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Abstract
Large pretrained language models offer pow-
erful generation capabilities, but cannot be re-
liably controlled at a sub-sentential level. We
propose to make such fine-grained control pos-
sible in pretrained LMs by generating text di-
rectly from a semantic representation, Abstract
Meaning Representation (AMR), which is aug-
mented at the node level with syntactic control
tags. We experiment with English-language
generation of three modes of syntax relevant
to the framing of a sentence - verb voice, verb
tense, and realization of human entities - and
demonstrate that they can be reliably controlled,
even in settings that diverge drastically from
the training distribution. These syntactic as-
pects contribute to how information is framed
in text, something that is important for appli-
cations such as summarization which aim to
highlight salient information.

1 Introduction

Language models pretrained on enormous corpora
have become a staple in natural language process-
ing because of their power and adaptability (Devlin
et al., 2019; Lewis et al., 2020; Raffel et al., 2020).
These models exhibit strong performance across a
range of applications, but are not inherently control-
lable beyond the choice of input. To enforce spe-
cific constraints on their output, we must introduce
an additional mechanism for control, whether by
inserting control codes during pretraining (Keskar
et al., 2019) or by adding components to the model
(Dathathri et al., 2020). These prior methods allow
specification of high-level attributes (e.g., topic or
sentiment) but leave the specifics of sub-sentential
realization to the model.

In contrast, we present a method for controlling
generation of specific verbs and entities within a
sentence. We investigate the setting in which a
pretrained language model is used not as an end-
to-end solution, but rather to directly generate text
from a predefined content plan. Such a content plan

may be created at an intermediate stage in a given
task (e.g., as the product of content selection over
a document graph in AMR-based summarization)
but is not inherently task-specific.

Specifically, we focus on the controllability of
BART when it is fine-tuned to generate text from
an intermediate Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), a form of graphi-
cal semantic representation. We choose AMR be-
cause it is relatively widely used, including as an
intermediate representation in summarization (Liu
et al., 2015; Hardy and Vlachos, 2018) and machine
translation (Song et al., 2019), and the problem of
AMR-to-text generation is well-studied (Konstas
et al., 2017; Wang et al., 2020; Bai et al., 2020;
Zhang et al., 2020). We focus on BART because
of its competitive performance in summarization, a
task where we feel our work is particularly appli-
cable, as document-level content graphs have been
shown to be useful intermediate representations
in long-context summarization settings (Wu et al.,
2021).

Our setting makes use of the powerful genera-
tion abilities of a pretrained language model while
also exposing a direct graphical representation of
the content, which allows us to target control tags
to specific nodes in order to impose fine-grained
control (i.e., constrain the text-level realization of
specific verbs or entities). This is not possible in
an end-to-end approach to some tasks, such as in
summarization: although high-level attributes can
be controlled during generation, there is no pre-
existing syntactic or content plan, and so verbs
and entities in the summary cannot be directly con-
trolled as they have not been determined yet. In
cases where we desire such control - e.g., in query-
focused summarization, or when highlighting im-
portant entities (Nenkova et al., 2005) - it is thus
useful to have a representation that specifies syn-
tactic aspects at the level of individual verbs or
entities.
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In our experiments, we augment the AMR in-
put to our generator with tags which we automati-
cally infer for three modes of fine-grained syntax,
which we choose for their relevance to summariza-
tion: verb voice (active or passive), verb tense, and
syntactic realization of human entities (i.e., names
and pronouns). Controlling voice and entities con-
tributes to the model’s ability to use syntax to high-
light a specific topic or focus, following centering
theory (Grosz et al., 1995), which is important in
cases where the focus of the summary may dif-
fer from the focus of sentences in the document.
As plain AMR does not contain information about
tense, which is important for maintaining faithful
summaries, we also consider controlling verb tense
to avoid generating hallucinations about when an
event took place.

We find that finetuning BART to generate from
AMR augmented with these syntax tags makes it
largely controllable across all three types of syntax.
Importantly, this holds true even when the fine-
tuned models are evaluated on a test set designed
to have a radically different class distribution than
the training set, without any tradeoff as to the flu-
ency of the generated output. We further find that
training the same model with control on multiple
syntactic modes improves performance on voice
controllability, though not on tense. Our experi-
ments show that our tagged models are far better at
controlling voice, tense and entity realization than
a model without tags.

In summary, our contributions are:

• A method of automatically extracting labels
for each of three modes of fine-grained syntac-
tic information for relevant AMR nodes (verb
voice, verb tense, and entity realization), al-
lowing us to create high-quality fine-tuning
data at scale;

• Experiments demonstrating controllability in
pretrained BART models finetuned for gen-
eration from tag-augmented AMR in both in-
distribution and off-distribution settings;

• Ablation analyses and experiments on interac-
tions between modes of syntax demonstrating
which modes work well together.

