
Proceedings of the 29th International Conference on Computational Linguistics, pages 6035–6049
October 12–17, 2022.

6035

How to Find Strong Summary Coherence Measures? A Toolbox and a
Comparative Study for Summary Coherence Measure Evaluation

Julius Steen Katja Markert
Department of Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

(steen|markert)@cl.uni-heidelberg.de

Abstract
Automatically evaluating the coherence of sum-
maries is of great significance both to enable
cost-efficient summarizer evaluation and as a
tool for improving coherence by selecting high-
scoring candidate summaries. While many
different approaches have been suggested to
model summary coherence, they are often eval-
uated using disparate datasets and metrics. This
makes it difficult to understand their relative
performance and identify ways forward to-
wards better summary coherence modelling. In
this work, we conduct a large-scale investiga-
tion of various methods for summary coherence
modelling on an even playing field. Addition-
ally, we introduce two novel analysis measures,
intra-system correlation and bias matrices, that
help identify biases in coherence measures and
provide robustness against system-level con-
founders. While none of the currently available
automatic coherence measures are able to as-
sign reliable coherence scores to system sum-
maries across all evaluation metrics, large-scale
language models fine-tuned on self-supervised
tasks show promising results, as long as fine-
tuning takes into account that they need to gen-
eralize across different summary lengths.

1 Introduction

Automatically generated summaries should not
only be informative, but also well-written and co-
herent. While informativeness is routinely evalu-
ated automatically with ROUGE (Lin, 2004), there
is no agreement on how to evaluate summary co-
herence. However, automatic evaluation is highly
desirable to reduce evaluation costs and as a tool
for improving summarizer output, e.g. as reranker.

Many coherence measures (CMs) have been
suggested for automatically assigning a coher-
ence score to a summary, including learning from
human judgements (Barzilay and Lapata, 2008;
Tien Nguyen and Joty, 2017; Xenouleas et al.,
2019; Mesgar et al., 2021), learning from the shuf-
fle task (Mohiuddin et al., 2021; Jwalapuram et al.,

2022), where models are trained to discriminate
original documents from documents with random-
ized sentence order (Barzilay and Lapata, 2008), us-
ing next sentence prediction as a proxy task (Koto
et al., 2022), and finally unsupervised measures
that exploit heuristics (Pitler et al., 2010; Zhu and
Bhat, 2020) or large-scale LMs (Yuan et al., 2021).
CM performance is then evaluated by comparing
the automatic scores to human coherence scores on
a set of system summaries.

However, this evaluation is often conducted on
disparate datasets. It also often uses system out-
puts from DUC conferences (Barzilay and Lap-
ata, 2008; Tien Nguyen and Joty, 2017; Xenouleas
et al., 2019; Mesgar et al., 2021), which do not
necessarily represent recent advances in text sum-
marizers. In addition, there is no agreement on
how the CM scores should be compared to human
scores. System-level correlation (Xenouleas et al.,
2019; Fabbri et al., 2021), pairwise ranking accu-
racy (Barzilay and Lapata, 2008; Tien Nguyen and
Joty, 2017; Mesgar et al., 2021) and summary-level
correlation (Yuan et al., 2021) have all been sug-
gested as evaluation metrics (EMs).

This makes it hard to ascertain the state of sum-
mary coherence modelling and to identify promis-
ing directions for future research. We attack this
problem by making the following contributions:

• We show that current EMs provide an incom-
plete picture of CM performance as they focus
on comparing summaries generated by differ-
ent summarizers, which includes many easy
decisions due to the large performance gaps
between them. Additionally, they are vulner-
able to CMs exploiting confounding system
properties to correctly rank systems without
modelling coherence.

• We introduce a new EM, intra-system corre-
lation, that measures performance within the
summaries generated by a single summarizer
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and is both more challenging and more re-
silient against system-level confounders.

• We introduce bias matrices as a novel analysis
tool that allow to easily detect when CMs are
biased towards specific summarizers.

Using these insights, we conduct a large-scale com-
parison of CMs on the recent SummEval dataset
(Fabbri et al., 2021). We find that:

• All investigated CMs exhibit significant weak-
nesses under evaluation regimes other than
system-level correlation.

• Even relatively strong CMs are biased towards
outputs of certain summarizers, which raises
concern about their generalizability.

• SummEval is not conducive to entity-based
modelling, which has been successful on
many other coherence tasks (Barzilay and
Lapata, 2008; Elsner and Charniak, 2011;
Tien Nguyen and Joty, 2017; Mesgar et al.,
2021).

• While most of the shuffle-based models trans-
fer poorly to summaries, which is in line with
prior results by Mohiuddin et al. (2021), the
most promising performance is achieved by
fine-tuning a masked language model (MLM)
on the shuffle task as a classifier. We present
evidence that this allows the model to adapt
more easily to comparing documents of differ-
ent content and lengths, highlighting a possi-
ble avenue for future work.

Code and data for our experiments are avail-
able at https://github.com/julmaxi/
summary_coherence_evaluation.

