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Abstract

Building dialogue generation systems in a
zero-shot scenario remains a huge challenge,
since the typical zero-shot approaches in di-
alogue generation rely heavily on large-scale
pre-trained language generation models such
as GPT-3 and T5. The research on zero-
shot dialogue generation without cumbersome
language models is limited due to lacking
corresponding parallel dialogue corpora. In
this paper, we propose a simple but effective
Multilingual learning framework for Zero-shot
Dialogue Generation (dubbed as MulZDG) that
can effectively transfer knowledge from an
English corpus with large-scale training sam-
ples to a non-English corpus with zero sam-
ples. Besides, MulZDG can be viewed as a
multilingual data augmentation method to im-
prove the performance of the resource-rich lan-
guage. First, we construct multilingual code-
switching dialogue datasets via translation ut-
terances randomly selected from monolingual
English datasets. Then we employ MulZDG
to train a unified multilingual dialogue model
based on the code-switching datasets. The
MulZDG can conduct implicit semantic align-
ment between different languages. Experi-
ments on DailyDialog and DSTC7 datasets
demonstrate that MulZDG not only achieve
competitive performance under zero-shot case
compared to training with sufficient examples
but also greatly improve the performance of the
source language.

1 Introduction

The success of neural models and the emergence
of large-scale dialogue datasets have greatly ad-
vanced the research of dialog generation (Serban
etal., 2016, 2017; Huang et al., 2020; Meng et al.,
2020). The open-domain dialogue systems aim to
generate more informative and fluent responses (Ke
et al., 2018; Zhang et al., 2020b; Bao et al., 2020;
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Meng et al., 2021), which are widely used in vari-
ous applications such as emotional companionship,
mental health support, and social chatbots.
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Figure 1: Multilingual semantic alignment map in zero-
shot case. One color represents one language. English
is the source language and other languages are target
languages. u; represents the i-th utterance in the con-
versation history and r represents the responses. Black
arrows represent translating utterances from English
into other languages. Solid brown lines represent im-
plicit semantic alignments between different languages.

Although achieving promising performance,
most existing dialogue generation systems (Zhang
et al., 2020b; Bao et al., 2020; Li et al., 2020;
Floridi and Chiriatti, 2020) rely on a considerable
amount of data resource, such as DialoGPT (Zhang
et al., 2020b). In practice, the dialogue corpus for
many languages is unavailable, which limits the
usefulness of dialogue systems for low-resource
or even zero-resource languages. Hence it is im-
portant to design approaches that can effectively
transfer knowledge from the source language with
sufficient resources to a target language with zero
training samples.

The pre-trained language models have been
proved to be very effective in dialogue genera-
tions including zero-shot scenarios. Most exist-
ing zero-shot dialogue generation approaches usu-
ally directly employ large-scale pre-trained gen-
erative language models such as GPT-3 (Brown
et al., 2020), T5 (Raffel et al., 2020), or conduct
secondary pre-training on target language based
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on language models (Ebrahimi and Kann, 2021;
Kim et al., 2021). Although these methods can
handle the issue of zero-shot generation, the cost
of pre-training is unaffordable.

In the similar task of NMT (neural machine trans-
lation), zero-shot generation methods are mainly in-
troducing one additional language between source
and target language (Johnson et al., 2017; Zheng
et al., 2017; Artetxe et al., 2018; Cheng, 2019; Liu
et al., 2020a), which can achieve indirect semantic
mapping between the source and target language
through the additional intermediate language. The
nature of translation is the semantic mapping be-
tween source and target languages while there is
no similar semantic mapping between dialogue his-
tory and response. Therefore, directly transferring
the zero-shot approaches in NMT to the dialogue
generation task is infeasible.

The zero-shot multilingual understanding tasks
usually employ code-switching approach to
achieve semantic alignment between different lan-
guages (Liu et al., 2020b; Chapuis et al., 2021;
Qin et al., 2021). The way of code-switching can
conduct implicit semantic alignment without re-
lying on parallel corpus pairs. Inspired by these
studies, we employ the code-switching method to
transfer the knowledge of dialogue history in En-
glish to other target languages which have no train-
ing examples. We follow previous work (Chapuis
et al., 2021) on multilingual representation to em-
ploy code-switching at the utterance level, although
code-switching at the word or span level is more
common (Banerjee et al., 2018; Bawa et al., 2020;
Dogruoz et al., 2021).

Based on the code-switching method, we pro-
pose a simple but effective Multilingual learn-
ing framework for Zero-shot Dialogue Generation
(dubbed as MulZDG) that can effectively trans-
fer knowledge from English corpus with large-
scale training samples to non-English corpus with
zero samples. Specifically, we first construct code-
switch languages using the NMT system and bilin-
gual dictionary (Pan et al., 2021). As shown by the
black arrows in Figure 1, we randomly select utter-
ances from dialogue history to translate into other
target languages. For each target language, we con-
struct code-switching corpus containing source and
target languages, respectively. Then we employ
MulZDG based on an encoder-decoder structure to
train a unified multilingual dialogue generation sys-
tem, which can be applied in the source language

and other target languages with no training sam-
ples. MulZDG with a multi-task structure can gen-
erate responses with different languages according
to specific input prompts. MulZDG can conduct
implicit semantic alignments through task sharing
mechanism between different languages, as shown
by solid brown lines in Figure 1. To summarize,
we make the following contributions:

* We propose a simple but effective multilingual
framework, MulZDG, which can effectively
transfer the knowledge from the source language
with large-scale training samples to target lan-
guages with zero samples.