Our code will be made available at
https://github.com/feitzin/amr-controlled-
generation.

2 Related Work

Controllable generation. Most prior work on con-
trollable generation focuses on global attributes
that apply to the entire output (Hu et al., 2017;
Shen et al., 2017; Chawla and Yang, 2020), rather
than fine-grained control of the realization of in-
dividual units of content, as we do. This includes
work on controllable generation with pretrained
language models (Keskar et al., 2019; Dathathri
et al., 2020).

Work on controllable summary generation also
shares this focus on global attributes. Fan et al.
(2018) trains a convolutional model to generate
summaries controlled by attribute markers for
length, entities to focus upon, domain, and sub-
set of the text. He et al. (2020) fine-tunes a BART
model to generate output summaries that are con-
trolled using keywords or prompts, allowing the
model to focus on specific entities or desired infor-
mation. This approach addresses a similar prob-
lem to our work, but focuses on global rather than
fine-grained control, does not necessarily frame
a summary around selected relevant content, and
is applicable to classic single-document summa-
rization, whereas our approach is generalizable to
multi-document and long-document settings due to
its use of a content selection model

Pipelines in surface realization. Elder et al.
(2019) demonstrate that a symbolic intermediate
representation (based on a dependency graph) used
as input to a neural generator can yield improve-
ments on the surface realization task. Castro Fer-
reira et al. (2019) find that a pipeline of discrete
modules can yield improvements over end-to-end
neural models for data-to-text generation. How-
ever, Farahnak et al. (2020) find that a pretrained
language model (BART) can outperform previous
state-of-the-art modular pipelines on surface real-
ization. We aim to take the best of both by using
BART as our generator, but leaving the choice of
content selector free.

AMR-to-text generation. There is an active
body of work on AMR-to-text generation (Konstas
et al., 2017; Wang et al., 2020; Bai et al., 2020;
Zhang et al., 2020), but most of this work uses ar-
chitectures specialized for the AMR-to-text setting.
In contrast, our work focuses on adapting this set-
ting to controllable generation with pretrained lan-
guage models. To our knowledge, the most closely
related work to ours is that of Ribeiro et al. (2020),
who investigate the use of pretrained language mod-
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els for multiple graph-to-text generation settings,
and whose finetuning setup we follow closely.

3 Data and Methodology

The AMR Bank (Knight et al., 2020) is the largest
gold standard corpus for AMR, but it contains only
around 60,000 annotated sentences in total, which
is a relatively small amount of data for finetuning
a large model such as BART. Thus, for finetuning,
we instead use a much larger text corpus which we
parse automatically using the published code for
the AMR parser of Cai and Lam (2020). As the
application we are interested in is summarization,
we use the multidocument summarization corpus
of Gholipour Ghalandari et al. (2020), which con-
sists of 10,200 clusters containing on average 235
documents each. We refer to this as the reservoir
corpus. Although we do not use the AMR Bank for
finetuning, we do use its proxy subset, which con-
tains news documents and summaries, as a second
evaluation set.

Due to constraints on time and processing power,
we do not use the entire reservoir corpus for fine-
tuning, but rather finetune our models primarily
on the reservoir validation set, which contains
580,787 sentences in total. We split the reservoir
corpus’ validation set into a training set of 500,000
sentences and validation set of 80,000 sentences,
which we use for finetuning. For evaluation, we
sample 10,000 sentences from the reservoir training
set to use for model analysis, and sample 10,000
sentences from the reservoir test set for final per-
formance numbers. We reserve the remainder of
the reservoir training set for experiments that re-
quire filtering out a portion of the data. We give
an overview of the reservoir corpus’ split sizes and
partitioning in Table 2.

3.1 AMR Linearization

We use finetuned BART models for AMR-to-text
generation, but BART takes sequences as input
rather than arbitrary directed graphs. Thus, follow-
ing the methodology of Ribeiro et al. (2020), we lin-
earize AMR graphs into a modified version of PEN-
MAN format (Kasper, 1989) that omits identifying
handles for each node: for each AMR graph, we
perform a depth-first traversal of the graph, adding
node and edge labels to the linearized sequence in
order, as well as parentheses indicating depth levels
(see Table 1 for an example).

3.2 Syntax labeling

In overview, our labeling procedure involves three
steps: (1) extract syntactic labels from the raw
text; (2) use the extracted labels to augment the
linearized AMR for input to our generation mod-
els; (3) extract syntactic labels a second time from
the models’ output to evaluate against the origi-
nal tags. We use spaCy (Honnibal et al., 2020)
for dependency parsing and part-of-speech tagging
to extract syntactic labels. When augmenting lin-
earized AMR, we insert syntactic tags as a modifier
directly following the relevant node (see Table 1).

We provide class distributions for each mode of
syntax in Appendix A. We note that the voice and
entity classes are highly imbalanced, while tense is
relatively more evenly distributed across classes.