2 Related Work

2.1 Coherence Measures for Summarization
Automatic coherence assessment for summariza-
tion has been studied in a variety of settings. Barzi-
lay and Lapata (2008) establish summary coher-
ence as an evaluation task to assess CMs similarly
to other downstream tasks such as essay scoring
(Jeon and Strube, 2020, among others) and readabil-
ity assessment (Mesgar and Strube, 2015, among
others). Specifically, Barzilay and Lapata acquire
coherence labels for human and system summaries
from DUC 20031. The same dataset has been used

1https://duc.nist.gov

for evaluating subsequent CMs (Tien Nguyen and
Joty, 2017; Mesgar et al., 2021).

As a part of automatic linguistic quality estima-
tion, summary coherence is modelled alongside
other aspects of text quality such as grammaticality,
with the direct goal of aiding automatic summary
evaluation. Approaches include regression mod-
els learned from human annotations (Xenouleas
et al., 2019) as well as unsupervised approaches
(Pitler et al., 2010; Zhu and Bhat, 2020; Yuan et al.,
2021). Datasets used for evaluation include the
recent SummEval dataset (Fabbri et al., 2021), as-
sessor judgements from DUC05-07, and the small-
scale manually annotated summaries of newsroom
(Grusky et al., 2018). In parallel work, Koto et al.
(2022) introduce a coherence measure based on
a next sentence prediction task as part of a wider
set of measures for summary evaluation that also
include focus, coverage and faithfulness. For eval-
uation, they introduce a novel small-scale dataset
based on outputs from BART (Lewis et al., 2020)
and the pointer generator model (See et al., 2017).
CMs have also been applied in a related setting
to improve summarizer quality by explicitly mod-
elling coherence during the summary optimization
process (Parveen et al., 2017; Sharma et al., 2019).

Finally, summary coherence is also sometimes
modelled using measures that make use of human-
written reference summaries (Fabbri et al., 2021;
Zhao et al., 2022). We do not focus on these CMs
in our evaluation since they are fundamentally less
flexible than reference-free CMs, especially when
used in non-evaluation contexts such as reranking.

We provide a detailed description of the CMs
used in our study in Section 5.

2.2 Meta-Evaluation

In terms of evaluation studies, Mohiuddin et al.
(2021) conduct a comparative study of five CMs.
Their evaluation is conducted on 10 summaries
each from 4 recent summarizers as well as the
DUC03 data. Unlike our study, their investigation
only encompasses CMs trained via the shuffle task
and includes only a small number of summaries.

In concurrent work on assessing system-level
correlation, Deutsch et al. (2022) propose to mod-
ify correlation computation by focusing on diffi-
cult system comparisons only and computing mea-
sure scores on a larger set of summaries. Their
approaches are complimentary to our analysis in
that they look at informativeness instead of co-

https://github.com/julmaxi/summary_coherence_evaluation
https://github.com/julmaxi/summary_coherence_evaluation
https://duc.nist.gov
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Figure 1: Distribution of human coherence scores for
the 17 systems in the SummEval dataset. The red dots
indicate the mean score of each system.

herence and do not address the shortcomings of
system-level correlation in the presence of system
level confounders. Also concurrently, Durmus et al.
(2022) identify spurious correlates in faithfulness
datasets, which suggests that our methods might be
useful beyond coherence evaluation.

3 Dataset

We evaluate CMs on the expert annotations in the
SummEval dataset2 (Fabbri et al., 2021) which is,
to the best of our knowledge, the largest dataset that
includes such coherence annotations for a variety
of state-of-the-art summarizers. It contains annota-
tions on a 1-5 scale for outputs of 17 systems for
100 documents from the CNN/DM dataset (Her-
mann et al., 2015) by three annotators each. Fig-
ure 1 highlights two important properties. Firstly,
there is a large gap in average performance between
different summarizers, and secondly, most summa-
rizers exhibit considerable variance in scores.

4 Evaluating CMs

CM performance is typically assessed on a set of
summaries generated on document set D by a set
of summarizers S using the agreement of predicted
scores P = {P(d,s)|s ∈ S, d ∈ D} with human
judgements H = {H(d,s)|s ∈ S, d ∈ D}. How-
ever, this agreement can be computed in different
ways. We identify the following common EMs:

System-level Correlation τsys assesses CM
performance by correlating the mean human and
mean CM scores of the individual summarizers.

Pairwise Accuracy Accpair assesses CM per-
formance by comparing scores on outputs of two
different systems on the same document.

Summary-level Correlation τsum compares
scores on all generated summaries.

2https://github.com/Yale-LILY/SummEval

The correlation function used is usually3

Kendall’s τ , while the pairwise metric is usually
reported as accuracy. However, we can also de-
fine the latter in terms of average τ over all docu-
ments. This is equivalent to accuracy when there
are no tied scores, with the only difference being
the range shift from [0, 1] to [−1, 1]. As both τ and
accuracy are based on pairwise rankings, we can
specify all three EMs in terms of the set of pairwise
comparisons C they consider, where Csys ⊂ 2S×S

considers comparisons between averaged system
scores and Cpair, Csum ⊂ 2(D×S)×(D×S) consider
comparisons between individual summary scores.