* We present a data augmentation method for mul-
tilingual code-switching, which can enhance the
the performance of source language.

* We construct multilingual code-switching dia-
logue datasets from English dialogue datasets
DailyDialog and DSTC?7, and release the multi-
lingual versions datasets'.

2 RELATED WORK

2.1 Dialogue Generation

Dialogue generation systems aim to produce infor-
mative and fluent responses and have attracted great
attention in academia. Early studies usually adopt
the methods of NMT based on an Encoder-Decoder
network to generate responses (Sordoni et al., 2015;
Serban et al., 2016). However, these methods of-
ten generate dull and generic responses. To tackle
this problem, memory mechanism (Wu et al., 2018;
Zhang et al., 2020a; Tian et al., 2020) and atten-
tion mechanism (Zhang et al., 2019) are introduced
into dialogue modeling successively. Although
many approaches have been proposed, there are
still remarkable gaps between responses generated
by neural models and those from humans (Holtz-
man et al., 2019). Large-scale pre-trained genera-
tive models (Zhang et al., 2021; Ling et al., 2021;
Wang et al., 2020) have greatly facilitated the de-
velopment of dialogue generation task. Although
achieving promising performance, these methods
rely on a large number of training examples, which
greatly limits the usability of dialogue systems. In
this paper, we propose a multilingual framework
that can work in zero-shot case.

2.2 Zero-shot Learning

Zero-shot Learning for dialogue generation tasks
refers to building a dialogue generation sys-

"https://github.com/misonsky/MultilingualDatasets
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tem without available training samples (Floridi
and Chiriatti, 2020). Most existing zero-shot
methods of dialogue generation rely on large-
scale pre-trained generative models (Lewis et al.,
2020; Zhang et al., 2020b; Floridi and Chiriatti,
2020), such as GPT-3 (Floridi and Chiriatti, 2020).
These methods require huge computing resources,
which hinders the usableness of dialogue systems.
On similar machine translation tasks, zero-shot
methods mainly include triangular and multilin-
gual NMT systems. The triangular NMT sys-
tems (Zheng et al., 2017; Cheng, 2019) build a
triangular translation case by adding an interme-
diate language and multilingual systems (Johnson
et al., 2017; Liu et al., 2020a) mix multiple differ-
ent language pairs to achieve semantic alignment
between different languages under zero-shot case
by building implicit triangular systems. The na-
ture of these methods is the semantic mapping be-
tween different languages, which is consistent with
the translation task. However, there is no similar
semantic mapping between dialogue history and
response. In this paper, we propose a simple but ef-
fective multilingual dialogue generation framework
based on code-switching languages.

3 METHODOLOGY

3.1 Problem Formalization

Given a source language (), the goal is to build
a unified dialogue generation system based on the
source language that can be applied to target lan-
guages (T'). In this paper, the source language S
is English. The 7' include: Zh (Chinese), De (Ger-
man), Ru (Russian), Es (Spanish), Fr (French) and
It (Italian). An instance in dialogue dataset can be
represented as (C, R) where C' = {uy, ug, ..., up}
with n utterance represents the context of dia-
logue. wu; represents the i-th utterance. And R
represents the corresponding response. Based on
the S, we automatically build code-switching lan-
guages that include T through random translations.
The construction process of code-switching lan-
guages are shown in Algorithm 1, where Dy =
{Denzh, Dendea Denruy Denesa DenfTa Denit}- The
Dep,,,. represents code-switching languages com-
posed of English and tar.

3.2 Multi-task MulZDG Framework

As shown in Figure 2, MulZDG mainly contains
three layers: (i) Embedding Layer; (ii) Encoder
Layer; (ii1) Decoder Layer. The embedding layer

Algorithm 1: Code-Switching Languages.
Input: Corpus of S: Dg; The target
language set T'; Bilingual
Dictionary: Dic;
Output: Code-switching languages: D .

Initialize Dy = (;
foreach (C, R) in D, do
random sample utterances:
U~ P(C,R);
foreach rarget language t; in T do
Replace tokens for each utterance in
U by dictionary Dic(S — t;) U:

~

Translate U by NMT systf:m: U,
Add updated (C, R)) by U to Dr;

is responsible for mapping each word in Dr to a
vector space using a pre-trained Glove (Pennington
et al., 2014) embedding model. The encoder layer
is responsible for capturing the semantic representa-
tion of the dialogue context. And the decoder layer
is responsible for generating the probability distri-
bution of response for the dialogue context. The de-
coder in MulZDG can generate responses in differ-
ent languages through different prompt tokens. The
code-switching languages in Dt share the same
encoder and decoder, which can conduct semantic
alignment between different languages through task
sharing mechanism. In the training phase, we em-
ploy code-switching languages to train MulZDG.
In the testing phase, MulZDG takes monolingual
dialogue samples as input and generates responses
in the corresponding target language.

