CoLo: A Contrastive Learning based Re-ranking Framework for
One-Stage Summarization

Chenxin An', Ming Zhong?, Zhiyong Wu?® ,Qin Zhu', Xuanjing Huang', Xipeng Qiu'*
School of Computer Science, Fudan University
2 University of Illinois at Urbana-Champaign
3 Shanghai Al Lab

{cxan20, gzhulsg,
mingz5@illinois.edu,

Abstract

Traditional training paradigms for extractive
and abstractive summarization systems always
only use token-level or sentence-level training
objectives. However, the output summary is
always evaluated from summary-level which
leads to the inconsistency in training and evalu-
ation. In this paper, we propose a Contrastive
Learning based re-ranking framework for one-
stage summarization called COLO. By mod-
eling a contrastive objective, we show that the
summarization model is able to directly gener-
ate summaries according to the summary-level
score without additional modules and parame-
ters. Extensive experiments demonstrate that
CoLoO boosts the extractive and abstractive re-
sults of one-stage systems on CNN/DailyMail
benchmark to 44.58 and 46.33 ROUGE-1 score
while preserving the parameter efficiency and
inference efficiency. Compared with state-of-
the-art multi-stage systems, we save more than
100 GPU training hours and obtaining 3x ~
8 speed-up ratio during inference while main-
taining comparable results.

1 Introduction

In general, there are two main paradigms to do
text summarization: abstractive (Rush et al., 2015;
Nallapati et al., 2016; Gehrmann et al., 2018) and
extractive (Cheng and Lapata, 2016; Narayan et al.,
2018b; Zhong et al., 2019, 2022) methods.

For extractive summarization, previous stud-
ies (Nallapati et al., 2017; Liu and Lapata, 2019)
formulate it as a sentence-level sequence labeling
task. However, there is an inherent gap between
the sentence-level scoring and the summary-level
evaluation (Zhong et al., 2020).This means that
some high-scoring sentences may share the same
meaning, making them not a qualified summary
when combined. Similarly, the previous training
paradigm for abstractive summarization models
can be viewed as a roken-level scoring process

*Corresponding author.

xjhuang,

xpgiu}@fudan.edu.cn
wuzhiyong@pjlab.org.cn

upon the decoder of sequence-to-sequence model.
There also exists the issue of exposure bias (Ben-
gio et al., 2015; Paulus et al., 2017) in the teacher-
forcing framework leading to the error accumula-
tion during auto-regressive decoding. Therefore,
previous frameworks for both extractive and ab-
stractive methods did not perform summary-level
optimization.

To tackle this problem, state-of-the-art summa-
rization systems (Zhong et al., 2020; Liu and Liu,
2021) are enhanced with an additional module
(called re-ranker) and follow a two-stage paradigm.
They first train a summarizer to model the con-
ditional distribution p(Y | X)) where X is the doc-
ument and Y is the output summary. Then the
re-ranker is trained to re-score candidates sam-
pled from the pre-trained summarizer in the second
stage. However, this paradigm trades efficiency for
accuracy, the auxiliary re-ranking greatly harms
the inference efficiency especially for the highly
efficient extractive systems. Experimentally, the
decoding speed of two-stage re-ranking models is
only ~7.0 samples/s while removing the re-ranker
module will greatly boost the decoding speed to
~42.0 samples/s'. This makes two-stage summa-
rization systems may be unacceptable in real-world
scenarios that require timely feedback.

The limitations of the existing work motivate
us to build a one-stage summarization system that
can 1) replace previous naive sentence/token-level
score with a summary-level score and 2) do not sac-
rifice the parameter and inference efficiency. In this
paper, we propose a Contrastive Learning based
re-ranking framework for one-stage summarization
called CoLo for both extractive and abstractive ap-
proach. Contrastive learning has been explored in
summarization (Sun and Li, 2021; An et al., 2021b)
and generation (Lee et al., 2020; An et al., 2022).

'We run these two models on the test set of
CNN/DailyMail using single GeForce GTX TITAN XP GPU
for 3 times and report the average speed.