Voice. To extract passive/active labels from a
sentence, we examine the automatically extracted
dependency parse for the sentence and individually
label each verb as active or passive according to its
edge labels. We verify the reliability of this method
in §6.4.

Given these labels, we identify corresponding
nodes in the AMR graph by performing exact string
matching between the lemmas of each labeled verb
and the concept labels of all AMR nodes repre-
senting a verb. Verb nodes that are not matched to
any labeled verb lemma are not assigned a label.
In linearization, the label appears as an additional
modifier after the concept string of the verb: either
:active or :passive.

Tense. We use the fine-grained part-of-speech
tag under the Penn Treebank labeling scheme (Mar-
cus et al., 1993) as the tense tag for each verb. We
obtain these tags directly from the part-of-speech
tagger.

Entity realization. We filter the data in our
entity realization experiments to consider only sen-
tences that fulfill two requirements. First, there
must be at most one person node in the AMR.
Second, the sentence must contain at most one of
the pronouns {she, he, they} or their associated
forms (i.e., a sentence containing “he" and “him-
self" would be acceptable; a sentence containing
“her" and “their" would be discarded). This elimi-
nates the possibility of introducing additional error
using automatic coreference.

We assume that if one of these pronouns
occurs in such a sentence, it is associated
with the single person node in the AMR,
and give that node the appropriate tag among
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Sentence They had received a call to conduct a background check about 6:15 p.m.

Linearized AMR
(voice tags)

( receive :active :ARG0 ( they ) :ARG1 ( call :ARG0 they :ARG1 ( conduct :active
:ARG0 they :ARG1 ( check :ARG0 they :ARG1 ( background ) ) ) :ARG1 ( rate-
entity-91 :ARG2 ( temporal-quantity :quant 1 :unit ( minute ) ) :ARG4 ( temporal-
quantity :quant 1 :unit ( hour ) ) ) ) )

Table 1: An example sentence and linearized AMR with voice tags inserted. The verbs tagged for voice in the
second example are “receive" (active) and “conduct" (active). Tags are bolded for readability.

Split Sentences Usage

Train 4.38M Held in reserve. (10k
split for analysis.)

Val 581k Finetuning data (500k
train, 80k validation).

Test 543k 10k sampled from test
set.

Table 2: Partitioning of the larger reservoir corpus.

:pronoun-{he/she/they}. If the person
node is named in the AMR, we give it the tag
:named. Otherwise, we assume that the person in
question is described in some other way, such as
by profession (e.g. “scientist") or by an action they
perform (e.g. “visitor") and give it the :desc tag.
We remove the :desc class from our experiments
because it encompasses both generic and specific
references, while we are interested only in specific
references (for details, see Appendix B).

In our entity realization experiments, we thus
filter out sentences with :desc tags or multiple
person nodes from the reservoir training set until
we have an equivalent amount of data to that used
in the other experiments, giving us alternate train-
ing and validation sets of equal size. To obtain our
entity test set, we filter out sentences with :desc
tags or multiple person nodes, as well as sentences
with no person nodes, until we have 10,000 sen-
tences.

3.3 Finetuning
We closely follow the methodology of Ribeiro
et al. (2020) for finetuning. We finetune multi-
ple pretrained BART-large models on AMR graph-
sentence pairs to produce the sentence text given
different variations of a linearized AMR graph.
Specifically, once we have the base linearized
AMR, we insert our syntactic tags into the AMR as
metadata tags for the appropriate nodes, and train
a family of models to generate text with each of

these types of augmentations (and without control
tags, for comparison).

4 Experiments

In our experiments, we compare three types of
models in total: first, a baseline “untagged" BART
model finetuned on pure AMR-to-text generation
with no control tags; second, BART models fine-
tuned to produce text from linearized AMR with
syntax tags for each mode of syntax individually;
and finally, a set of models finetuned with control
tags for multiple modes of syntax. For both voice
and tense, we report results both on our own test set
(10k sentences) as well as the test set of the proxy
subset of the AMR Bank (approximately 800 sen-
tences) for comparison on gold AMR parses. For
entity, we report results only on our own test set,
as after filtering the proxy test set to remove sen-
tences with :desc tags and sentences with greater
or fewer than one person node, only 16 sentences
remained.

4.1 Hyperparameter settings
We use Fairseq (Ott et al., 2019) for finetuning.
Based on preliminary experimental results, we eval-
uate all models after four epochs. We train all
models using the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 3 × 10−5 and
polynomial learning rate decay. (For full hyperpa-
rameter settings, see Appendix C.)

4.2 Syntactic control
To investigate the effect of finetuning with our syn-
tax tags, we automatically extract syntactic labels
from each verb in the output from each model using
our automatic labeling procedure. For each mode
of syntax, we measure performance on generation
with the corresponding labels as a classification
task using macro F1. As person nodes may have
both a :named tag and a pronoun tag attached, we
measure entity realization performance on two sep-
arate tasks: whether our model generated a name
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or not, and whether our model used the correct pro-
noun (if it used a pronoun at all). For tense and
pronouns, we additionally provide breakdowns of
F1 per class on our test set.