MulZDG is a multi-task framework, which sup-
ports networks with RNN and transformer as the
backbone. The inputs of frameworks are utterance-
level code-switching languages. Different inputs in
D share the same encoder and decoder. The en-
coder can be hierarchical or non-hierarchical struc-
tures. The framework with a non-hierarchical en-
coder is just like the seq2seq arthitecture (Sutskever
et al., 2014) which consists of an encoder RNN and
a decoder RNN. The framework with a hierarchical
encoder is just like HRED (Serban et al., 2016)
which consists of a hierarchical encoder and a de-
coder.

Encoders can be hierarchical or non-hierarchical.
The framework with a non-hierarchical encoder is
just like the seq2seq arthitecture (Sutskever et al.,
2014) which consists of an encoder and a decoder.
The framework with a hierarchical encoder is just
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Figure 2: The framework of MulZDG.

like HRED (Serban et al., 2016) which consists of
a hierarchical encoder and a decoder. The structure
of encoder can be RNN or transformer structure.
Next, we briefly introduce both hierarchical and
non-hierarchical frameworks.

3.3 Non-hierarchical MulZDG

The non-hierarchical MulZDG is a simple seq2seq
structure, which has a shared encoder and a de-
coder module. The encoder is responsible for
encoding the dialogue context and the decoder
is responsible for generating the response for
the dialogue context. Encoder-Decoder structure
based on RNN (Sutskever et al., 2014) and Trans-
former (Vaswani et al., 2017) are the most classic
representative models.

RNN Encoder-Deocder In this paper, we em-
ploy GRU (Cho et al.,, 2014) as the concrete
implementation for RNN. We concatenate code-
switching language utterances in dialogue context
into a consecutive tokens sequence, and add a spe-
cial start symbol [SOS] and end symbol [EOS] to
each tokens sequence. The last hidden state of en-
coder is denoted as hy, which is considered as the
dialogue context summary. ¢ represents the length
of sequence. Finally, we employ another GRU to
decode the probability distribution of response.

m

’hé y]|y17' '7yj—17hf)P<y1) (])

where 6 represents the parameters of GRU and y
represents the response sequence to be decoded.
Transformer Encoder-Deocder Each layer of
transformer (Vaswani et al., 2017) encoder is com-
posed of a multi-head self-attention mechanism
and a position-wise fully connected feed-forward
network. A residual connection (He et al., 2016)
is employed around each layer, followed by layer
normalization (Ba et al., 2016). In addition to the
two sub-layers in each encoder layer, the decoder
layer possesses another multi-head attention cal-
culating the weight distribution over the output of
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the encoder based on predicted sequences. Note
that in addition to the word embedding informa-
tion, position encoding information is required in
the embedding layer.

3.4 Hierarchical MulZDG

The encoder of hierarchical MulZDG possesses
two basic components: utterance encoder and con-
text encoder, which is like the HRED (Serban et al.,
2016) architecture. The utterance encoder is re-
sponsible for capturing the features of each utter-
ance and the context encoder is in charge of distill-
ing the dependencies between different utterances.
The framework MulZDG supports the implemen-
tation of RNNs and transformers structure. In this
paper, we employ GRU as the implementation of
RNNS.

Hierarchical Transformer Structure Note that
positional encoding is required for the imple-
mentation of the transformer. The utterance en-
coder and decoder layer share the same posi-
tional encoding. The outputs of utterance en-
coder based on transformer can be denoted as

i = {€s0sy €1, €2, ..., Em, €cos } fOr i-th utterance,
where m represents the length of utterance. We
employ an average pooling operation to get a fixed-
dimensional representation for every utterance. We
add positional encoding to h; and the context
encoder based on transformer is responsible for
capturing the global dialogue context information
H = {h1,h,--- , hy}. Then the decoder layer de-
codes the probablhty distribution of response over
H.

2

4 Experiments

4.1 Datasets

In this paper, we select English datasets DailyDi-
alog (Li et al., 2017) and DSTC7 (Galley et al.,
2018) as the source languages and generate code-
switching training examples based on source train-



ing datasets through Algorithm 1. We directly trans-
late the test datasets into the corresponding target
languages. Note that we employ different transla-
tion systems (described in Appendix A.1).

DailyDialog is a multi-turn dialogue dataset
about our daily life, which consists of 11,118
context-response pairs for training, 1,000 pairs for
validation, and 1,000 pairs for testing. The propor-
tion of non-English utterances in code-switching
dataset is De-30.186% in D, , Es-30.134% in
Dep,,» Fr-30.096% in Dy, 1-30.293% in Dey,, ,
Ru-30.199% in D.y,.,, Zh-30.109% in D,,,_, . In
the experiment we abbreviate it as Daily.

DSTC?7 is a multi-turn dialogue dataset from so-
cial media data, which consists of 76,590 context-
response pairs for training, 17,870 pairs for val-
idation, and 1,710 pairs for testing. The propor-
tion of non-English utterances in code-switching
dataset is De-27.661% in D,y , Es-27.545% in
Den,,, Fr-27.639% in Dep,, , 16-27.611% in Dep,, ,
Ru-27.786% in Dey,.,, Zh-27.565% in D.,_, .