Csys = {(si, sj)|si ̸= sj}
Cpair = {((d, si), (d, sj))|si ̸= sj}

Csum = {((dk, si), (dl, sj))|(dk, si) ̸= (dl, sj)}

The EMs pose different demands to CMs: system-
level correlation requires a correct ranking of sys-
tems according to their average score. Pairwise ac-
curacy requires correct ranking of summaries from
different systems but only between summaries pro-
duced on the same document. Finally, summary-
level correlation requires the correct ranking of any
pair of summaries.

4.1 A new EM: Intra-System Correlation
All three EMs focus on comparisons between sum-
maries generated by different summarizers. For
system-level and pairwise evaluation this arises by
construction, whereas for summary-level correla-
tion it is contingent on the dataset structure: On
SummEval, less than 6% of comparisons for τsum
are between summaries of the same summarizer.
We argue that this gives an incomplete view of CM
performance for the following reasons:

1. SummEval covers summarizers with widely
different performance levels (see Figure 1),
leading current EMs to include many easy de-
cisions. This is unlikely to reflect real-world
evaluation of competitive summarizers.

2. While system-level evaluation is often the pri-
mary use case, CMs can also be used in a
reranking or ensembling context to select the
most coherent summary from a set of candi-
dates. In these situations, summaries are likely

3While Spearmans ρ is also sometimes used (Yuan et al.,
2021), the τ variant we use, τ -b, is more robust to ties, which
are common on the five-point rating scale in SummEval.

https://github.com/Yale-LILY/SummEval
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to be generated either by a the same sum-
marizer or a set of similarly (high) perform-
ing summarization systems. In these cases,
system-level EMs offer only limited insight
into likely CM performance, since they pri-
marily measure the ability to discriminate be-
tween different systems with potentially large
performance gaps.

3. EMs might not correlate with coherence per-
se but instead with features that happen to
identify good summarizers on a particular
dataset. Such system-level confounders are
unlikely to generalize to new systems and set-
tings. We elaborate on this in Section 4.2.

We thus suggest adding a new EM Intra-system
Correlation τintra, which we define on compar-
isons between summaries generated by the same
system. This corresponds to considering the fol-
lowing pairs Cintra ⊂ 2(D×S)×(D×S):

Cintra = {((dk, s), (dl, s))|dk ̸= dl}

It neatly complements pairwise accuracy, as it is
essentially the same computation but keeping the
summarizer constant instead of the document. Intu-
itively, this measure both contains far fewer ”easy”
decisions and is much more resilient to any system-
level confounders in the data. We use the average
of the intra-system correlation of all systems as the
correlation measure.

4.2 System-level Confounders
To assess how EMs behave in the presence of
system-level confounders, we investigate two sum-
mary features that are unlikely to be generalizable
CMs but lead to surprisingly strong correlations:
Capitalization and summarizer architecture.

For capitalization, we count the number of up-
percase letters in each summary. This is a purely
system-level heuristics, since only three of the 17
summarizers in SummEval produce capital letters4.
For architecture, we assign a score of 1 to each
summary from one of the five summarizers that
are derived from pretrained transformers in some
fashion5 and 0 to all others. Neither of the two con-
founders can, by construction, be a reasonable and
generalizable CM. Additionally, we compute an
”upper-bound” (UB) that assigns to each summary

4BART, GPT-2 (zero shot) and Pegasus (dynamic mix)
5BART, Pegasus, Pegasus dynamic Mix, T5 and GPT-2

Cap. Cap. (r) Arch. Arch. (r) UB UB (r)
τsys 0.42 0.23 0.58 0.37 1.00 1.00
τsum 0.19 0.11 0.31 0.20 0.39 0.39
τpair 0.21 0.14 0.33 0.22 0.44 0.44
Accpair 0.23 0.57 0.34 0.62 0.73 0.73
τintra - -0.03 - 0.01 - 0.00

Table 1: Results for the confounders and upper bound.
τintra for the non-random variants is undefined, as
scores within each system are constant. Scores for the
random variants (r) are averaged over 100 runs.

the mean human score of the system that produced
the summary. It simulates perfect system ranking,
but no ability to correctly rank summaries within
each system. Since these procedures result in many
ties, we also compute a second variant of each con-
founder where we add small noise to each score.
This prevents τ -b from profiting from these ties,
while preventing accuracy from unfairly suffering.

Table 1 shows the resulting correlations. Con-
founders achieve noticeable correlation with hu-
man scores. In particular, system-level correlation
comes close to or exceeds the best CM reported
originally for SummEval (CHRF (Popović, 2017),
0.40). In contrast, using intra-system correlation,
the problems of these pseudo-measures become
easily apparent. In practical scenarios, system-level
correlation might be a mix of modelling coherence
and reliance on confounders. Intra-system evalu-
ation is an important tool in this context as it is
robust to system-level confounders.

5 Coherence Measures

We identify the following families of reference-free
CMs for summarization and include representa-
tives of each in our study: supervised CMs trained
on human coherence ratings of summaries, self-
supervised CMs trained on the shuffle task and
unsupervised CMs. For the supervised setting, we
investigate measures trained on data from DUC03
(Barzilay and Lapata, 2008) as well as the DUC05-
07 dataset used by Xenouleas et al. (2019). While
the DUC03 dataset is set up as a pairwise ranking
dataset, the DUC05-07 dataset is used in a regres-
sion setting. Table 2 indicates the configurations
available for the different CMs.