As we only measure F1 over the set of labeled
nodes from the original sentence that are repro-
duced in the generated text (see §3.2), we addi-
tionally recorded the percentage of such nodes, i.e.
the node retention, which indicates the proportion
of labels that are kept for evaluation, rather than
dropped because the corresponding nodes are not
realized as the same lemma in the generated output.
Across all models for all settings, node retention is
upward of .8 on our test set.

Evaluating directly on the test set measures how
well our finetuned models can reproduce the de-
sired syntax in a setting where syntactic labels fol-
low a similar distribution to the training set, as
they are both drawn from the same base corpus. In
order to isolate the effect that using control tags
gives us, we also report performance in an off-
distribution setting. For each mode of syntax, we
create a flipped evaluation set by perturbing the con-
trol tags inserted into the evaluation inputs, which
directs BART to generate less distributionally plau-
sible voices: for voice, we swap active and passive
tags; for tense, we swap between past and present,
and for entities, we use a two-stage strategy for ran-
domizing name and pronoun tags. For full details,
see Appendix D.

4.3 Sentence quality

To measure fluency, we compute BLEU score (Pa-
pineni et al., 2002) of the generated text against the
original sentence. While smatch (Cai and Knight,
2013) could be used to compare automatic AMR
parses of the generated text against the input AMR,
that would also inherently evaluate the AMR parser
used, which is not our focus.

5 Results

5.1 Voice

We report performance of each model on the ac-
tive/passive reproduction task in Table 3. The
‘flipped’ statistics (the second column in each pair)
are on the flipped evaluation set, i.e. with all voice
tags flipped, which forces the model to generate
against the regular voice distribution.

The model finetuned with control tags performs
noticeably better than the untagged model on the
regular evaluation set, but its controllability truly

Test set Proxy test set
Model F1 Flip F1 Flip

Untagged 0.833 0.048 0.630 0.086
Voice 0.965 0.498 0.909 0.516
v + t 0.957 0.500 0.934 0.546
v + e 0.972 0.463 0.941 0.541

v + t + e 0.965 0.499 0.979 0.581

Table 3: F1 of finetuned BART variants for verb voice,
in original and flipped settings, on our test set and the
proxy test set. Components of combined models are
abbreviated: voice (v), tense (t), entity (e).

shows through on the flipped set, where it outper-
forms the uncontrolled model by an order of magni-
tude. Though there is a sharp drop in performance
from the original setting, it still manages to repro-
duce a nontrivial proportion of verbs in the speci-
fied voice even when the tags are flipped, indicating
that it is indeed able to some extent to disregard
whatever signal may be present in the raw AMR.
We note that, although we naïvely flip all tags in
the flipped setting, some verbs cannot appear in
the passive (e.g., intransitive verbs such as “sleep"),
which lowers the maximum possible score.1

Interestingly, even the untagged model achieves
impressive performance on the evaluation set, sug-
gesting that the model does receive some signal
as to verb voice. We hypothesize that it is pick-
ing up on the highly skewed verb distribution (see
Appendix A), as the active voice is about an order
of magnitude more prevalent in the data than the
passive. However, its performance on the flipped
evaluation set is trivially far worse, as the untagged
model does not see the control tags at test time and
produces exactly the same output either way.

We note that results on the proxy set are slightly
lower in the original setting but slightly higher in
the flipped setting compared to our original test set.

5.2 Tense
We report performance on tense in Table 4. We
have a much more dramatic improvement for tense
than for voice when comparing the model fine-
tuned with tags to the model fine-tuned without;
the untagged model does poorly even on the in-
distribution evaluation set, whereas the tagged
model does quite well on both. This may indicate
that the distinctions between the multiple types
of verb tense are more difficult for the model to

1See Appendix E for more detail.
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Model Flipping Macro F1 Proxy F1 VB VBD VBG VBN VBP VBZ

Untagged None 0.691 0.448 0.830 0.747 0.687 0.757 0.562 0.564
Tense None 0.979 0.961 0.990 0.981 0.994 0.979 0.949 0.982
v + t None 0.978 0.953 0.988 0.976 0.992 0.974 0.953 0.986

v + t + e None 0.971 0.941 0.986 0.968 0.991 0.967 0.933 0.983
Untagged Flipped 0.185 0.196 0.826 0.114 0.035 0.075 0.006 0.055

Tense Flipped 0.784 0.806 0.986 0.909 0.871 0.830 0.143 0.964
v + t Flipped 0.786 0.899 0.983 0.902 0.859 0.800 0.207 0.966

v + t + e Flipped 0.760 0.736 0.981 0.891 0.818 0.736 0.173 0.959

Table 4: Performance of finetuned BART models for verb tense. F1 is reported on both our test set and the proxy
test set; individual class F1 scores are on our test set.