5783

Proceedings of the 29th International Conference on Computational Linguistics, pages 5783-5793
October 12-17, 2022.

COLO uses a contrastive re-ranking training objec-
tive. We first present a novel sampling method that
can be equipped to any one-stage summarization
systems so that it can re-score candidates without
the second stage. The existing two-stage models
use offline sampling to preprocess samples for
training of re-ranker where candidate samples are
drawn from a fixed model distribution. This is a
huge obstacle to turning summarize-then-rerank
two-stage framework into an efficient end-to-end
model. To solve this issue, we propose an online
sampling approach. Concretely, instead of sam-
pling from a fixed distribution, we draw positive
and negative samples from a dynamic distribution
of model outputs during training, which ultimately
eliminates the requirement for additional modules
in the overall framework. We then introduce a
summary-level optimization strategy in addition
to the traditional sentence-level (for extractive sys-
tems) or token-level loss (for abstractive systems).
As aresult, as a one-stage model, COLO achieves
comparable performance to two-stage systems, and
greatly improves decoding speed to meet the needs
of real-world applications.
We summarize our contributions as follows:

* We are the first to propose a one-stage re-
ranking framework COLO for both extractive
and abstractive summarization systems.

* Results on the popular CNN/DailyMail bench-
mark show that both the extractive and ab-
stractive versions of COLO outperform pre-
vious state-of-the-art one-stage systems by
a large margin. Compared to the two-stage
systems, COLO achieves comparable perfor-
mance without additional pre-trained model.
More importantly, COLO do not sacrifice in-
ference speed and thus can be more widely
used in real-world scenarios.

2 Background

2.1 Preliminary about Two-Stage Systems

Two-stage paradigms (Zhong et al., 2020; Liu
and Liu, 2021) improve summarization quality
by re-ranking and selecting a candidate from a
given set of candidates. MatchSum (Zhong et al.,
2020) forms a contrastive learning based re-ranking
framework where they first generate a set of can-
didates summaries by a extractive summarization
model and then feed them to a re-ranker. The re-
ranker is trained to optimize a summary-level score

and it can evaluate the candidate summaries holis-
tically. SimCLS (Liu and Liu, 2021) is the ab-
stractive version which replaces the extractive sum-
marizer in Zhong et al. (2020) with a abstractive
summarizer.

The training objective for summarization models
is to estimate a conditional probability distribution
p(Y|X), where X is the document and Y is the
output summary. Given a summarization model
M that has already tuned under the conventional
framework with loss function Ly, where Lgm
could be binary cross entropy loss (BCELoss) or
negative log likelihood loss (NLLLoss). The two-
stage systems should first use a sampling algo-
rithm e.g. beam search to sample a candidate set
C = {C1,Cy,...,Cp} of size m from the fixed
model distribution C; ~ pap(Y]X). Candidates
in C are sort by their ROUGE score in descending
order. Then the they further train a separate re-
ranker,e.g., BERT , with a contrastive-style ranking
loss L,qnk to select the the best candidate from C
as the final output. The ranking loss used in the
best re-ranking system for summarization is the
triplet margin loss (Kingma and Ba, 2014). For
a candidate pair (C;, Cj) where i < j, if C; has
higher ROUGE score and it will be treated as the
positive sample:

L;; = maz{0,cos(zx, zc;) —cos(zx, zc;) +p},

ey
where zx, z¢;, zc; are the vector feature represen-
tation of X, C;, C; output by the re-ranker, and p is
the margin value. The final ranking loss is obtained
by summing up all pairs: L,qn; = Zj Zi<j L;;.
The ranking loss ensures that candidates with
higher ROUGE score is closer to the document
in the embedding space.