The Extended Entity Grid (EEG) (Elsner and
Charniak, 2011) is an extension of the Entity Grid
of Barzilay and Lapata (2008). It represents texts
using occurrence patterns of the mentioned entities
across sentences. The model uses a generative
approach that models the probability of an entity
appearing in a specific role in a sentence, given its
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EEG EGR NEG UNF GRA CCL SQE GRU BAS
Unsupervised (a)

Shuffle (b)

Supervised (DUC03)
Supervised (DUC05-07)

Table 2: Training settings for the CMs under investigation. (a) The extended entity grid estimates the multinomial
distribution of an entity’s role given its prior occurrences. While this needs a dataset to estimate the distribution, it
can not be trained as a classifier. (b) BART includes shuffling as a pretraining task.

role in the two preceding sentences.
The Entity Graph (EGR) (Guinaudeau and

Strube, 2013) constructs a sentence graph of a doc-
ument by identifying entity overlap between sen-
tences. Two sentences are connected if they share
at least one entity, with edge weights decreasing
when they are further apart. The score of a docu-
ment is the average outdegree of sentences, with
higher outdegree indicating better coherence.

The Neural Entity Grid (NEG) (Tien Nguyen
and Joty, 2017) applies a convolutional network to
the entity grid. The model is trained on a pairwise
ranking loss.

The Unified Model (UNF) (Moon et al., 2019)
is a lexical CM that uses a convolutional network
to build sentence representations from raw text.
The model uses an adapted version of the ranking
loss for the shuffle task that is computed only for
three sentence windows in which shuffled and orig-
inal documents differ. We use the model based on
ELMo (Peters et al., 2018), as it performs best in
the original paper.

The Graph-based Neural Coherence Model
(GRA) (Mesgar et al., 2021) is a recent CM that
combines entity-based representation with lexical
information in a graph NN. Like the previous two
models, it employs a pairwise ranking loss.

Recently, Laban et al. (2021) have shown that a
RoBERTa-based (Liu et al., 2019) classifier can eas-
ily achieve near-perfect results on the shuffling task
on WSJ. However, they did not test whether this
model can predict coherence on non-artificial tasks.
We thus include a simple RoBERTa model that
is trained to classify shuffled vs. unshuffled sum-
maries, naming it Coherence Classifier (CCL).6

SumQE (SQE) (Xenouleas et al., 2019) predicts
five linguistic quality scores via multi-head regres-
sion on human scores. We use the coherence head
of the model trained on all three DUC datasets.7

6We found that the original WSJ-model does not perform
well on SummEval. Thus, we retrained our own model, using
the same RoBERTA checkpoint as a basis.

7https://archive.org/download/sum-

GRUEN (GRN) (Zhu and Bhat, 2020) is a collec-
tion of unsupervised measures for linguistic quality
that combines multiple unsupervised heuristics.

BARTScore (BAS) (Yuan et al., 2021) uses the
probability of a summary under a pre-trained BART
model as a score. We use the variant fine-tuned on
CNN/DM summaries in the source-to-summary
configuration, as suggested by the authors.

Finally, we include an upper and lower bound:
RND assigns each summary a uniformly chosen
score between 0 and 1. For HUM, we use the Summ-
Eval human annotations and select the annotator
with the worst overall correlation to the remaining
annotators and use their scores as predictions.8

We train all shuffling models on the WSJ corpus
of newswire articles, which is frequently used in
coherence modelling (Elsner and Charniak, 2011;
Guinaudeau and Strube, 2013; Moon et al., 2019;
Mohiuddin et al., 2021). We also train models us-
ing the same technique on reference summaries
from the train portion of CNN/DM. For EEG we
also estimate model parameters on both datasets.
For WSJ, we follow the original implementations
regarding the number of shuffled samples. For
CNN/DM, we only use a single shuffled instance
per summary, as it is larger by two orders of magni-
tude (WSJ: 1,400; CNN/DM: 287,113 documents
before shuffling). Detailed accounts of our experi-
ments with each CM are found in Appendix A.

6 Results

We present the correlation of all CMs with human
coherence ratings in Table 3. We report (average)
Kendalls τ for all EMs introduced in Section 4. For
Cpair we additionally report accuracy. Per-system
scores for intra-system correlation can be found in
Appendix B.

Focusing on τsys first, we find that CCL, BAS,
GRN and to a lesser extent SQE achieve relatively

qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
8We note that unlike automatic measures, humans may

only differentiate among five classes. We might thus underes-
timate actual human performance.

https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
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Metric τintra τpair τsum τsys Acc.pair
HUM +0.75 (+0.70 +0.79) +0.81 (0.76, 0.85) +0.81 (+0.77 +0.84) +0.91 (+0.71 +1.00) +0.77 (+0.71 +0.81)

RND -0.00 (-0.06 +0.05) -0.00 (-0.07 +0.06) +0.00 (-0.05 +0.05) +0.09 (-0.41 +0.53) +0.50 (+0.46 +0.54)

EGR -0.04 (-0.12 +0.04) -0.11 (-0.19, -0.02) -0.09 (-0.16 -0.01) -0.25 (-0.59 +0.10) +0.40 (+0.36 +0.44)

