human evaluations show that
fine-tuning with PersonifCorp leads to signif-
icant gains in personification-related qualities
such as animacy and interestingness. A de-
tailed qualitative analysis also highlights key
strengths and imperfections of PINEAPPLE

over baselines, demonstrating a strong ability to
generate diverse and creative personifications
that enhance the overall appeal of a sentence. 1

1 Introduction

Personification is the attribution of animate actions
or characteristics to an entity that is inherently inan-
imate. Consider, for example, the sentence “The
stars danced playfully in the moonlit sky.” Here,
the vibrance of the stars (something inanimate)
is being likened to dancing playfully, which is a
distinctly animate action. By allowing readers to
construct clearer mental images, personifications
enhance the creativity of a piece of text (Bloom-
field, 1980; Dorst, 2011; Flannery, 2016).

Being able to automatically identify and generate
personifications is important for multiple reasons.
First, humans naturally use personifications when
communicating. When we say something like “My

∗ Equal contribution by Varun and Steven
1Data and code can be found at https://github.

com/sedrickkeh/PINEAPPLE

Figure 1: Overall PINEAPPLE model pipeline. The
left part of the diagram shows the corpus creation pro-
cess, while the right part of the diagram shows the train-
ing and generation process.

phone has died,” or “My car is not cooperating,” to
a dialogue system, it is important that the dialogue
system understands the intended meaning behind
these personifications. If these systems interpret
personifications literally, they may fail in several
downstream tasks (e.g. classification) since their
understanding is incorrect. Being able to generate
personifications also allows dialogue agents and
language models to be more creative and generate
more figurative sentences. Personification genera-
tion has additional applications such as AI-assisted
creative writing, since machine-generated figures
of speech have been shown to enhance the interest-
ingness of written text (Chakrabarty et al., 2021).

Despite previous success in generating other fig-
ures of speech such as similes (Chakrabarty et al.,
2020), metaphors (Stowe et al., 2021), hyperboles
(Troiano et al., 2018), irony (Van Hee et al., 2018),
and sarcasm (Hazarika et al., 2018; Jaiswal, 2020),
personification generation is relatively underex-
plored. One key challenge is that personifications
do not have an explicit syntactic structure unlike
similes which use ‘like’ or ‘as’. They are also not
as loosely-defined as metaphors. Rather, a per-
sonification requires identifying an inanimate sub-
ject together with actions or descriptions which are

https://github.com/sedrickkeh/PINEAPPLE
https://github.com/sedrickkeh/PINEAPPLE
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commonly used on animate subjects. These steps
are challenging and require our models to under-
stand commonsense concepts including animacy.

In line with exploring the task of personification
generation, we present three main contributions:
(1) We curate a dataset, PersonifCorp, of diverse
personification examples from various sources. (2)
We propose a method called PINEAPPLE to auto-
matically de-personify personifications and create
a parallel corpus of personification data along with
their literalizations. (3) Given our parallel corpus,
we train a seq2seq model to personify given text.
We conduct automatic and human evaluation and
qualitative analysis of the generated outputs.

2 Datasets

We curate a dataset called PersonifCorp of 511
personifications, with 236 coming from a publicly
available open-sourced list2 and 275 manually-
filtered personifications extracted from the Deja
dataset (Chen et al., 2015). The Deja dataset is an
image-captioning dataset containing a “figurative”
subset of size 6000, of which 4.1% of the captions
are labelled as personifications. We extract these
personifications and combine them with our exist-
ing list to form the final PersonifCorp dataset.

We also note that although it is possible to fur-
ther expand this dataset (e.g. by ad hoc searching
for miscellaneous sites and examples online), we
ultimately decide against this after performing an
initial investigation. When we attempted to look
for additional examples, we found that many of
the new examples we found were near-duplicates
of existing personifications already in our list. In
addition, ad hoc searching can give at most a few
hundred examples, which will lead to very incre-
mental gains in performance. This is impractical
if we want to collect a large-scale dataset. We
hence decided to restrict ourselves to sentences
from reasonably well-vetted, already existing cor-
pora from *CL prior art or officially released data
from sources like Kaggle/SemEval shared tasks.

2.1 Characterizing Personifications

We define the elements of personification, an
analogue to what was previously done for simi-
les (Niculae and Danescu-Niculescu-Mizil, 2014;
Chakrabarty et al., 2020). While similes could
be decomposed into very granular structures and

2https://www.kaggle.com/datasets/
varchitalalwani/figure-of-speech

well-defined elements, the unstructured nature of
personifications prevents us from directly defin-
ing such fine-grained elements for personifications.
Rather, we define two main high-level elements,
the TOPIC (a noun phrase that acts as logical sub-
ject) and the ATTRIBUTE (the distinctly animate
action or characteristic that is being ascribed to the
TOPIC). Figure 2 shows examples of how these
TOPICS and ATTRIBUTES can relate to each other.