Model Flipping Name F1 Pronoun F1 she he they

Untagged None 0.399 0.720 0.473 0.782 0.906
Entity None 0.407 0.996 0.993 0.998 0.998
v + e None 0.395 0.995 0.992 0.997 0.996

v + t + e None 0.403 0.999 1.000 0.998 0.998
Untagged Flipped 0.401 0.204 0.083 0.283 0.245

Entity Flipped 0.399 0.980 0.986 0.985 0.970
v + e Flipped 0.426 0.976 0.978 0.988 0.961

v + t + e Flipped 0.433 0.967 0.974 0.975 0.953

Table 5: Performance of finetuned BART models for entity realization. F1 is reported for the binary named - not
named task as well as for the pronoun generation task. Numbers here are only on our test set, as there were only 16
sentences remaining in the proxy set after filtering.

learn without supervision than the active/passive
distinction. One note is that the VBP class seems
to be more difficult to accurately reproduce than
the others, perhaps due to its relatively small size
(approximately 5% of all verbs).

5.3 Entity realization

We report performance on entity realization, our
final syntactic task, in Table 5. Interestingly, it
seems that names are quite difficult to learn - our
scores simply measure whether the model gener-
ated a name or not, regardless of whether it was the
correct name, and even in that case, F1 is quite low.

A second observation is that flipping does not
seem to have a large effect on pronouns, which
suggests that the model has learned to generalize
across different types of pronouns quite well - there
is not a noticeable difference between performance
across pronoun classes, even though there is a mod-
erate imbalance in the distribution.

In the case of names, scores for some models ac-
tually go up slightly in the flipped setting. This may
indicate that the models have a tendency to guess

something closer to the randomized distribution of
name labels in the flipped evaluation sets.

5.4 Sentence quality

Model Syntax mode BLEU

Untagged Voice 0.679
Voice Voice 0.688

Untagged Tense 0.679
Tense Tense 0.703

Untagged Entity 0.670
Entity Entity 0.707

Table 6: BLEU scores for generated outputs from base
tagged and untagged models against original sentences.

We report BLEU scores in the original (not-
flipped) setting in Table 6. Adding tags in fine-
tuning slightly improves BLEU, suggesting that
the additional signal is helpful. At minimum, this
indicates that we can finetune BART to use syntax
control tags without having to worry about interfer-
ing with the content of its generated output.
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Generator Example sentence

Input ( lead :passive :ARG0 ( this ) :ARG0 ( chief :ARG0-of ( act :active ) ) :ARG1 ( organiza-
tion :name ( Pentagon ) ) :frequency 3 :time ( history ) )

Untagged This is the third time in history that an acting chief has led the Pentagon.
Voice This is the third time in history that the Pentagon has been led by an acting chief.
Input ( see :passive :ARG0 ( shrine ) :ARG1 ( person :ARG0-of ( visit ) :source ( religion :mod

( all ) ) ) :duration ( multiple :op1 ( temporal-quantity :quant 1 :unit ( century ) ) ) )
Untagged For centuries, the shrine has seen visitors from all religions.
Voice The shrine has been seen by visitors from all religions for centuries.
Input ( change :VBG :ARG1 ( intensity :mod ( forecast ) ) :mod ( also ) )
Untagged There will also be changes in forecast intensity.
Tense The forecast intensity is also changing.
Input ( announce :ARG1 ( include :ARG1 ( person :named :name ( Jim ) :wiki - ) :ARG2 (

honoree ) ) :time ( previous ) )
Untagged It was previously announced that Jim O’Brien would be included as an honoree.
Entity It had previously been announced that Jim Hightower would be among the honorees.

Table 7: Example inputs and outputs from tagged and untagged models, with correct syntactic realizations in bold
and incorrect underlined. Control tags in the input are italicized; these tags are not present in the version of the
input passed to the untagged model.

6 Analysis

6.1 Syntax interactions

In order to investigate the interaction between
the different modes of syntax, we additionally
train a set of models that incorporate multiple
types of tags. These are reported in the results
tables as the “voice+tense", “voice+entity", and
“voice+tense+entity" models.

Interestingly, adding tense seems to improve per-
formance on voice, whereas the converse does not
hold, while entity realization seems to be an or-
thogonal task: the “voice+tense" model achieves
better performance on voice but not on tense in the
more difficult flipped setting, whereas combining
entity realization with other types of syntax leads
to a drop in performance.