EEG C/D +0.02 (-0.07 +0.10) +0.04 (-0.10 +0.18) +0.06 (-0.06 +0.17) -0.19 (-0.68 +0.26) +0.52 (+0.45 +0.59)

EEG WSJ +0.02 (-0.06 +0.10) +0.00 (-0.09 +0.11) +0.03 (-0.06 +0.11) -0.19 (-0.60 +0.26) +0.50 (+0.44 +0.55)

NEG C/D -0.07 (-0.14 -0.00) -0.05 (-0.14 +0.07) -0.06 (-0.15 +0.03) -0.15 (-0.61 +0.32) +0.47 (+0.42 +0.53)

NEG DUC -0.08 (-0.16 +0.01) -0.06 (-0.18 +0.06) -0.07 (-0.17 +0.04) -0.06 (-0.49 +0.31) +0.47 (+0.40 +0.53)

NEG WSJ -0.02 (-0.08 +0.05) -0.08 (-0.17 +0.00) -0.07 (-0.15 +0.02) -0.43 (-0.69 -0.05) +0.45 (+0.41 +0.50)

UNF C/D +0.04 (-0.03 +0.11) +0.05 (-0.05 +0.14) +0.06 (-0.01 +0.13) +0.13 (-0.33 +0.59) +0.53 (+0.48 +0.57)

UNF WSJ +0.02 (-0.05 +0.09) -0.11 (-0.26 +0.03) -0.04 (-0.15 +0.05) -0.09 (-0.51 +0.39) +0.44 (+0.36 +0.52)

GRA DUC -0.04 (-0.12 +0.03) -0.05 (-0.16 +0.03) -0.06 (-0.13 +0.01) -0.19 (-0.65 +0.25) +0.47 (+0.43 +0.52)

GRA C/D +0.08 (+0.02 +0.15) +0.09 (-0.02 +0.19) +0.11 (+0.01 +0.18) +0.37 (-0.07 +0.69) +0.55 (+0.49 +0.60)

GRA WSJ +0.08 (+0.01 +0.15) -0.01 (-0.11 +0.10) +0.02 (-0.06 +0.12) -0.09 (-0.47 +0.37) +0.49 (+0.44 +0.55)

CCL C/D +0.26 (+0.19 +0.33) +0.40 (+0.31 +0.49) +0.39 (+0.31 +0.44) +0.62 (+0.30 +0.86) +0.71 (+0.66 +0.76)

CCL WSJ +0.20 (+0.12 +0.26) +0.35 (+0.25 +0.46) +0.33 (+0.24 +0.41) +0.74 (+0.40 +0.92) +0.69 (+0.63 +0.74)

BAS +0.17 (+0.08 +0.26) +0.37 (+0.23 +0.51) +0.32 (+0.20 +0.42) +0.72 (+0.42 +0.89) +0.69 (+0.62 +0.77)

GRN +0.18 (+0.12 +0.25) +0.26 (+0.17 +0.35) +0.27 (+0.19 +0.34) +0.72 (+0.38 +0.89) +0.63 (+0.58 +0.69)

SQE +0.19 (+0.13 +0.26) +0.26 (+0.15 +0.36) +0.24 (+0.15 +0.32) +0.51 (+0.05 +0.80) +0.64 (+0.58 +0.69)

Table 3: Results on SummEval for all CMs. Correlation is expressed in Kendall’s τ . Numbers in brackets indicated
95% CIs computed using bootstrap resampling (Deutsch et al., 2021) with 1000 samples. Highest are bold.

high scores while the remaining CMs fail to out-
perform even the random baseline. However, in-
spection of τsum, τpair/Accpair and τintra reveals
that even these apparently strong CMs struggle to
reliably assess coherence of individual summaries,
with τintra being the most challenging regime.
Comparing CMs, CCL C/D is most promising
across all EMs except τsys, where scores are near
indistinguishable due to high uncertainty. Inter-
estingly, we find that its advantage is greatest
on τintra, where its competitors exhibit particu-
lar weakness compared to other EMs. These sharp
score drops might suggest other EMs reflect some
system-level confounders. In combination with the
observation that confounder scores as reported in
Table 1 fall within the 95% CI of most CMs on all
EMs except τintra this prompts us to investigate
CMs for potential biases in the following section.

6.1 Detecting Biases of CMs

We have shown in Section 4.2 that CMs can appear
to correlate with human coherence judgements by
exploiting system-level confounders. However, it
is unclear to which extent this just holds for our
artificial confounders or is also an issue in realistic
CM evaluation. We therefore introduce bias ma-
trices, a tool that allows us to easily inspect the
decisions made by a CM by separately analyzing
consistent and inverted pairs of summaries from
different summarizers. Based on human scores, we
call a summary pair consistent if the higher-scoring
summary is produced by the summarizer with the
higher average score, whereas we call a pair in-

verted if the overall worse summarizer produces a
stronger summary. We are specifically interested
in finding instances where a CM ranks consistent
pairs for a strong summarizer correctly, but fails to
correctly rank its inverted pairs. This is indicative
of a CM having a bias towards outputs of this partic-
ular summarizer, instead of measuring coherence.
Since for strong systems, most pairs are consistent,
this can still result in many correct comparisons.