2.2 Automatic Parallel Corpus Construction

In order to train a seq2seq model to generate high-
quality personifications, we need pairs of personi-
fications along with their corresponding literaliza-
tions. However, the literalization process may take
several human-hours, which is impractical for large
datasets. We therefore propose PINEAPPLE, a
three-stage automatic de-personification process,
where we first identify all valid TOPIC-ATTRIBUTE

pairs, then generate multiple candidates to replace
the ATTRIBUTE of each TOPIC. Lastly, we select
the most appropriate candidate in terms of animacy,
fluency, and meaning preservation. These steps are
further detailed individually below:

TOPIC-ATTRIBUTE Extraction. To identify
the TOPICS and ATTRIBUTES, we consider the de-
pendency parse tree of a sentence and the part-of-
speech (POS) tags of each of its words. Given
the tree, we extract all the nouns/pronouns which
have edges pointing into it with the nominal sub-
ject label, together with the corresponding parent
nodes. For instance, in the sentence “The stars
danced in the night sky”, the word ‘danced’ is a
parent of the word ‘stars’, with the nominal sub-
ject edge relationship. We can thus identify ‘stars’
as the TOPIC and ‘danced’ as the ATTRIBUTE. In
more complex scenarios, we may need to perform
some additional merging to deal with compound
multi-word TOPICS and ATTRIBUTES, as well as
any additional modifiers. More specifically, us-
ing the POS tags, we identify all words tagged as
negation modifiers, possession modifiers, nominal
modifiers, adjectival complements, and objects of
prepositions, and words tagged as determiners and
parts of compound phrases.3 After extracting these
nodes, they are iteratively merged with their parents
in the dependency parse tree, and the merging pro-
cess is performed repeatedly until no more merges
are possible. The final TOPIC-ATTRIBUTE pairs

3The spaCy library was used to extract the dependency
tree and POS tags.

https://www.kaggle.com/datasets/varchitalalwani/figure-of-speech
https://www.kaggle.com/datasets/varchitalalwani/figure-of-speech
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ATTRIBUTE Type Example
Noun The planet earth is our mother.
Verb My alarm clock yells at me to

get out of bed every morning.
Adjective Justice is blind and, at times, deaf.

Figure 2: Examples of different types of personification
ATTRIBUTES (TOPICS in red and ATTRIBUTES in blue).

are then identified using the nominal subject edge
relationship as previously described. Examples of
the merging process can be found in Appendix A.1.

Candidate Generation. Once the TOPIC-
ATTRIBUTE pairs have been identified, we then
determine which TOPICS are inanimate. To achieve
this, we need some type of commonsense notion of
what constitues animacy. We use COMET (Bosse-
lut et al., 2019) to tap into the commonsense knowl-
edge present in large-scale knowledge graphs such
as ConceptNet (Speer et al., 2017). Although Con-
ceptNet has no explicit notion of animacy, it has
certain edge relations that we can leverage to de-
sign a proxy metric. More specifically, we use the
IsA relation to design a custom IsAPerson animacy
metric. If the TOPIC of our sentence refers to an
animate entity, then we expect its IsA relation score
with the word ‘human’ to be relatively low.4 The
IsAPerson metric is hence defined as follows: given
a TOPIC, we compute and average its IsA scores to
various words that are synonymous or very closely
related to ‘human’, such as ‘person’, ‘man’, and

‘woman’. We call this set of ‘human’-related words
the HUMANSET. The construction and full list of
words in the HUMANSET can be found in Appendix
A.2. The average of these ConceptNet scores is
then our final IsAPerson animacy score.

Phrases whose IsAPerson animacy score exceeds
a certain threshold 5 are considered animate; oth-
erwise, they are considered inanimate. Since our
goal is to de-personify a sentence, we can safely
discard all the animate TOPICS, as these need no
further de-personification. Rather, we focus on the
inanimate TOPICS because the segment we want
to de-personify most likely occurs in the TOPIC-
ATTRIBUTE pairs whose TOPIC is inanimate. Once
we identify all such inanimate TOPIC-ATTRIBUTE

pairs, we mask out the ATTRIBUTE of each of them

4For the COMET ConceptNet graph, lower scores corre-
spond to better matches.

5We use a threshold of 7.0 for the IsAPerson animacy
metric. IsAPerson scores < 7.0 are considered animate, while
scores ≥ 7.0 are considered inanimate. More details regarding
the selection of this threshold can be found in Appendix A.3.

with <mask>, then use a pre-trained BART model
(Lewis et al., 2020) to generate the top k = 10
candidates for each mask using beam search with a
beam size of 10. The goal of this process is to re-
place a possibly animate action/characteristic with
candidates that are inanimate.

Candidate Selection. Given k = 10 candidate
replacement ATTRIBUTES, we now select the most
ideal replacement based on three metrics: animacy,
fluency, and meaning preservation.

1. Animacy – We want the replacement AT-
TRIBUTE to be inanimate; otherwise we would
just be replacing an animate ATTRIBUTE

with another animate ATTRIBUTE. We de-
fine the animacy of a TOPIC-ATTRIBUTE

pair as difference between the affinity for a
human (Ahuman,ATT) to do/possess the AT-
TRIBUTE, and the affinity for the given TOPIC

(ATOPIC,ATT) to do/possess the ATTRIBUTE.
We use COMET’s ConceptNet relations to
compute these affinities; specifically, we use
the CapableOf relation. To approximate
Ahuman,ATT, we compute the average Capa-
bleOf score between the given ATTRIBUTE

and all words in our previously defined HU-
MANSET. To compute ATOPIC,ATT, we com-
pute the CapableOf score between the TOPIC

and its ATTRIBUTE. The final animacy score
of a TOPIC-ATTRIBUTE pair is defined as the
difference Ahuman,ATT − ATOPIC,ATT. If
there are multiple TOPIC-ATTRIBUTE pairs,
we consider the average animacy of all pairs.

2. Fluency – The de-personified sentences
should be grammatically correct and sound
natural. To measure for fluency, we use
BART’s generation scores (i.e. sum of indi-
vidual token logits in the generated output).

3. Meaning Preservation – It is important that
the de-personified sentence does not stray too
far from the meaning of the original personi-
fication. We use BERTScore (Zhang* et al.,
2020) between the de-personified and original
sentences to measure meaning preservation.