6.2 Qualitative analysis

We provide some examples of generated output
in Table 7. A number of further examples are
available in Appendix F. The first example is a
case from the original evaluation set where the
tagged voice model correctly generates the main
verb (“lead") in the passive, whereas the untagged
model incorrectly guesses it to be active. In such
cases where a verb is generated in an unusual voice,
the untagged model seems to make its guess based
on the verb’s more common voice, whereas the
tagged model is able to adjust its output based on

the control tag. The third example illustrates a
comparable situation with tense generation.

The second example, from the flipped evaluation
set, illustrates a different phenomenon we observed
in some cases. The untagged model generates the
voice that was correct in the original setting (but is
incorrect here). The tagged model correctly gen-
erates the main verb (“seen") in the passive tense,
but it makes a semantic error in doing so, changing
the shrine to the object rather than the subject of
the seeing - in a sense seeming to overcorrect for
the change in voice.

Finally, we observed across models a tendency
to hallucinate occasionally, particularly on numbers
and on person and country names; while the tagged
entity model usually correctly uses the name of a
person when given in the input, even this model
still sometimes hallucinates information that isn’t
there, such as the surname in the fourth example.

6.3 Structural ablation
We have now seen that we can successfully use
tagged AMR as input to give us fine-grained con-
trollability. However, it remains unclear exactly
how much information from the tags the model is
using, or how much it is able to infer on its own.
In order to investigate precisely which parts of the
AMR are necessary, we train a series of ablation
models on the voice control task by gradually re-
moving components of the input AMR.
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Components removed F1 Flipped F1

None (untagged) 0.838 0.047
None (voice tags) 0.953 0.431

Edges 0.964 0.438
Edges + structure 0.964 0.462

Edges + structure + tags 0.796 0.052

Table 8: Performance of full and ablated BART models
on the analysis set for verb voice.

Ablation BLEU

None (untagged) 0.717
None (voice tags) 0.731

Edges 0.713
Edges + structure 0.666

Edges + structure + tags 0.642

Table 9: BLEU scores for base and ablated models on
the analysis set for voice.

We train three ablated AMR-to-text models: a
model where we remove relation tags (i.e., edge
labels); a model where we remove relations and
graph structure (i.e., parentheses); and a model
where we remove relations, structure, and the syn-
tax control tags themselves.

We present results on ablated models alongside
the original tagged model in Table 8, and include
the ablated models’ content metrics in Table 9. Sur-
prisingly, our first two ablations (removing edge
labels and parentheses) both yield slight improve-
ments in voice controllability. However, this comes
at the expense of BLEU score, which drops 2 points
when edges are removed and 7 points when both
edges and structure are removed. This suggests that
removing edge and structural information somehow
makes it easier for the models to focus on the corre-
spondence between tags and syntax in the training
data, but at the cost of information about content.

6.4 Voice tagging accuracy

As our voice labels are derived from automatic de-
pendency parses, we check that our tagging method
is giving us reasonable labels by evaluating it sepa-
rately. We compare the voice tags from our tagging
method against the gold voice labels from two Uni-
versal Dependencies treebanks in English (GUM
and LinEs) and present the results in Table 10. Both
treebanks present a similar active/passive skew to
our data. On both treebanks, performance on the

Treebank True voice Prec. Recall F1

GUM Passive 0.982 0.885 0.931
GUM Active 0.993 0.936 0.964
LinEs Passive 0.937 0.468 0.625
LinEs Active 0.941 0.918 0.930

Table 10: Our automatic voice tagging on the develop-
ment sets of Universal Dependencies treebanks. Preci-
sion, recall and F1 are evaluated against gold labels.

majority active class is very high, whereas perfor-
mance on passive verbs differs between the two:
on GUM, our tagging method still picks up pas-
sive verbs quite well, whereas on LinEs, recall on
the passive class is much lower. Given the GUM
results, in our experiments, we assume that our tag-
ging method is reliable enough to use as gold stan-
dard, but in future research, further work on picking
up the missing passive instances from LinEs-like
sentences may thus prove valuable.

7 Conclusion and future directions

In this paper, we investigate the controllability of
three modes of syntax - verb voice, verb tense, and
syntactic entity realization - when using BART to
generate text from AMR input augmented with
automatically extracted syntactic labels. We find
that all three modes of syntax are more reliably
reproduced when these augmentations are added,
yielding more accurate and more faithful outputs.
Further, even when we artificially engineer the dis-
tribution of tags to be as far from training as pos-
sible, the models with tags still far outperform the
model without, without sacrificing fluency.

Ultimately, our labeling strategy allows us to
automatically create data at good enough quality
and scale that we can successfully finetune a pre-
trained LM generator to reliably follow a content
plan augmented with fine-grained syntactic tags.
This setting is particularly useful in tasks such as
summarization, where there is no one-to-one map-
ping between input and output content, and thus no
appropriate place to insert fine-grained tags in the
original input.