2.2 A Comparison between Two-Stage
Systems and COLO

Figure 1 illustrates the difference between the archi-
tecture of two-stage systems and COLO. Although
MatchSum and SimCLS significantly outperform
all one-stage models, they mainly suffer from three
drawbacks which strongly emphasize the necessity
of designing an one-stage model:

(1) Training/inference inefficiency. Building the
training set of the re-ranker and the second training
stage consumes large amounts of GPU and CPU
time (see details in Section 5.3). Moreover, the
need of re-feeding generation results to another
module also requires unaffordable computational

5784

resources.

(2) Coupling between the summarizer and re-
ranker. Each improvement to one of these modules
requires simultaneous updating or retraining of an-
other module, which limits the use of such systems
in the real world. For example, to try a larger candi-
date set or a different decoding method, we have to
prepare the training set again for the second stage.
In addition, how to tune the hyperparameters to
be optimal in both modules at the same time is
another tricky issue. Compared with two-stage sys-
tems, our one-stage system has a simple and clean
implementation.

(3) Two-stage systems also face difficulties in
long document summarization, because the input
length of the re-ranker will drastically increase as
the length of candidates increasing (see detailed
analysis in Appendix A). Correspondingly, COLO
is not easily affected by length variance.

3 Method

3.1 A Naive One-Stage Re-ranking Model

The goal of one-stage re-ranking systems is to en-
able both training and inference to score candidate
summaries holistically without requiring a second
stage of computation by a separate model. Ide-
ally, an one-stage summarization model should
both function as a summarizer and a re-ranker. A
straightforward solution is multi-task learning. The
naive training pipeline can be formulated as fol-
lows: (i) tuning M with L. (ii) Getting positive
and negative samples from p4(Y'|X) via offline
sampling for each datapoint X in the training set.
(ii1) Building the ranking loss with these candidates
and further tuning M with L,.nx + Lsym. How-
ever, in practice, such training method is always
suboptimal compared to the state-of-the-art two-
stage models. We denote the model after multi-task
learning as M. There is a serious generalization
error in the naive methods: via multi-task learn-
ing, M’ is only able to rank candidates drawn from
the original model distribution p(Y | X) but not
candidates from the new distribution p ¢ (Y]X).
This error makes the naive approach unable to di-
rectly output a good summary in sequence-level
generated by itself.

3.2 Our approach: CoL.o

The first step of CoLo is also to train the summa-
rization model with L, like the naive approach.

In CoLo, we discard using positive-negative sam-
ples that from a fixed model distribution, instead,
we sample these candidates from a constantly shift-
ing model distribution during multi-task learning.
By doing so, we can mitigate the above mentioned
generalization error as much as possible because
candidates are dynamically changing with the pa-
rameters of the model distribution p (Y| X) up-
dated by gradient descent. To implement this pro-
cess, at each training step, we sample the newest
candidates along with their feature presentations
from the summarization model and calculate the
ranking loss. We will give a detailed description
about how we performing the online sampling pro-
cess on mainstream extractive and abstractive sum-
marization models in the following parts.

Online Sampling for Extractive Model The
task of extractive summarization is to assign a la-
bel y; € {0, 1} for each sentence sent; from the
source document X = (senty, senta, ..., senty,)
consisting of n sentences. Figure 2 gives an ex-
ample of our one-stage extractive summarization
model. Extractive candidates can be viewed as a
subset of sentences from the document. In this
figure, we sample sent;, sents to form the first
candidate C, = {senty, senta}, and C5 is con-
sisting of {sentq, sents}. After constructing these
candidates, the next step is to represent them in
the embedding space. In our one-stage model, we
employ a heuristic way to obtain the feature pre-
sentations of candidates: pooling results of the sen-
tence embedding from the extractive model. Con-
cretely, we denote the sentence embedding for the
i-th sentence as h;. The hidden representation of a
candidate is created by pooling the sentence repre-
sentations belong to it. For example z¢, is the av-
erage pooling result of h; and hsy. Suppose Cs has
higher ROUGE score than (', then C} is treated
as a positive sample and C' is treated as a negative
sample for this pair. Finally, the whole system is
trained by the sum of L,,r and Lgym,.