We design a composite scoring metric comprised of
the aggregate scores from these 3 metrics. Due to
scaling differences, we consider the log of the ani-
macy score. To account for the fact that lower ani-
macy scores imply less animate TOPIC-ATTRIBUTE

pairs (which is desirable in de-personification), we
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Figure 3: Overview of the PINEAPPLE de-personification pipeline.

Original Personification Result After De-Personifying
How far that little candle throws its beams! How far that little candle can spread its beams!
A book is a fragile creature, it suffers the wear of time, it
fears rodents, the elements and clumsy hands.

A book is fragile, it can break from the wear of time, it
can be eaten by rodents, the elements and clumsy hands.

The camera loves her since she is so pretty. The camera is always on her since she is so pretty.
Any trust I had for him walked right out the door. Any trust I had for him had gone right out the door.
The full moon peeped through partial clouds. The full moon was visible through partial clouds.
Opportunity was knocking at her door. Opportunity was knocking at her door.
The killing moon will come too soon. The killing moon will be here too soon.

Table 1: Example outputs of the PINEAPPLE de-personification pipeline. The ATTRIBUTES are highlighted in
blue for both the original personifications, as well as the de-personified output sentences. The last two rows contain
negative examples where the process does not successfully de-personify the input.

take the negative of the animacy. More precisely,
we define our candidate score Si for candidate i as

Si = α · (− log(Sanim.)) + β · Sflue. + γ · Smean.

where α, β, γ are parameters. 6

Once Si is computed for all candidates, we select
the candidate with the highest composite score as
our final de-personified sentence. A diagram of the
entire PINEAPPLE pipeline is shown in Figure
3, and example outputs can be found in Table 1.

2.3 Test Data Construction

While automatically generated pairs of personifi-
cations and literal de-personifications may greatly
assist with training, these may not necessarily be
accurate for testing. Rather, it would be more
ideal during testing if we have ground-truth human-
annotated data. To mimic our task at hand, we
gather a list of non-personified English sentences.7

We then select two annotators who are native En-
glish speakers currently enrolled in a university

6We use α = 1, β = 1, γ = 1. Details about the tuning
and selection of α, β, γ can be found in Appendix A.3.

7https://github.com/tuhinjubcse/
SimileGeneration-EMNLP2020#
set-up-data-processing-for-simile

with English as a medium of instruction. These
annotators were instructed to manually personify
these sentences to create ground-truth reference
personifications. The final PersonifCorp test split
has 72 literal + personified sentence pairs.

3 Experimental Setup

3.1 Methods
Below we outline the three models we consider,
with two of them being naive baselines (COMET
and Baseline-BART) that we simply use on Person-
ifCorp’s test set, and the third (Finetuned-BART)
being our proposed model trained on PersonifCorp.

1. COMET: We extract the TOPIC-ATTRIBUTE

pairs and identify the inanimate TOPICS using
the methods detailed in §2.2. Instead of gen-
erating candidate replacements using BART
like in §2.2, we generate candidates by consid-
ering the top k = 10 results for a given TOPIC

using COMET’s ConceptNet IsCapable re-
lation (if the original ATTRIBUTE is a verb)
or HasProperty relation (if adjective or ad-
verb). To incorporate a notion of animacy,
we use the previously defined ATTRIBUTE an-
imacy Ahuman,ATT and select the candidate

https://github.com/tuhinjubcse/SimileGeneration-EMNLP2020#set-up-data-processing-for-simile
https://github.com/tuhinjubcse/SimileGeneration-EMNLP2020#set-up-data-processing-for-simile
https://github.com/tuhinjubcse/SimileGeneration-EMNLP2020#set-up-data-processing-for-simile
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with highest animacy as our final replacement.

2. Baseline-BART (BL-BART): We imitate the
process outlined for the COMET baseline, ex-
cept we use a pretrained BART model to gen-
erate the candidates instead of using COMET.
All other steps (TOPIC-ATTRIBUTE extraction
and candidate selection) remain the same.

3. PINEAPPLE-BART (PA-BART): We fine-
tune a BART model by supplying the Person-
ifCorp train split literal de-personified sen-
tences (from the PINEAPPLE pipeline) as
inputs, and the original ground-truth personi-
fications as target outputs. This is trained as a
seq2seq task. During generation, we use beam
search. Further details are outlined in §3.3.

3.2 Evaluation
We consider both automatic evaluation metrics
(§3.2.1) and human evaluation (§3.2.2).

3.2.1 Automatic Evaluation
For each model in §3.1, we evaluate its generated
outputs on PersonifCorp’s test split using each of
the following automatic evaluation metrics:

1. BLEU (Papineni et al., 2002): We use BLEU
to ensure that the generations do not greatly
differ from the inputs. We compute the BLEU
score of each generated output with the literal
inputs (for meaning preservation), as well as
the ground-truth reference personifications.

2. BERTScore (Zhang et al., 2019): BERTScore
measures how semantically related two sen-
tences are, and is generally more robust than
BLEU. We compute the BERTScore of each
generated output with the inputs, as well as
the ground-truth reference personifications.

3. Fluency: To approximately measure the flu-
ency of a sentence, we use generation (log-
perplexity) losses of each output using the
GPT-2 language model (Radford et al., 2019).

4. Animacy: We are interested in how personi-
fied the generated output is. We use the same
animacy metric used for candidate selection
in §2, which is a combination of how animate
the ATTRIBUTE is, as well as how inanimate
the TOPIC is. More precisely, this is defined
as Ahuman,ATT −ATOPIC,ATT, where the A
animacy scores are previously defined in §2.