There are many avenues of possible future study
with our method of controllable generation; one
natural future direction would be an expansion of
the setting from individual sentence AMRs to a
collection of AMRs forming a contiguous passage
or document, as is the ultimate goal of this work.
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Nazneen Rajani, and Caiming Xiong. 2020. Ctrl-
sum: Towards generic controllable text summariza-
tion. arXiv preprint arXiv:2012.04281.

https://doi.org/10.18653/v1/2020.emnlp-main.92
https://doi.org/10.18653/v1/2020.emnlp-main.92
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W19-2308
https://doi.org/10.18653/v1/W19-2308
https://doi.org/10.18653/v1/W18-2706
https://aclanthology.org/2020.msr-1.7
https://aclanthology.org/2020.msr-1.7
https://doi.org/10.18653/v1/2020.acl-main.120
https://doi.org/10.18653/v1/2020.acl-main.120
https://www.aclweb.org/anthology/J95-2003
https://www.aclweb.org/anthology/J95-2003
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086


5891

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR.

Robert T. Kasper. 1989. A flexible interface for link-
ing applications to Penman’s sentence generator. In
Speech and Natural Language: Proceedings of a
Workshop Held at Philadelphia, Pennsylvania, Febru-
ary 21-23, 1989.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kevin Knight, Bianca Badarau, Laura Baranescu, Claire
Bonial, Madalina Bardocz, Kira Griffitt, Ulf Herm-
jakob, Daniel Marcu, Martha Palmer, Tim O’Gorman,
and Nathan Schneider. 2020. Abstract meaning repre-
sentation (AMR) annotation release 3.0. Web Down-
load.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1077–1086, Denver, Colorado. Association for
Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Ani Nenkova, Advaith Siddharthan, and Kathleen McK-
eown. 2005. Automatically learning cognitive status
for multi-document summarization of newswire. In
Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in
Natural Language Processing, pages 241–248, Van-
couver, British Columbia, Canada. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2020. Investigating
pretrained language models for graph-to-text genera-
tion.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine
translation using AMR. Transactions of the Associa-
tion for Computational Linguistics, 7:19–31.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
AMR-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19–33.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Ziqiang
Cao, Sujian Li, Hua Wu, and Haifeng Wang. 2021.
BASS: Boosting abstractive summarization with uni-
fied semantic graph. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6052–6067, Online. Association
for Computational Linguistics.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B. Cohen, Zuozhu Liu, and Lidong Bing. 2020.
Lightweight, dynamic graph convolutional networks
for AMR-to-text generation. In Proceedings of the

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://proceedings.mlr.press/v70/hu17e.html
https://proceedings.mlr.press/v70/hu17e.html
https://www.aclweb.org/anthology/H89-1022
https://www.aclweb.org/anthology/H89-1022
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/H05-1031
https://aclanthology.org/H05-1031
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2007.08426
http://arxiv.org/abs/2007.08426
http://arxiv.org/abs/2007.08426
https://proceedings.neurips.cc/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00297
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2020.emnlp-main.169


5892

2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2162–2172,
Online. Association for Computational Linguistics.



5893

A Data Imbalance

We provide the breakdown of label distributions
within each class in Table 11.

Mode Classes

Voice
Active (0.926)
Passive (0.074)

Tense

VB (0.216)
VBD (0.259)
VBG (0.165)
VBN (0.230)
VBP (0.053)
VBZ (0.078)

Entity

desc (0.770)
named (0.109)
pronoun-she (0.010)
pronoun-he (0.041)
pronoun-they (0.070)

Table 11: Class distributions for each syntax mode.

B The description class

As mentioned in §3.2, the description class con-
tains not only cases where the entity described is
a specific reference (i.e., a particular identifiable
person), but also generic references (i.e., terms de-
scribing classes of people, such as “visitors to the
location"). Our focus in this paper is on realiza-
tion of specific entities and not generics; we thus
omit sentences containing the :desc class from
our experiments. This has the incidental benefit
of leaving us with much more balanced data, as
descriptions originally made up the majority class
(approximately 80% of all person instances).

C Finetuning details

In our experiments, we use Fairseq to finetune from
a pretrained bart-large model for four epochs using
Adam; we use a learning rate of 3e-05, dropout of
0.1, and polynomial learning rate decay with 500
warmup updates and 2,000,000 total updates.

D Label flipping

To create our flipped data, we use the following
strategies to perturb labels:

• Voice. Swap active and passive tags.

• Tense. Flip between past and present, i.e.,
VBG and VBN are swapped, and VBD is

swapped with VBP and VBZ. (VB is left un-
changed.)

• Entities. If the node has only a pronoun tag,
we replace it with a random pronoun tag that
differs from the original, and with 0.5 prob-
ability we add a dummy name node (drawn
from a list of the top 100 most common unisex
names in the United States2) and a :named
tag. If the node originally had a :named tag,
with 0.5 probability we remove it and add a
random pronoun tag that differs from the one
it had, if any.