Models ~ Datasets Types PPL  BL-1/2 RL  Dist-1/2 Embed A/E/G
Daily B 1277 20.8702405 35.54 12.56/44.55 80.55/82.17/64.22
HRED WY Aug 1224 34.47/28.31 39.11 13.33/45.67 82.66/82.88/65.76
DpsTC7 En 1169 2673/17.38 29.03 53472452 78.98/84.78/61.66
Aug 1164 27.92/18.77 29.47 7.55/25.16  80.02/84.86/59.66
Daily B 1233 34692577 40.77 13.77/45.56 84.74/86.17/69.77
VHRED Y Aug 123.1 3593/27.35 41.88 14.57/46.16 86.88/87.94/71.23
DsTC7 BN 1277 25581444 2547 74973293 T1.T7/85.68/5798
Aug 123.5 27.05/16.92 26.52 8.03/33.74 79.39/86.24/58.17
Daily B 1433 22.86/1477 28.55 10.36/33.63 79.96/80.06/63.15
Trans WY Aug 1412 23.89/16.17 30.35 11.79/35.64 81.23/81.22/65.45
DsTC7 En 1634 2277/19.74 2157 6.77/3456 1832/82.56/56.89
Aug 1589 24.47/23.44 23.67 7.98/35.02 80.19/84.47/56.88
Daily B 1467 2376/1561 27.3 99613579  80.26/79.44/62.62
HTrans Y Aug 133.5 24.57/17.03 28.94 11.12/36.98 82.33/82.16/63.76
psTC7 En 1625 2354/18.68 2335 7323566 80.02/82.14/64.33

Aug 153.3 25.78/20.37 25.76 8.69/37.84 82.43/84.34/65.54

Table 1: Performance of models based on data augmen-
tation using multilingual code-switching of monolin-
gual source. Eng represents that models is only trained
on monolingual source language. Aug represents that
models is trained on mixed languages including source
and multilingual code-switching based on MulZDG. BL
stands for BLEU and RL represents Rouge-L. All values
are multiplied by 100.

4.2 Baselines

MulZDG is a general multilingual learning frame-
work that can be applied to various dialogue gen-
eration models. We select several representative
models in this paper.

HRED (Serban et al., 2016) is a hierarchical
encoder-decoder structure with a hierarchical en-
coder (including utterance encoder and context en-
coder) and a decoder. Hred employs shared en-

Models  Datasets Types PPL BL-1/2 RL  Dist-1/2 Embed A/E/G
Dail De 1254 25.89/20.17 35.72 15.63/49.55 78.23/86.86/62.42
HRED "Y' Mult 1259 23.77/20.33 34.31 15.34/48.89 78.03/86.54/59.97
DSTC7 De 124.6 21.68/11.89 21.71 7.35/35.23 77.19/87.63/58.41
Multi 119.7 23.85/12.87 23.77 7.66/33.67 77.37/87.57/60.02
Dail De 121.2 27.14/20.44 34.77 16.53/51.94 77.56/87.26/62.09
VHRED "Y' Multi 124.6 25.87/20.67 33.56 15.63/51.32 77.04/87.56/61.42
DSTC7 De 1253 22.74/12.07 23.69 7.68/36.29 78.34/87.44/58.62
Multi 123.4 20.04/11.34 23.56 6.89/36.52 76.88/87.12/57.96
Dail De 150.2 20.06/12.38 24.96 9.35/34.56 74.63/78.88/60.76
Trans Y Multi 1467 18.67/11.89 22.65 8.98/33.63 74.53/77.98/59.67
s DSTC7 De 156.2 20.55/11.37 22.76 5.64/32.19 76.54/85.55/55.43
Multi 156.8 18.77/10.23 20.87 4.88/30.87 75.87/84.71/55.13
Dail De 156.7 21.33/11.66 25.22 8.96/33.19 75.61/77.98/61.86
HTrans Y Multi 157.8 19.65/10.98 24.33 8.87/33.65 74.78/79.13/59.43
DSTC7 De 157.7 19.88/11.24 23.45 5.77/33.47 75.96/86.73/56.47

Multi 161.5 18.78/11.42 21.77 5.33/32.19 75.47/86.33/56.44

Table 2: Zero-shot results of models on German. De
represents that models is only trained on German train-
ing set. Multi represents that models is only trained on
code-switching languages based on MulZDG.

Models  Datasets Types PPL  BL-1/2 RL  Dist-1/2 Embed A/E/G
Dail Es  124.1 25.49/20.75 36.97 17.68/52.65 77.69/84.21/63.44
HRED Y Multi 126.7 26.45/20.55 35.98 17.33/50.56 76.53/83.68/63.56
DSTCT Es  119.6 25.39/14.47 26.94 7.58/30.13 77.99/87.32/61.24
Multi 118.4 25.47/15.76 29.23 7.23/30.67 77.68/86.77/62.13
Dail Es  122.1 29.14/23.04 35.99 18.82/55.37 77.79/85.52/62.28
VHRED Y Multi 126.7 30.88/22.52 34.76 17.35/54.88 77.23/84.56/62.03
DSTC? Es 1145 26.24/14.42 27.82 8.78/32.45 78.68/87.88/59.77
Multi 123.3 26.45/17.39 31.19 7.49/32.19 78.97/87.57/63.64
Dail Es  157.7 19.06/3.65 22.06 8.35/30.65 73.61/77.67/58.36
Trans Y Multi 153.7 18.76/12.98 22.05 8.14/31.48  73.32/76.88/59.54
ans DSTC? Es  123.3 24.38/15.52 26.44 7.53/30.62 77.66/86.48/60.12
Multi 125.7 24.33/15.43 24.55 7.43/30.88 77.42/86.04/62.33
Dail Es  154.6 18.93/10.57 21.76 8.07/29.33  72.55/75.69/56.38
HTrans Y Multi 156.3 17.97/9.47  21.62 8.33/27.74  T2.76/75.4/56.12
ans DSTC7 Es  127.8 23.87/14.33 26.56 7.44/29.48 77.87/85.46/59.56

Multi 131.2 23.19/12.59 24.89 7.95/29.65 76.46/83.12/57.15

Table 3: Zero-shot results of models on Spanish. Es
represents models is trained on monolingual Spanish.

coders to encode each utterance separately.