Given predicted and human scores P,H as in
Section 4 and systems s1, s2 with s1 having a
higher average human score than s2, we define
two new metrics. τ+ indicates the ability of a CM
to rank consistent pairs, whereas τ− indicates the
same for inconsistent pairs. For τ+ we define:

H+ := {(di, dj)|H(di,s1) > H(dj ,s2)}
P+ := {(di, dj)|P(di,s1) > P(dj ,s2)}

τ+ :=
2|H+ ∩ P+| − |H+|

|H+|
For τ− we invert the comparisons.9 Both τ+ and

τ− are bounded between -1 and 1. If the ranking is
-1, this indicates the ranking is always incorrect, 1
always correct. To derive the |S| × |S| bias matrix
T, we order systems s1 . . . sn in descending order
of their average human score. We then have:

Tij :=


τ+(si, sj) i < j

τ−(sj , si) i > j

0 i = j

9If s1 is better than s2 on every document, τ− is undefined.
In this case, biased and unbiased CMs are indistinguishable.



6041

Figure 2: Bias Matrices for the best CMs. We also show the bias matrix for the architecture confounder for reference.
See Figure 3 for a brief tutorial to bias matrix analysis.

We visualize T for the most promising CMs
in Figure 2. To aid interpretation, we provide an
annotated version for scores generated by BAS
in Figure 3. We find that GRN and BAS show a
very strong preference for summaries generated
by BART, ranking them almost universally higher
even when this disagrees with human judgements.
In case of BAS this is unsurprising, since BART and
BAS use the same underlying model. For GRN the
reason is less clear, though analysis in Section 7.2
suggests that it might rely on the higher grammati-
cality of BART output. For the other CMs, biases
are less evident, though CCL C/D shows a slight
preference for BART and Pegasus and CCL WSJ
has a slight bias towards LEAD and GPT-2.

7 CM Analysis

7.1 Correlation with Shuffle-Performance

Mohiuddin et al. (2021) have shown that the perfor-
mance of CMs on the shuffle task is not predictive
for performance on summary coherence evaluation.
However, at the same time, the shuffling-based
CCL shows comparatively strong performance in
our experiments. To better understand the rela-
tion between shuffling and summary coherence, we
test the ability of all CMs to discriminate shuffled

and non-shuffled reference summaries from the test
split of CNN/DM. Results are in Table 4.

Of the CMs that perform best on coherence eval-
uation (see Table 3), most also perform well on the
shuffling task (CCL, BAS, SQE). Only GRN fails
on this task. This is troubling as we would expect
any CM that is able to identify coherent summaries
on SummEval to be able to identify at least some
shuffled reference summaries. This suggests that
GRN models coherence only indirectly via proxy
variables, which we elaborate on in Section 7.2.

For the entity-based measures EGR, EEG and
NEG, their difficulties on the SummEval dataset are
also reflected in the shuffle task. This suggests that
these CMs struggle generally on CNN/DM-style
summaries. In Section 7.3 we demonstrate that this
is due to the overall lack of entity overlap in this
dataset. Finally, UNF C/D and GRA are outliers in
that they show shuffle performance on CNN/DM
that is similar or better than SQE but still perform
near random on SummEval coherence modelling.
We investigate this in Section 7.4.

7.2 GRUEN

GRN works well for system-level correlation yet is
incapable of solving the shuffle task. This prompts
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Figure 3: Bias matrix for BAS with specific analysis for BART and Pegasus. The upper triangular matrix indicates
τ+ for the given summarizer pair, the lower τ−. The area of each circle is proportional to the number of pairs
in H+/H− for the cell. To read off the behaviour of the CM on a specific summarizer, we follow both the
corresponding row and column. A high score in the row, combined with a low score in the corresponding cell in the
column implies the CM is biased towards generations by this particular summarizer.

Corpus EGR EEG NEG GRA UNF CCL BAS GRN SQE

C/D 0.426 0.523(c)
0.498(w)

0.524(c)
0.603(w)

0.522(d)

0.838(c)
0.623(w)

0.439(d)

0.803(c)
0.589(w)

0.929(c)
0.862(w)

0.896 0.504 0.707

WSJ (orig.) 0.889 0.840 0.855 0.924 0.93 0.97 - - -

Table 4: Shuffle accuracies on CNN/DM for 1000 randomly sampled reference summaries. (c) means that the model
was trained on CNN/DM (w) on WSJ and (d) on DUC03. Baseline accuracy would be 50%. For reference, we also
list originally reported shuffle results on full WSJ articles as originally reported where applicable.

Cola Redun. LM Focus
Cola 0.57 0.71 0.59 0.63
Redun. 0.51 0.57 0.51
LM 0.15 0.35
Focus 0.49

Table 5: Performance of GRN constituent measures.
Cells indicate system-level correlation of the combi-
nation of the respective measures. Individual measure
performance is indicated on the diagonal.

us to investigate its individual components. In the
reference implementation, GRN computes the sum
of three scores to determine the overall score.10

Grammaticality is assessed per sentence by a
classifier trained on the CoLA corpus (Warstadt
et al., 2019) and the average log probability under
a BERT model. Redundancy is estimated by a
fixed penalty whenever any sentence pair has token
overlap above a predetermined threshold. Focus

10The coherence score reported in the paper is not part of
the reference implementation. We have confirmed that this is
intentional in personal communication with the authors.

is scored by word-mover-similarity (Kusner et al.,
2015) of neighbouring sentences.