E Feasibility of voice flipping

We performed a hand analysis of 50 sentences to
estimate the proportion of sentences in which it
was possible to flip the voice of the main verb. For
sentences where it was possible to flip the voice, we
also judged whether that would result in an undesir-
ably awkward sentence (e.g., “they clinked glasses"
versus “glasses were clinked by them") and whether
it would have required significant modification of
sentence structure (e.g., reordering clauses).

We found that in 12 sentences the main verb
could not be flipped. Of those sentences where
the main verb could be flipped, in 6 it would have
resulted in an awkward sentence and in 10 it would
have required some modification of sentence struc-
ture to preserve the meaning of the sentence.

This suggests that the effective ceiling on pos-
sible performance on voice controllability in the
flipped setting is somewhere between approxi-
mately 64% and 76% (depending on whether awk-
ward sentences are considered infeasible), and
achieving performance higher than approximately
44% may be particularly difficult, as perfectly flip-
ping the voice would require learning to modify
the structure of the entire sentence.

F Further examples

We provide further examples of generated output
in Table 12.

One observation is that correct syntactic realiza-
tion does not necessarily entail correct semantics
or freedom from hallucination, as evidenced in the
third example, where both models hallucinate an
update frequency of every 15 minutes rather than
every 10 minutes. Hallucinations about person and

2https://github.com/fivethirtyeight/data/tree/master/unisex-
names
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country names are particularly common, as demon-
strated in the fourth example, where both models
hallucinate different country names for the coun-
try entities in the input, whereas the names are not
explicitly provided.

Sometimes it seems that the tagged models pro-
vide improvements over the untagged model that
we do not directly measure in our syntactic evalua-
tion; the final two examples illustrate cases where
the entity model correctly names an entity that the
untagged model gave an incorrect name derived
from its wiki tag (rather than its name tag), al-
though both would have been considered correct in
our evaluation as a name was produced for both.
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Generator Example sentence

Input ( contrast :ARG1 ( welcome :passive :ARG0 ( person :ARG0-of ( criticize ) :quant ( many
) ) :ARG1 ( move ) ) :ARG2 ( say :active :ARG0 ( some ) :ARG1 ( and :op1 ( enough
:ARG0 move ) :op2 ( come :active :ARG1 move :time ( late :degree ( too ) ) ) ) ) )

Untagged Many welcomed the move, but some said it wasn’t enough and came too late.
Voice The move was welcomed by many critics, but some said it wasn’t enough and came too

late.
Input ( make :VBN :ARG0 ( country :name ( France ) :wiki "France" ) :ARG1 ( point :topic

( reduce :VBG :ARG0 country :ARG1 ( impact :ARG0 ( environment ) :ARG0 ( meal
:ARG1-of ( serve :VBN :time ( summit ) ) ) ) ) ) :mod ( also ) )

Untagged France will also make a point of reducing the environmental impact of the meals served
during the summit.

Tense France has also made a point of reducing the environmental impact of the meals served at
the summit.

Input ( update :VBZ :ARG1 ( map :mod ( interactive ) ) :frequency ( rate-entity-91 :ARG3 (
temporal-quantity :quant 10 :unit ( minute ) ) ) )

Untagged The interactive map will be updated every 15 minutes.
Tense The interactive map updates every 15 minutes.
Input ( and :op1 ( effect :ARG1 ( watch :ARG1 ( hurricane ) :ARG1 ( island ) ) ) :op2 ( post

:VBN :ARG1 ( warn :ARG1 ( storm ) ) :ARG2 ( and :op1 ( country ) :op3 ( country ) ) ) )
Untagged A hurricane watch is in effect for the islands, and storm warnings have been posted for

Curaçao, Aruba, Bonaire and Curacao del Sur.
Tense A hurricane watch is in effect for the islands, and storm warnings have been posted for

Guam, Malawi and the island of Curaçao.
Input ( sit-down-02 :ARG1 ( gauntlet :part-of ( negotiate :ARG2 ( and :op1 ( crisis :mod (

international ) ) :op2 ( war :topic ( trade ) ) ) ) ) :ARG2 ( person :named :name ( Putin )
:wiki "Vladimir_Putin" ) )

Untagged the gauntlet of negotiations over international crises and trade wars will be sat down with
Vladimir_Putin.

Entity the gauntlet of negotiations on international crises and trade wars is a sit-down with Putin.
Input ( say :ARG0 ( person :named :name ( Trump ) :wiki "Donald_Trump" ) :ARG1 ( pressure

:ARG0 ( time ) :degree ( absolute ) ) )
Untagged “Time is absolutely under pressure,” said Donald_Trump Jr.
Entity “Time is absolutely under pressure,” Trump said.

Table 12: Example inputs and outputs from tagged and untagged models, with correct syntactic realizations in bold
and incorrect underlined. Control tags in the input are italicized; these tags are not present in the version of the
input passed to the untagged model.