VHRED (Serban et al., 2017) is a hierarchical
encoder-decoder structure with a hierarchical en-
coder (incuding utterance encoder and context en-
coder) and a decoder based on variational mech-
anism. VHRED can generate long outputs with
better use of contextual information via latent vari-
ables.

Transformer (Vaswani et al., 2017) is a encoder-
decoder structure with multi-head attention mecha-
nism. The inputs of the Transformer is a consecu-
tive word sequence concatenated all utterances. In
all experimental tables, we abbreviate it as Trans.

HTransformer (Santra et al., 2021) is a hier-
archical encoder-decoder structure with a hierar-
chical encoder (including utterance encoder and
context encoder) and a decoder. Htransformer en-
codes each utterance separately. In all experimental
tables, we abbreviate it as HTrans.
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4.3 Implementation Details

We implement our MulZDG using Tensorflow 2.
The word embedding size and hidden size are all
set to 512. We employ Adam optimizer (Kingma
and Ba, 2015) to train all models. For the mod-
els HRED and VHRED we set the learning rate
to 0.001. For the Transform and HTransformer,
we set the learning rate to 0.0001. For the models
HRED and VHRED, we set the number of encoder
and decoder layers to 1. For the Transformer and
HTransformer, the number of encoder and decoder
layers is 3. And the number HRED for Transformer
and HTransformer is 8. We employ the word seg-
menttation of BERT (Devlin et al., 2019) and the
vocabulary of multilingual BERT as the unified
vocabulary. The batch size is 128 for HRED and
VHRED, and we set it to 512 for Transformer and
HTransformer. The maximum epochs are set to 200.
We employ GloVe to train a unified multilingual
embedding vectors representation for embedding-
based metrics based on multilingual corpora. We
do not remove unknown tokens when computing
embedding-based metrics, and the vectors of all
unknown tokens are initialized to zero vector.

Models  Datasets Types PPL  BL-1/2 RL  Dist-1/2 Embed A/E/G
Dail Fr  122.3 2536/19.89 35.15 13.59/43.68 80.44/87.12/64.43
HRED Y Multi 124.6 25.12/18.78 35.04 13.35/42.45 79.31/87.09/62.21
DSTC7 Fr T11.3 26.42/16.82 27.18 4.7/21.18  80.84/88.36/62.59
Multi 116.8 26.54/15.96 25.47 5.43/24.33  80.45/88.31/60.61
Dail Fr  132.2 25.64/19.49 34.97 15.42/45.22 79.86/87.77/63.83
VHRED Y Multi 135.4 24.96/18.87 32.43 13.88/43.88 79.89/87.57/65.13
DSTC7 Fr 107.6 28.88/19.36 29.24 5.85/26.22 81.18/88.35/63.8
Multi 112.4 26.93/18.47 27.56 5.77/26.6 ~ 80.39/88.26/61.24
Dail Fr  163.7 16.66/12.06 25.3 7.47/29.34 75.66/77.14/59.78
Trans Y Multi 166.5 15.76/11.56 24.54 7.23/29.87 76.32/77.65/57.62
) DSTC7 Fr 122.3 25.64/16.47 28.04 5.12/25.63  79.94/87.57/61.25
Multi 124.2 23.65/14.67 27.33 5.34/24.77 79.54/86.32/60.43
Dail Fr  164.4 16.61/9.49 22.82 7.57/31.98 75.12/78.06/60.08
HTrans Y Multi 1654 15.44/8.54 21.65 6.77/3133 75.54/78.67/60.36
) DSTC7 Fr 125.6 24.87/17.77 26.89 4.77722.34  79.56/88.45/60.56
Multi 127.3 24.18/16.28 24.86 4.53/22.54 79.89/87.23/62.65

Table 4: Zero-shot results of models on French. Fr
represents models is trained on monolingual French.

4.4 Evaluation metrics

To compare different models, we employ both
automatic metrics and human evaluations. Au-
tomatic Metrics: We employ perplexity (PPL)
and distinct 1/2 (Dist.1/2) following previous sdud-
ies (Zhang et al., 2018; Zheng et al., 2020; Song
etal., 2021). Lower perplexity means more reliable
model. Distinct 1/2 (Li et al., 2016) are the ratio
of distinct uni-grams / bi-grams. Higher distinct
means better diversity of responses generated by
the model. We also employ BLEU (Papineni et al.,

0.8
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Figure 3: The impact of the number of multilingual
code-switching languages on models performance for
German. The ’1’ in abscissa represents that models are
trained on monolingual German. Number of languages
is greater than * 1’ represents models is trained on multi-
lingual code-switching languages based on MulZDG.