Table 5 shows the system-level correlation of
the individual scores and all pairwise combinations.
CoLA plus redundancy alone account for almost
the full system-level correlation of 0.72. Since nei-
ther score is dependent on sentence order, they can
by design not fully account for summary coherence,
raising considerable doubt about the generalizabil-
ity of GRNs performance on this task.

7.3 Entity Driven Measures

To explain why EEG, EGR and NEG perform poorly
even on the shuffle task, we investigate the role
of entity (re-)occurrences in CNN/DM summaries.
Table 6 shows that both reference summaries and
SummEval data have very little lexical entity over-
lap in between sentences.11 A considerable number
of summaries in both SummEval and CNN/DM
show no entity overlap between any of their sen-
tences. Therefore entity-based models are inher-

11As determined by the Brown Coherence Toolkit. See
Appendix A.
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Corpus Docs Sents
CNN/DM Ref. 0.287 0.458
SummEval 0.178 0.301
DUC03 0.014 0.121

Table 6: Proportion of documents without any entity
overlap, as well as average ratio of sentences without
entity links per document for various datasets.

ently limited, at least when using lexical overlap
to determine entity re-occurrence. We leave a thor-
ough investigation of solutions like better corefer-
ence resolution or using embedding based methods
as in Mesgar and Strube (2016) to future work.

7.4 Global Training vs. Pairwise Ranking

While CMs that fail the in-domain shuffling task
are likely to be unsuitable for CNN/DM summaries,
it is less clear why CMs with reasonable shuffle
performance fail on SummEval like UNF C/D and
GRA C/D. We theorize that one reason is that both
UNF and GRA are trained on a margin-based rank-
ing loss between shuffled and non-shuffled vari-
ants of the same document, which implies that both
have the same tokens and number of sentences. The
training loss thus does not impose constraints on
the behaviour of the function between inputs of dif-
ferent lengths and tokens. Since SummEval, unlike
e.g. DUC, has no agreed upon length constraint,
this is problematic.12 In contrast, the classifica-
tion objective of CCL enforces a globally correct
ranking of shuffled vs. unshuffled documents.

Verifying this hypothesis on SummEval directly
is difficult, since summary length is deeply con-
founded with the generating summarizer. However,
we can investigate the ability of CMs to correctly
rank documents of different lengths and content
by modifying the shuffle test to compare reference
summaries to shuffled variants of different refer-
ence summaries. Figure 4 shows the relation be-
tween the difference in length between the shuffled
and unshuffled summaries and the ranking accu-
racy of the CMs. UNF performs very poorly on
the task, especially if the original summary is long.
GRA, on the other hand, prefers longer documents,
even if they are shuffled. In contrast, CCL is consis-
tently able to correctly rank summaries regardless
of length difference. Thus, for both UNF and GRA
comparing documents of different lengths and con-
tent is a major obstacle. The stability of CCL sug-

12Summarizer length statistics are in Appendix C.

Figure 4: Ranking accuracy between shuffled and origi-
nal summaries of different lengths (in characters). We
sample 10,000 pairs and group them in buckets of 20
characters and clamp differences between -200 and 200.

gests that replacing pairwise ranking with a classi-
fication objective is a direct fix to this issue. These
results are also consistent with parallel work by
Jwalapuram et al. (2022) who extend the pairwise
shuffle-task to consider multiple negative examples.
They find that including negative samples from dif-
ferent documents in the negative set during training
improves model performance on downstream tasks.

8 Conclusion

We have investigated the performance of a wide
array of CMs for summary evaluation that have
not been previously systematically compared. Our
investigations show that CMs must be carefully
evaluated in order to avoid rewarding the mod-
elling of shallow, system-level confounders, that
are unlikely to generalize. We thus recommend re-
searchers report our newly suggested intra-system
correlation alongside other EMs and use bias ma-
trices to understand unexpected drops when going
from system-level to intra-system correlation.

There is considerable need to improve CMs be-
fore they become practical for summary coherence
modelling. Our results point towards the following
lessons for future work. Firstly, CNN/DM sum-
maries are not amenable to entity-based analysis
without considerable additional work to improve
entity detection. Secondly, self-supervised training
via the shuffle task shows the greatest promise for
future improvements. However, we show that good
shuffle performance does not naturally transfer to
coherence evaluation for settings with documents
of different lengths and contents. Training in a
classification setup instead of the more common
pairwise setup provides an effective fix for this.
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EMNLP 2020, pages 94–108, Online. Association for
Computational Linguistics.

A Implementation Details

A.1 Extended Entity Grid (EEG)

We use the original implementation that is part of
the Brown Coherence Toolkit13. For preprocessing,
we use the Stanford parser14. We identify entities
using OpenNLP as suggested in the README.

For WSJ we used the pretrained f-wsj model
provided in the toolkit. For CNN/DM we trained
our own model. We found that the implementation
ran out of memory on the 287,011 instances in
CNN/DM on our machine with 32GB of RAM. We
thus limited the instances considered for CNN/DM
to 10% of the original dataset (28,701).