3.2.2 Human Evaluation
The human evaluation was conducted using paid
annotators on Amazon Mechanical Turk (AMT).
Annotators were from Anglophone countries with
> 97% approval rate.8 Each test example was
evaluated by exactly 2 annotators. For each test
example, we first generate outputs using each of
the methods outlined in §3.1. Corresponding to
this test instance, we then create an AMT task page
(a HIT), presenting the input literal sentence and
each of the method outputs (in randomized order)
for annotation along five aspects of text quality.

Specifically, annotation was elicited for the fol-
lowing metrics: (1) Personificationhood (“To
what extent does the new sentence contain a person-
ification?”), (2) Appropriateness (“Do the person-
ified nouns, verbs, adjectives, adverbs sound mutu-
ally coherent and natural?”), (3) Fluency (“Does
it sound like good English with good grammar?”),
(4) Interestingness (“How interesting and creative
a rephrasing of the original sentence is the person-
ified sentence?”), and (5) Meaning Preservation
(“Do the entities, their actions, interactions, and
the events appear and relate to each other in the
same way as in the original sentence?”). Each
metric was scored on a Likert scale, with 1 being
the lowest and 5 being the highest.

For Interestingness, we observed poor agreement
scores amongst the AMT annotators.9 Hence, for
this aspect, we instead used a curated group of
known, in-person annotators: a cohort of three na-
tive English-speaking students from an American
university. Amongst these annotators, we observe
a considerably higher agreement, with a Krippen-
dorff α value of 0.5897. For selecting this cohort
from a slightly larger pool of candidates, we as-
sessed their performance on a short qualification
test of basic English literary skills and knowhow.
The final cohort chosen each scored 85% or higher
on this test. Further details are in Appendix B.3.

3.3 Implementation Details

The PersonifCorp training corpus was randomly
split into a training and validation split with an 80-
20 ratio. We fine-tune a BART-base model with
139M parameters using a learning rate of 2e-5 and
a batch size of 4. Training was done for 20 epochs
and 400 warmup steps, and model/epoch selection

8More details about the human eval are in Appendix B.1.
9Further details on inter-annotator agreement scores can

be found in Appendix B.2.
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was performed based on the lowest validation loss.
For generating the outputs, decoding was done us-
ing beam search with a beam size of 10. Additional
details can be found in Appendix C.

4 Results and Analysis

4.1 Automatic Evaluation Results

Table 2 reports the automatic evaluation results for
each of the metrics detailed in §3.2.1. We observe
that our PA-BART model performs best across all
automatic metrics except for fluency, where BL-
BART performs best. The difference in perfor-
mance is most significant in the Animacy metric,
which is the key metric that quantifies the degree
to which a sentence is personified. This confirms
that indeed, our proposed PINEAPPLE method
is successful in training a model to personify text.

Our PA-BART model also performs well for both
BLEU and BERTScore, scoring better than the
COMET and BART baselines, and coming second
only to the human-written personifications.

Lastly, with regards to fluency, the BL-BART
model outperforms the PA-BART model. This is
likely because when considering GPT-2 likelihood,
it may unfavorably penalize creative sentences with
personifications since these are naturally less com-
mon in regular text. As an example, the sentence

“The stars danced playfully” (GPT-2 loss = 7.02)
would be deemed significantly less fluent than the
sentence “The stars twinkled brightly” (GPT-2 loss
= 5.24), even though they are both valid sentences
with similar meanings. This argument is further
supported by the fact that even the reference human-
generated personifications received a lower fluency
score than the BL-BART outputs. Further, literal
sentences are indeed typically more fluent overall
than personifications since they express the mean-
ing literally. Nevertheless, we are still interested in
the other qualities being measured by fluency: Is
the sentence coherent? Does it make unnecessary
grammatical errors? In this regard, the fluency of
PA-BART remains quite good. It is significantly
better than the fluency of the COMET personifica-
tions and only slightly worse than the fluency of
the human-written personifications.

4.2 Human Evaluation Results

Human evaluation results are reported in Table 3.
Out of the five human evaluation metrics, the most
pertinent metric to the personification generation
task is Personificationhood, as this metric explicitly

tries to quantify the presence and overall quality
of personifications. In this metric, our PA-BART
model performs significantly better than both base-
lines and is only slightly worse than the human
reference personifications. This indicates that PA-
BART is very successful in generating personifica-
tions that humans are able to detect and understand.

Aside from measuring the presence of personifi-
cations, we also want to measure more fine-grained
qualities of these personifications. This is done
by considering the Appropriateness and Interest-
ingness scores. In Interestingness, PA-BART sig-
nificantly outperforms both baselines but is worse
than human annotations, while in Appropriateness,
PA-BART slightly outperforms BL-BART and is
slightly worse than human annotations. Overall, we
can conclude that the personifications generated by
PA-BART are of good quallity: the ATTRIBUTES

match up well with the TOPICS, and they are overall
very creative. This is further exemplified through
the qualitative examples explored in §4.3.

Observations from Meaning Preservation and
Fluency are very similar to those from the
BLEU/BERTScore/Fluency metrics in the auto-
matic evaluations. For Meaning Preservation, PA-
BART performs best among all models, and only
slightly trails human references. Meanwhile, for
fluency, BL-BART was ranked the most fluent, out-
performing both PA-BART and the human refer-
ences. As discussed previously, this is likely due
to the fact that literal sentences are generally per-
ceived to be more fluent than personifications.