Models  Datasets Types PPL BL-1/2 RL  Dist-1/2 Embed A/E/G
Dail It 126.7 25.51/20.01 35.84 18.07/53.16 76.34/84.54/61.98
HRED Y Multi 1267 25.01/19.23 33.98 18.33/53.25 74.78/34.13/60.3
DSTC7 It 108.5 24.26/16.1T 27.26 7.56/34.53  75.69/87.07/58.73
Multi 111.2 22.65/14.52 25.54 7.13/32.15 73.85/87.04/56.96
Dail It 123.7 26.99/20.82 34.69 19.64/57.47 76.56/85.38/60.77
VHRED Y Multi 1244 25.11/19.14 32.68 17.72/55.89 74.39/34.33/59.31
DSTC7 Tt 114.6 28.66/19.04 29.42 8.57/35.12  80.99/88.31/63.96
Multi 125.4 26.87/18.44 28.49 7.54/35.12 78.54/87.19/63.56
Dail It 156.5 18.11/15.72 27.15 8.75/32.34  75.37/79.67/62.08
Trans Y Multi 160.5 16.65/14.36 27.42 7.87/31.33  74.36/78.23/61.32
) DSTC7 It 123.3 25.55/17.57 26.44 6.54/32.12  75.09/86.88/57.97
Multi 124.3 23.55/16.55 24.87 6.12/30.35 75.01/85.32/57.89
Dail It 153.5 19.43/17.56 29.3 9.05/30.34  76.22/80.89/63.28
HTrans Y Multi 154.7 17.87/18.04 28.88 9.87/30.54 76.86/30.23/62.67
) DSTC7 Tt 124.5 26.76/18.97 25.67 7.56/34.56 76.11/85.12/57.44
Multi 123.6 24.88/18.95 24.77 7.45/32.17 76.59/85.07/56.21

Table 5: Zero-shot results of models on Italian. It repre-
sents models is trained on monolingual Italian.

2002) and ROUGE-L (Lin, 2004) (abbreviated as
RL) for evaluating response generation. BLEU
and ROUGE-L metrics evaluate the response based
on o-occurrence properties of tokens. Embedding-
based metrics (Average, Exterma and Greedy) (Liu
et al., 2016; Xu et al., 2018; Sedoc et al., 2019)
can reflect the quality of the generated responses
at the semantic level. Human Evaluation: We
further conduct human evaluations to assess the
proposed learning framework. We select Chinese
and English dialogue systems for human evaluation
on DailyDialog and DSTC7. We ask three crowd-
sourced graduate students to evaluate the quality
of generated responses for 100 randomly sampled
input contexts. We request annotators to choose a
preferred response, or vote a tie, considering the
following aspects of response quality: fluency, in-
formativeness, coherence, and engagingness.

4.5 Effectiveness of Data Augmentation

In particular, models based on transformer do not
employ pre-trained language model as the initial
checkpoint and train from scratch. In addition,
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Models  Datasets Types PPL  BL-1/2 RL  Dist-1/2 Embed A/E/G
Dail Ru  123.8 28.43/22.16 37.51 21.36/53.56 78.07/85.83/64.34
HRED Y Multi 127.6 27.57/21.57 36.65 20.54/52.15 76.32/84.84/64.37
DSTC7 Ru  119.5 28.21/14.25 29.95 10.22/35.21 80.68/86.61/64.17
Multi 116.5 27.99/18.19 28.93 9.32/35.12  81.38/88.68/63.51
Dail Ru  134.3 27.96/21.88 35.66 21.46/55.88 78.66/85.63/63.22
VHRED "Y' Multi 1332 25.43/20.47 33.23 20.13/53.17 76.98/85.65/63.22
DSTC7 Ru  103.6 29.49/17.02 34.25 11.15/36.61 79.96/86.13/66.41
Multi 107.7 27.77/16.87 34.77 10.86/34.65 80.03/86.88/65.74
Dail Ru  144.6 21.53/13.77 27.68 9.57/34.93  78.37/81.55/64.5
Trans Y Multi 147.9 20.54/13.28 27.43 8.76/33.98 78.54/80.13/62.19
i DSTC7 Ru  123.3 25.66/13.27 27.84 9.46/32.67 78.88/84.55/65.14
Multi 125.4 24.65/12.09 25.48 8.91/30.54 77.99/84.33/64.87
Daily Ru  143.1 20.77/14.65 28.49 9.68/35.20 78.75/81.33/63.05

Multi 147.6 18.44/13.76
DSTC7 Ru  127.8 24.87/14.77

Multi 128.6 22.76/13.56

26.35 9.02/33.89
26.46 9.13/31.66
24.32 8.25/29.78

78.96/79.57/63.06
77.88/83.67/65.03
77.54/81.98/65.23

HTrans

Table 6: Zero-shot results of models on Russian. Ru
represents models is trained on monolingual Russian.

the performance of models based on transformer
perform worse than RNN in experiments due to the
limited training datasets.

Table 1 reports the results of models on Dai-
lyDialog and DSTC7 using monolingual English
corpus and data augmentation based on multilin-
gual code-switching languages. We can observe
that the performances of models are greatly im-
proved when using data augmentation based on
multilingual code-switching. Specifically, the per-
formances of models using data augmentation with
multilingual code-switching is 0.2% to 13.2% on
PPL, 0.81% to 4.38% higher on BLEU-1, 1.4% to
3.7% higher on BLEU-2, 0.59% to 2.41% higher on
Rouge-L, 0.54% to 1.43% higher on dist-1, 0.46%
to 2.64% higher on dist-2, and 1.27% to 2.41%
higher on average embedding compared with mod-
els using monolingual English corpus. The data
augmentation approaches with multilingual code-
switching can enhance the representation ability of
models and improve the quality of the responses
through learning common features between differ-
ent languages.