A.2 Entity Graph (EGR)

Since there is no reference implementation of the
Entity Graph, we implement our own version based
on the grid created by the Brown Coherence Toolkit.
We use the PAcc measure with distance penalty
which performed best in the original paper.

A.3 Neural Entity Grid (NEG)

Since no models are publicly available, we train
new models for all settings using the reference im-
plementation15.

For DUC03 and WSJ we use the entity grids and
training pairs provided by the authors in the repos-
itory. These were also created using the Brown
Coherence Toolkit. For CNN/DM we create our
own examples, following the original settings. We
found that the original implementation of the shuf-
fling procedure leaves artifacts in the data since the
row order is unchanged between shuffled and un-
shuffled documents. However, for unshuffled docu-
ments the order of rows in the entity grid roughly
corresponds to the order of entities in the sentences,
whereas for shuffled documents this is not the case.
Since this can be picked up by the convolutional
network for short documents, we modify the in-

13https://web.archive.org/web/
20200505174052/https://bitbucket.org/
melsner/browncoherence

14https://nlp.stanford.edu/software/
lex-parser.shtml

15https://github.com/datienguyen/cnn_
coherence

Embedding Size 100
Batch Size 64
Pool Length 6
Window Size 6
Number of Filters 150
Hidden Size 250

Table 7: Best hyperparameters for the neural entity grid
on DUC03.

put data to randomly shuffle row order for each
instance.

For the shuffling tasks on WSJ we use the re-
ported hyperparameters, which we also use for
CNN/DM. For DUC, no hyperparameters were
reported, so we use the built-in hyperparameter
search. We achieve the best results using the pa-
rameters reported in Table 7.

A.4 Graph-based Model (GRA)

We use the original implementation.16 For WSJ, we
use the provided pretrained model. For DUC and
CNN/DM we train the model using default settings,
which includes an ELMo embedding layer. The
graph-representation is created from an entity grid
representation as provided by the Brown Coherence
Toolkit.

A.5 Unified Coherence Model (UNF)

We use the original implementation.17 We train
new models for CNN/DM and WSJ using default
settings. In the original implementation, scores
are computed using a sum over coherence scores
for windows of three sentences each, since in their
pairwise evaluation, samples always have the same
length. In our experiments, we use the mean over
the windows instead to normalize for length. For
completeness, we also conducted experiments us-
ing the original setting, which did not lead to any
improvement.

A.6 Coherence Classifier (CCL)

We originally experimented with the pretrained
WSJ model provided by the authors of (Laban
et al., 2021).18 However, we found that the model
achieved near-random scores when evaluated on

16https://github.com/UKPLab/emnlp2021-
neural-graph-based-coherence-model

17https://github.com/taasnim/unified-
coherence-model

18https://github.com/tingofurro/
shuffle_test

https://doi.org/10.18653/v1/2020.findings-emnlp.9
https://doi.org/10.18653/v1/2020.findings-emnlp.9
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SummEval for reasons that are difficult to as-
certain as the original training code is unavail-
able. We thus train our own coherence classifier
models for both CNN/DM and WSJ. We use the
roberta-large model as implemented in the
huggingface library (Wolf et al., 2020) in a se-
quence classification setup. We use a learning rate
of 2e− 6 and train for a maximum of six epochs.
We select the best model using f1-score on the vali-
dation set.

A.7 BARTScore (BAS)

We reimplement the finetuned BARTScore variant
using the bart-large-cnn checkpoint from
the huggingface library. Since the original model
is evaluated using Spearman’s ρ, we separately ver-
ified that it exactly reproduces the reported results.

A.8 GRUEN (GRN)

We use the scores provided by the official reference
implementation.19

A.9 SumQE (SQE)

We use the scores provided by the official refer-
ence implementation.20 We use the Q5 head of the
model jointly trained on all three DUC datasets.21

A.10 Hardware

All experiments that include neural network train-
ing (i.e. NEG, GRA, UNF, CCL) were run on a single
node with four Quadro RTX 6000 GPUs.

B Detailed Intra-System Correlation
Results

Figure 5 shows the individual intra-system corre-
lations for all summarizers in SummEval for the
best CMs and the human upper bound. We find that
CMs struggle across the whole range of summa-
rizers, including summarizers with high variance
in coherence scores, where we would expect the
task to be easier. Furthermore, we find none of the
available CMs can consistently outperform all oth-
ers. For example, BAS outperforms other CMs on
Bottom-Up and Improve-Abs, but performs signifi-
cantly worse on the top systems, including BART
itself.

19https://github.com/WanzhengZhu/GRUEN
20https://github.com/nlpaueb/SumQE
21https://archive.org/download/sum-

qe/BERT_DUC_all_Q5_Multi%20Task-5.h5

C Length Statistics

We present the length distribution of summarizer
outputs on SummEval in Figure 6.

https://github.com/WanzhengZhu/GRUEN
https://github.com/nlpaueb/SumQE
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
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Figure 5: Intra-system correlations of the best CMs as well as the human upper bound on the SummEval dataset.
Bars indicate 95% confidence intervals determined by bootstrap resampling with 1000 samples.
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Figure 6: Histograms of the lengths of summaries generated by the summarizers in SummEval and their mean
lengths. Both in characters.