4.3 Qualitative Analysis

Table 4 contains a list of color-coded qualitative
examples for each method. In Figure 2, we previ-
ously outlined three main types of personification
TOPIC-ATTRIBUTE pairs, namely the cases where
ATTRIBUTE is a noun, a verb, and an adjective. The
first three examples in Table 4 demonstrate the ca-
pacity of our PA-BART model to capture all three
cases. In the first example, the literal verb in “your
phone rings out loud” is replaced with the more
appropriate animate verb in “your phone yells out
loud.” In the second, “silence is key” is replaced
with a noun in “silence is a ghost”, while in the
third example, the literal adjective “very difficult”
is replaced with the animate adjective “very lonely”.
These examples illustrate the generative flexibility
of our model and its capacity to generate diverse
outputs with different parts-of-speech.
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BLEU BERTScore
Input Gold Input Gold Fluency ↓ Animacy

Human Annotation 0.172 1.000 0.749 1.000 5.264 0.332
COMET 0.127 0.128 0.655 0.569 6.366 -2.028

BL-BART 0.132 0.133 0.728 0.617 4.573 0.106
PA-BART 0.153 0.160 0.748 0.636 5.460 0.679

Table 2: Average automatic evaluation results. The best-scoring method for each metric is highlighted in bold.
Higher scores are better for all metrics except for fluency.

Personificationhood Appropriateness Fluency Interestingness Meaning Preservation
Human Annotation 3.763 4.175 4.138 3.667 3.913

COMET 3.525 3.563 3.738 1.801 3.550
BL-BART 3.500 3.938 4.188 2.006 3.750
PA-BART 3.738 4.000 4.138 2.782 3.875

Table 3: Average human evaluation results. The best-scoring method for each metric is highlighted in bold.

We also observe that the outputs for PA-BART
generally capture the meaning of the original text
(and surrounding context) more accurately than the
other baselines. In fact, the personifications greatly
enhance the expressiveness of some of these sen-
tences. In the first example, PA-BART replaces
‘rings’ with ‘yells’, while COMET replaces it with
‘beeps’, and BL-BART leaves ‘rings’ unchanged
and just adds more details. Given the context of
the sentence, we see that ‘yells’ is more appropri-
ate, expressive, and consistent with the context. A
similar argument can be made for most of the other
examples in the table: for the third example, PA-
BART replaces the literal “very difficult” with the
much more animate and expressive “very lonely”,
which is a suitable word to describe a relationship.
In the fourth example, the BL-BART model is able
to successfully capture the meaning of “the house
became silent” with “the house fell into disre-
pair”. Although the meaning is correct, “fell into
disrepair” is more literal and does not contain a
personification. Compare this with the PA-BART’s
choice to replace “the house became silent” with

“the house lamented”, which fits with the overall
context (“Then there were no more parties...”), and
also greatly enhances creativity by invoking the
vivid image of lamentation. Meanwhile, in the fifth
example, BL-BART personifies “the crickets were
silent” with “the crickets were calling”. However,
this shift completely changes the meaning, so it
is a rather poor choice of personification. In con-
trast, PA-BART rewrites “the air was still” as “the
air was tired”, which is a reasonable personifica-
tion that is consistent with the imagery in the sen-
tence (“moonless nights”, “crickets were silent”).
Hence, we see that PA-BART can generate creative

and meaningful personifications, while simultane-
ously staying true to the spirit of the sentence.

We also point out that our model is not lim-
ited to single-word substitutions. Rather, it con-
siders a holistic view of the entire sentence and
modifies key segments as necessary. This allows
PA-BART to handle compound phrases well: con-
sider, for instance, the one-to-many-word substi-
tution of ‘key’ −→ ‘a ghost’ (example 2), and the
many-to-one-word substitution of “became silent”
−→ “lamented” (example 4). More importantly,
PA-BART is also able to simultaneously generate
personifications in two disjoint parts of the sen-
tence, as seen in the last example: “The sound
clapped loud enough to make your ear cry.” Here,
there are two personifications in “sound hit” −→

“sound clapped”, and “ear hurt” −→ “ear cry”.
This last example also demonstrates the imper-

fection of our method. Although the model is able
to generate two personifications, it loses a compo-
nent of the original sentence because the recipient
of the action (‘Frank’) has disappeared. This same
issue of meaning or information loss is present in
example 2, where our model’s output of “silence is
a ghost”, while a personification, actually contra-
dicts the original text “silence is key”. BL-BART’s
output of “silence is preferred”, while not a per-
sonification, correctly preserves the original mean-
ing, as does the human reference of “silence is the
protagonist”. This suggests that the model may
still need some improvements with balancing cre-
ativity and semantic preservation. Other possible
weaknesses are outlined in §6.

4.3.1 Novelty and Diversity Analysis
We randomly sample 30 examples from the PA-
BART generations- and manually identify the parts
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Method Text
Literal Input You are at a business dinner with your boss when your phone rings

out loud (ex.1)
Human Ref You are at a business dinner with your boss when your phone starts

singing out loud
COMET You are at a business dinner with your boss when your phone beep

out loud
BL-BART You are at a business dinner with your boss when your phone rings

and you answer out loud
PA-BART You are at a business dinner with your boss when your phone yells

out loud
Literal Input In most horror settings, silence is key. (ex.2)
Human Ref In most horror settings, silence is the protagonist.
COMET In most horror settings, silence scary.
BL-BART In most horror settings, silence is preferred.
PA-BART In most horror settings, silence is a ghost.
Literal Input Her relationships with family and friends are very difficult (ex.3)
Human Ref Her relationships with family and friends behave very unusually
COMET Her relationships with family and friends serious
BL-BART Her relationships with family and friends have always been strong.
PA-BART Her relationships with family and friends are very lonely
Literal Input Then there weren’t any more parties as the house became silent (ex.4)
Human Ref Then there weren’t any more parties as the house kept mum.
COMET Then there weren’t any more parties as the house build.
BL-BART Then there weren’t any more parties as the house fell into disrepair.
PA-BART Then there were no more parties as the house lamented.
Literal Input It was a moonless nights, the air was still and the crickets were silent