4.6 Zero-shot Dialogue Generation

Different from Table 1, Table 2 to Table 7 report
the results of zero-shot generation using MulZDG
based on multilingual code-switching languages.
The performances of models trainging on multilin-
gual code-switching languages can achieve com-
petitive results under zero-shot case compared with
on corresponding monolingual language. On Ger-
man DailyDialog and DSTC?7, the performances
of models under zero-shot case is 0.1% higher on
PPL, 1.23% lower on BLEU-1, 0.93% on Rouge-L,
0.71% on dist-1 and 0.51% on average embedding
compared with models training on monolingual

HRED

VHRED

Figure 4: Semantic alignment visualization. The left
presents the visualization of utterance vectors for mod-
els trained on monolingual language. The right demon-
strates the visualization of utterance vectors for models
trained on multilingual code-switching languages based
on MulZDG. The label lan-N1-Ns represents the num-
ber of the utterance, where lan stands for language, V;
stands for the number of data sample and N5 indicates
the utterance number of utterances in dialogue history.

corpus according to Table 2. On French DailyDia-
log and DSTCY7, the performances of models under
zero-shot case is 2.9% lower on PPL, 0.93% lower
on BLEU-1, 1.34% on Rouge-L, 0.27% on dist-1
and 0.16% on average embedding compared with
models training on monolingual corpus according
to Table 4. On Chinese datasets, the performances
of models under zero-shot case is 2.1% lower on
PPL, 0.91% lower on BLEU-1, 1.57% on Rouge-L,
0.44% on dist-1 and 0.62% on average embedding
compared with models training on monolingual
corpus according to Table 7.

We can observe the similar results on other lan-
guages. MulZDG adopts a multi-task approach to
generate responses in different languages. On the
one hand, sharing the structure between multiple
tasks is benefical for models to exploit the com-
mon features between different languages. On the
other hand, sharing task mechanism between mul-
tilingual code-switching languages is beneficial to
enhance the semantic alignment ability of models
between different languages.

4.7 Impact of Multilingualization

To explore the effect of multilingual code-
switching languages, we conduct further experi-
ments. Figure 3 demonstrates the effect of the
number of languages on models performance. We
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Models  Datasets Types PPL  BL-1/2 RL  Dist-1/2 Embed A/E/G

Zh  127.4 23.52/19.52 30.83 9.5/43.37  83.05/83.77/68.42
Multi 124.3 21.34/18.11 28.33 9.05/42.07  83.56/82.75/66.88
Zh  108.1 18.07/12.68 26.78 4.06/25.24  85.32/86.27/73.63

DSTC7 Multi 116.7 17.91/11.55 24.83 4.04/23.81 85.8/86.34/72.29

Daily
HRED

Zh  125.6 24.54/20.03 31.28 11.22/46.08 83.17/84.43/67.77
Multi 127.3 24.57/19.09 29.88 9.97/44.13  82.18/84.32/66.49
Zh 1104 19.92/13.32 27.61 4.56/26.57 85.79/86.54/72.01

DSTC7 Multi 116.5 17.98/12.65 26.17 4.36/24.79 84.15/85.32/72.4

Daily
VHRED

Zh  165.7 15.55/11.54 24.38 7.89/33.47 79.32/80.46/66.21
Multi 167.4 15.13/10.33 22.99 6.54/31.44  76.98/78.54/66.21
Zh 1234 18.77/12.45 26.58 4.15/24.46  83.56/85.67/71.77

DSTC7 Multi 123.3 18.04/11.87 25.37 4.54/23.87 84.13/83.51/70.7

Daily
Trans

Zh  166.8 16.92/11.83 25.66 8.61/34.21 79.92/81.51/66.54
Multi 167.7 15.66/11.09 24.76 7.96/33.2  78.99/80.23/66.46
Zh  134.5 19.04/12.44 25.67 4.32/25.67 84.39/85.19/70.65

DSTC7 Multi 135.4 18.45/11.32 23.87 4.32/25.33  83.79/83.99/69.69

Daily
HTrans

Table 7: Zero-shot results of models on Chinese. Zh
represents models is trained on monolingual Chinese.

Datasets

Models Languages Daily (%) DSTC7 (%)
Win Tie Loss Win Tie Loss
En 30 44 26 33 36 31
HRED Fr 23 56 21 23 54 23
Zh 31 35 34 32 33 35
En 38 32 30 30 45 25
VHRED Fr 16 63 21 11 82 7
Zh 36 29 35 30 37 33

Table 8: Human evaluation on DailyDialog and DSTC7
(multilingual VS monolingual). On English corpus,
we compare the the performances of models training
using data augmentation of multilingual code-switching
with monolingual English corpus. On other languages,
we compare the performances of models under zero-
shot using multilingual code-switching languages with
corresponding monolingual corpus.

select German as the target language (other lan-
guages are available), HRED and VHRED as the
tested models. The performances of bilingual code-
switching languages on HRED and VHRED are
dramatically lower than models trained on the cor-
responding monolingual training set. However, the
performances of models are gradually improved
with the number of languages increases. We can
only add up to seven languages due to the limita-
tions of our constructed corpus. We can conclude
that MulZDG fails to work well in zero-shot case
when the number of languages is small according
to 3. More constructive conclusions require fur-
ther experimental evaluation in the case of more
languages in the future, such as hundreds of lan-
guages.