(ex.5)
Human Ref It was a moonless nights, the air was asleep and the crickets were

silent
COMET It cold outside a moonless nights, the air cold outside still and the

crickets noisy
BL-BART It was a moonless nights, the air was still and the crickets were calling.
PA-BART It was one of those moonless nights, the air was tired and the crickets

were silent
Literal Input The sound hit Frank loud enough to make your ear hurt (ex.6)
Human Ref The sound slapped Frank loud enough to make your ear hurt
COMET The sound echo Frank loud enough to make your ear sense sound
BL-BART The sound of Frank Sinatra is loud enough to make your ear ring.
PA-BART The sound clapped loud enough to make your ear cry

Table 4: Qualitative examples for personification: literal
input, human writing, COMET, BL-BART, and PA-BART.
More can be found in Appendix D.

of the sentences that were personified, as well as
the animate ATTRIBUTES used to personify the
TOPICS. Among the 30 examples, there were 27
unique ATTRIBUTES, and only 3 repeats. Addi-
tionally, there were 9 examples which generated
completely new ATTRIBUTES that were never be-
fore seen in the training set, which demonstrates
that the model is able to sufficiently capture the
essence of a personification, rather than just blindly
memorizing ATTRIBUTES from the training data.

5 Related Work

We present the linguistic underpinnings behind the
TOPIC-ATTRIBUTE framework used in this paper
and explore how other types of figures of speech
are generated. We also explore what makes person-
ification generation so challenging.

Linguistic Motivations. Personifications tradi-
tionally do not have clearly defined classifications.
In fact, even within the linguistic community, the
definition of a personification is not always very
clear-cut (Edgecombe, 1997; Hamilton, 2002). A
study by Long (2018) examines the personifica-
tion structure “nonhuman subject + predicate verb

(used for humans only) + others,” as well as the
structure “others + predicate verb (used for hu-
mans only) + nonhuman object + others.” We
generalize and repackage these concepts, renaming
the subject as the TOPIC and the predicate verb as
the ATTRIBUTE. In doing so, we are able to capture
more general notions of animacy beyond just verbs.

Generation of Metaphors, Similes, etc. A lot
of studies on metaphors have focused on identi-
fication using techniques like word sense disam-
biguation (Birke and Sarkar, 2007), topic model-
ing (Strzalkowski et al., 2013; Heintz et al., 2013),
dependency structures (Jang et al., 2015), and se-
mantic analysis (Hovy et al., 2013). In terms of
generation, early systems have explored grammar
rules (Gargett and Barnden, 2013), while more re-
cently, large language models have greatly aided
in metaphor generation. Most notably, Stowe et al.
(2021) generate metaphors by considering concep-
tual mappings between certain domains and verbs.
Chakrabarty et al. (2021) further build on this by
creating a parallel corpus of metaphors and training
a large language model to perform the generation.

We also note here that the two aforementioned
studies already cover personifications to a certain
extent. However, these studies considered person-
ifications as subtypes of metaphors. Some of the
methods used may not generalize well to other
types of personifications. Our study is the first to
focus specifically on generating personifications.

For generating similes, Chakrabarty et al. (2020)
propose using style-transfer models with COMET
commonsense knowledge to generate similes. The
study similarly creates a parallel corpus and trains
a seq2seq model to perform the generation.

There is also a recent work by Keh et al. (2022)
that uniquely investigates the generation of tongue
twisters using seq2seq and language models.

Personifications. There are currently few stud-
ies that specifically work on personifications. Gao
et al. (2018) detect personifications as a subtype
of metaphors, but not as its own figure of speech.
Generation is largely unexplored. We believe this
is likely because personifications are generally
more difficult to define and categorize. Further-
more, because several sources simplify personifi-
cations to fall under metaphors (Stowe et al., 2021;
Chakrabarty et al., 2021), there is also a lack of
personification-specific datasets.

Constrained Text Generation. There is also
a body of work exploring the family of more gen-
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eral constrained text generation tasks. Gangal et al.
(2022) investigate NAREOR, or narrative ordering,
which rewrites stories in distinct narrative orders
while preserving the underlying plot. Miao et al.
(2019) show gains on several tasks through deter-
mining Levenshtein edits per generation step using
Metropolis-Hastings sampling. Feng et al. (2019)
propose Semantic Text Exchange to modify the
topic-level semantics of a piece of text.

Lin et al. (2020) propose CommonGen, a genera-
tive commonsense reasoning task based on concept-
to-text generation. Works investigating this task in-
clude EKI-BART (Fan et al., 2020) and KG-BART
(Liu et al., 2021), which use external knowledge
to enhance performance on CommonGen. SAP-
PHIRE (Feng et al., 2021b) uses the data itself
and the model’s own generations to improve Com-
monGen performance, while VisCTG (Feng et al.,
2022) uses per-example visual grounding.

6 Conclusion and Future Work

In this paper, we explored the task of personifica-
tion generation. We curated a dataset of personi-
fications and proposed the PINEAPPLE method
to automatically de-personify text. Using our par-
allel corpus, PersonifCorp, we trained a seq2seq
model (BART) to generate creative personifications.
Through automatic, human, and qualitative evalu-
ation, we demonstrated that these personifications
make sentences more interesting and enhance the
text’s overall appeal. Our finetuned model success-
fully does this while maintaining a high level of
fluency and meaning perservation.

Some weaknesses of our model include failing
to personify more complex sentence structures, and
occasionally failing to preserve the exact meaning
of the original sentence. We also believe that our
model still has room to grow in terms of the di-
versity of personifications generated. Further, we
can explore unsupervised style transfer methods
(Yang et al., 2018; Malmi et al., 2020; Krishna
et al., 2020), where we regard the personification-
hood of a sentence as a kind of style. We can also
investigate data augmentation methods (Feng et al.,
2021a, 2020; Dhole et al., 2021) to further expand
our dataset. Another promising direction would be
to explore ways to acquire more control over which
parts of the sentence are personified or what types
of personifications are generated, or to apply this
to make dialogue agents more interesting, e.g. by
giving them more personality (Li et al., 2020).
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Ethics Statement

Our human and automatic evaluations (see §3.2)
are done over content either directly sourced from,
or generated by publically available, off-the-shelf
pretrained models trained either on already exist-
ing, publicly available datasets, or datasets further
derived by post-processing the same — as further
described in Datasets (see §2 for more).

We do collect human evaluation ratings using
crowd-sourcing, specifically through AMT and in-
person annotation. However, we neither solicit,
record, nor request any kind of personal or iden-
tity information from the annotators. Our AMT
annotation was conducted in a manner consistent
with terms of use of any sources and intellectual
property and privacy rights of AMT crowd workers.
Crowdworkers were fairly compensated: $1.12 per
fluency + appropriateness + meaning preservation
evaluation HIT, and $0.56 per personificationhood
evaluation HIT, for roughly 6 min (first) and 2 min
(latter) tasks, respectively. This is at least 1.5-2
times the minimum U.S.A. wage of $7.25 per hour
($0.725 per 6 minutes and $0.25 per 2 minutes).

We primarily perform experiments on personifi-
cation in English (Bender and Friedman, 2018).

NLG models are known to suffer from biases
learnable from training or finetuning on data, such
as gender bias (Dinan et al., 2020). However,
our work and contribution does not present or re-
lease any completely new model architechtures,
and is primarily concerned with more careful adap-
tation and finetuning of existing pretrained mod-
els for a particular class of figurative construct
(i.e. personification). The frailties, vulnerabilities,
and potential dangers of these models have been
well researched and documented, and a specific
re-investigation would be repetitive and beyond the
scope and space constraints of this paper.

We do not foresee any explicit way that ma-
licious actors could specifically misuse fintuned
models that could be trained on our data, beyond
the well-researched, aforementioned misuse that is
possible in general with their instantiation for any
transduction task or dataset (e.g. summarization).
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A Appendix A: De-Personification
Pipeline

A.1 Dependency Tree Merging Example
Figure 4 contains an example of the merging pro-
cess that was described in the TOPIC-ATTRIBUTE

extraction step in §2. As outlined in §2, edge re-
lations to iteratively merge are negation modifiers,
possession modifiers, nominal modifiers, adjectival
complements, and objects of prepositions, as well
as words tagged as determiners and parts of com-
pound phrases. The priority order for merging is
as follows: 1) compound phrases, 2) nominal mod-
ifiers, 3) possession modifiers, 4) negation modi-
fiers, 5) determiners, 6) objects of prepositions, 7)
adjectival complements.

A.2 Human-Related Words
In §2, we defined the IsAPerson animacy metric as
the average of the IsA scores between the TOPIC

and various words that are very closely related
to ‘human’. We called this set the HUMANSET.
The words contained in HUMANSET are as follows:
{“person”, “human”, “man”, “woman”, “human
being”, “boy”, “girl”}.

These words were empirically selected by con-
sidering a list of synonyms of the word ‘person’
and checking the IsA relation COMET scores with
the word ‘human’. All of the above words have IsA
scores with ‘person’ of less than 5.10.

A.3 Parameters and Thresholds
IsAPerson Threshold. For the IsAPerson ani-
macy score, we use a threshold of 7.0. IsAPer-
son scores < 7.0 are considered animate, while
scores ≥ 7.0 are considered inanimate. This
threshold was selected empirically using words
known to be animate and words known to be inani-
mate. Words tested include “she” (5.31), “person”
(6.41), “moon” (8.743), “opportunity” (9.488),
“stars” (8.717), “joe” (5.804), “jane” (4.976), “the
police officer” (6.462), “my friend” (6.805), “my
new iphone” (10.055). From these observations,
we observe that all animate words have an IsAPer-
son score of < 7.0, while all inanimate objects
have a score of ≥ 7.0. We hence conclude that 7.0
is a suitable threshold.

Candidate Selection Composite Score Param-
eters. For the α, β, γ used in the composite
score for candidate selection, we use values of
α = 1, β = 1, γ = 1. This was selected for two
reasons. First, all of the score values had largely

Metric Spearman
Correlation

Krippendorff α

Personificationhood 0.0934 0.0250
Appropriateness 0.1660 0.1778

Fluency 0.0050 0.0942
Interestingness 0.6160 0.5898

Meaning Preservation 0.0389 0.2558

Table 5: Inter-annotator agreement scores.

similar scales (logarithmic), so setting α, β, γ to
a larger value like 2 or 3 would disproportion-
ately favor a certain metric, which is not what
we desire. Second, we experimented with us-
ing values such as 0.8, 1.2, and 1.5, but the gen-
erated de-personifications were either very simi-
lar or slightly worse than the default setting of
α = 1, β = 1, γ = 1. A possible future direc-
tion would be to explore possible values of α, β, γ
more thoroughly, but for this dataset, we stick to
the simple case of α = 1, β = 1, γ = 1.