4.8 Multilingual Mechanism Analysis

We conduct extensive experiments to explore how
the multilingual mechanism works. We select
1,000 multilingual parallel examples from Dai-
lyDialog, about 4,536 utterances in total and vi-

sualize the representations of these examples in
HRED and VHRED based on MulZDG trained on
different monolingual languages and multilingual
code-switchinig languages, respectively. Figure 4
presents the results of the utterances representation
visualization on HRED and VHRED. The represen-
tations of utterances based on different monolin-
gual languages are clustered into different language
categories while representations of utterances on
multilingual code-switchinig languages are clus-
tered together according to semantics. Utterances
in different languages expressing same semantics
will be clustered together, which demonstrates that
MulZDG will do semantic alignment between dif-
ferent languages. This phenomenon presents that
MulZDG pays attention to the common features
between different languages.

4.9 Human Evaluation

Although automatic evaluation metrics have been
shown to be reliable, we still conduct human eval-
uations to confirm the validity of the MulZDG.
We compare the performance of models training
on multilingual code-switching languages and on
corresponding monolingual language. Table 8 re-
ports the results of human evaluation of HRED and
VHRED on three languages (i.e., English, French
and Chinese). We can observe that the perfor-
mances of models using data augmentation with
multilingual code-switching is on average 6.0%
higher on DailyDialog and 3.5% higher on DSTC7
than using monolingual English corpus. Besides,
the performance of models under zero-shot is on
average 5% lower on DailyDialog and 2% lower
on DSTC7 than using coresponding monolingual
corpus. These results demonstrate that multilingual
code-switching framework can not only be consid-
ered as a data augmentation method but also be
employed to zero-shot dialogue generation.

5 Conclusion and Future Work

In this paper, we propose a simple but effective
multilingual framework: MulZDG, which can not
only be used as an approach of data augmentation
but also be used to zero-shot dialogue generaton.
Besides, we release the multilingual versions of
DailyDialog and DSTC7 datasets. In the future, we
will explore the working mechanism and effect of
large-scale multilingual code-switching languages
(e.g., hundreds of languages) in the problem of
zero-shot dialogue generation.
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A Appendix
A.1 NMT Systems

We simulate distribution differences between train-
ing and test datasets through using different transla-
tion systems. The NMT systems employed for the
training set are Helsinki-NLP/opus-mt-en-tar”. ’tar’
represents the target languages, which includes Chi-
nese, German, Russian, Spanish, French and Ital-
ian. And we employ T5-base? to translate the test

Zhttps://huggingface.co/Helsinki-NLP/
3https://huggingface.co/t5-base
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Models  Types Responses

En  Ilike travelling. like my experience and i have a good idea.

HRED Aug I like travelling. I travel frequently.
En i like sports. I like travelling.
VHRED Aug I like travelling. I’ll do it next time.
Gold Response Yes, I like travelling. I am young, and unmarried.

It’s no problem for me to travel frequently.

Table 9: Case study for data augmentation on Daily dataset. The English context is "What are your personal
weaknesses? I'm afraid I'm a poor talker. I'm not comfortable talking with the people whom I have just met for the
first time. That is not very good for business, so I have been studying public speaking. Are you more of a leader or a
follower? I don’t try to lead people. I'd rather cooperate with everybody, and get the job done by working together.
Do you think you can make yourself easily understood in English? Yes, in most circumstances. Are you available for
travel?"

datasets into German and French. For Russian, Chi-
nese, Spanish and Italian we employ WMT19-en-
ru?, WMT-en-zh®, mbart-en-es® and Google NMT
system, respectively.

A.2 Dictionaries

(Lample et al.) employs FastText (Bojanowski
et al., 2017) methods on the source and target
monolingual corpora to train word embeddings
and then applies the unsupervised method (Con-
neau et al., 2017) to infer a bilingual dictionary.
(Lample et al.) provides 110 bilingual dictionaries
which can be used for word-by-word translation.
According to statistics, there are 101,997 De-En
word pairs, 112,583 Es-En word pairs, 113,324 Fr-
En word pairs, 103,613 It-En word pairs, 48,714
Ru-En word pairs and 21,597 Zh-En word pairs.

A.3 Case Study

An case study is provided in Table 9 to demon-
strate the values of augmented data. We can ob-
serve that the responses of HRED and VHRD con-
tain context-independent information without using
data augmentation. Specifically, "like my experi-
ence and i have a good idea" in HRED and "i like
sports" in VHRED are context independent. The
responses generated by HRED and VHRED are
more informative and more coherent when using
data augmentation. Models can utilize cross lin-
guistic knowledge to generate more informative
and coherent responses by multilingual data aug-
mentation.

“https://huggingface.co/facebook/wmt19-en-ru

Shttps://huggingface.co/liam168/trans-opus-mt-en-zh

Shttps://huggingface.co/mrm8488/mbart-large-finetuned-
opus-en-es-translation
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