B Appendix C: Evaluation Details

B.1 Human Evaluation Setup
A total of 20 unique AMT annotators participated
in the study for fluency, appropriateness, and mean-
ing preservation, each performing 4.0 HITs on aver-
age. Annotators were compensated 1.12$ per HIT,
each of which was designed to take <6 mins on
average.

22 unique AMT annotators participated in the
second, separate study for personificationhood,
each performing 4.36 HITs on average. Annotators
were compensated 0.56$ per HIT, each of which
was designed to take <2 mins on average.

For the interestingness study, the details regard-
ing annotator background and selection can be
found in §3.2.2 and Appendix B.3.

The html templates including instruc-
tions, questions and other study details
corresponding to both these AMT studies
can be found in the templates/ sub-
folder of our code submission zip, with the
names fluency_appropriateness_
meaningPreservation.html and
personificationhood.html respectively.

B.2 Inter-Annotator Agreement Scores
Each generated input instance and its respective
model outputs are labelled by two distinct anno-
tators. To measure inter-annotator agreement, we
use Spearman correlation and Krippendorff α, as
reported in Table 5.



6283

To get the Spearman correlation point value for
a given aspect and test instance, we compute mean
pairwise Spearman correlation between the aspect
values assigned to the corresponding model outputs
by every pair of annotators. Specifically, we use
the scipy.stats implementation to compute this. 10

For Krippendorff α, we treat each human eval-
uation aspect as an ordinal quantity. Specifically,
we use the implementation provided by the python
library krippendorff 0.5.1.11

B.3 English Assessment Test for Annotators

From the native English-speaking university stu-
dent annotators who enrolled to participate in our
Interestingness study, we first elicited answers to
an English assessment test, as mentioned in §3.2.2.

The assessment test comprised of 12 questions
spanning multiple question types testing the ex-
aminee’s grasp of the use and distinction between
various figures of speech, basic literary general
knowledge, and verbal reasoning skills. A spread-
sheet file containing this test can be found with
the name LiteratureTest.xlsx under the Templates/
subfolder of our code submission .zip file.

The final annotators used for our interestingness
study were chosen from those who got 11 or more
of the 12 questions on the English assessment test
correct, hence scoring at least 85% on the test.

C Appendix B: Implementation Details

The BART-base model was trained using a learning
rate of 2e-5. This was by conducting a hyperparam-
eter search over the values {1e-6, 5e-6, 1e-5, 2e-5,
5e-5, 1e-4} and selecting the model/epoch based on
lowest validation loss. The same process was done
to select a batch size of 4 using a hyperparameter
search over values {2,4,8,16}. Training was done
for 20 epochs and 400 warmup steps. The Adam
optimizer was used, and inputs were truncated to
a maximum length of 64 tokens (using BART’s
subword tokenization).

Training was done on Google Colaboratory en-
vironments using V100 GPUs. For the BART-base
model, a single training loop of 20 epochs takes
approximately 10 minutes to complete.

10https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
spearmanr.html

11https://pypi.org/project/
krippendorff/

Method Text
Literal Input The news hit me hard. (ex.7)
Human Ref The news punched me hard.
COMET The news report event late me hard.
BL-BART The news hit me hard.
PA-BART The news pounded me hard.
Literal Input Panic is sweeping through the streets contagiously. (ex.8)
Human Ref Panic is driving around the streets contagiously.
COMET Panic is result through the streets contagiously.
BL-BART Panic is running through the streets contagiously.
PA-BART Panic runs through the streets contagiously.
Literal Input In the dead of summer, in Ohio, the clothes felt hot and humid. (ex.9)
Human Ref In the dead of summer, in Ohio, the clothes seemed to be sweating

themselves.
COMET In the dead of summer, in Ohio, the clothes fit and humid.
BL-BART In the dead of summer, in Ohio, the clothes we wear can be hot and

humid.
PA-BART In the dead of summer, in Ohio, the clothes complained and humid.
Literal Input Streaks of electricity zipped through the air, swirling around and

around dangerous (ex.10)
Human Ref Streaks of electricity cackled through the air, swirling around and

around dangerous.
COMET Streaks of electricity stain carpet through the air, swirling around and

around dangerous.
BL-BART Streaks of electricity were shooting through the air, swirling around

and around the building.
PA-BART Streaks of electricity danced around and around dangerous.
Literal Input The sun is nowhere to be found, and the streets are eerily quiet (ex.11)
Human Ref The sun seems to be on leave, and the streets are eerily quiet.
COMET The sun down, and the streets full of traffic.
BL-BART The sun, and the streets.
PA-BART The sun refuses to be found, and the streets are polite
Literal Input The wind blew through me fast. (ex.12)
Human Ref The wind stampeded through me fast.
COMET The wind howl through me fast.
BL-BART The wind was going through me fast.
PA-BART The wind ran me fast.

Table 6: Additional qualitative examples for personification
outputs: literal input, human writing, COMET, BL-BART,
and PA-BART.

D Appendix D: Additional Examples

Table 6 is an extension of Table 4 and contains
additional qualitative examples of the generations.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://pypi.org/project/krippendorff/
https://pypi.org/project/krippendorff/
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Figure 4: Step-by-step example of the merging process for TOPIC-ATTRIBUTE identification.