Sampling informative candidates is essential in
re-ranking systems. The first step of the sampling
method is to determine N which represents the
number of candidate sentences. N is set depend-
ing on the number of summary sentences of down-
stream datasets. Take CNN/DailyMail as an exam-
ple, we set V' to {2, 3} because most gold sum-
maries consist of 2~3 sentences. At each training
step, we iterate over N by combination and form m
different candidates C = {C1,Co,...,Cp}. mis

5785

Training object: BCELoss
Summarizer (ext) or NLLLoss (abs)

[Summarizer]

Building pos-neg pairs:
Online sampling

Training object:

Building pos-neg pairs:
Offline sampling
Reranker
Loss

BCELoss or NLLLoss + Contrastive
Training object:

Contrastive Loss

(a) Two-stage models: MatchSum and SimCLS (b) CoLo (this work)

Figure 1: A comparison between two-stage models and COLO. The two-stage models including two training stages
and a time-consuming preprocess while COLO is trained in an end-to-end fashion. (GPU and CPU hours cost in
each stage are shown in Table 6). Two-stage models use offline sampling to build positive-negative pairs while
CoLo builds positive-negative pairs with online sampling where we directly get theses pairs from a changing model

distribution.

equal to), C'*™ where num; is the i-th element
in A and n is number of sentences of the document.
For CNN/DailyMail whose N is set to {2, 3}, we
can sample C2 + C3 different candidates.

However, in practice, we always face the com-
bination explosion problem when the number of
sentences n grows larger. The two-stage sys-
tem (Zhong et al., 2020) pre-trained an extractive
model to clip the origin number of sentences to an
acceptable size. Notice that our extractive summa-
rizer is also supervised with the BCELoss, so that
we can clip the sampling space to n’ (a hyperparam-
eter) with the output distribution over the sentences
at each training step. Then the total size of the
final candidate set decreases to m’ = Y, C/'/"™.
For CNN/DailyMail, n’ is set to 5, and we can get
C2 + C3 = 20 different extractive candidates. De-
tails about the setting of A/ and n’ can be found in
Table 1 in Appendix.

Notably, the offline sampling needs to feed each
candidate into the pre-trained encoder. In real-life
setting, when summarizing some long documents,
the number of sentences in the input document and
output summary will increase significantly. It will
bring a polynomial level increase to the compu-
tation and GPU overhead of the two-stage model.
But our one-stage system with online sampling is
robust to the length variance.

Inference Stage of Extractive Model Since we
have modeled a summary-level score during train-
ing, it is easy to directly generate summaries ac-
cording to the summary-level semantic score. Con-
cretely, given a candidate set C built by the combi-
nation strategy, we calculate the cosine similarity
between each candidate presentation zc; and the

close

far —_ Contrastive Learning

PREANN _--V¥<_ _pooling
HORDRORD

‘ Encoder ‘

o (23]) 0) i
sequencem senti||[sep]|| sent2 | [sep]|| sent3|| [sep]|| sent4|

Figure 2: Architecture of our extractive model. Input
sequence: The ‘[doc]’ token is used to get vector rep-
resentation zx of the document X, ‘[sep]’ is used as
separator for sentences. We omit the classifier and the
BCELoss. h; is the sentence embedding the i-th sen-
tence in X. z¢, means the feature representation of the
i-th candidate.

Encoder
output

document representation zx:

C = max cos(zx, zc,). 2)
C;eC
The final output is the candidate with highest cosine
similarity score.

Online Sampling for Abstractive Model Our
method can also be easily adapted in abstractive
summarization. Selecting a generated summary
maximum a posteriori (MAP) usually result in poor
performance (Stahlberg and Byrne, 2019), thus
most state-of-the-art generation model usually use
the beam search algorithm at inference stage. The
online sampling for the abstractive version is much
simpler than the extractive version. We use beam
search as sampling algorithm and get the feature
representations from the encoder/decoder output.
We denote the encoder output of source document

5786

CNN/DM Reddit XSum SSN PubMed

n’ 5 5 5 8 8
N 2,3 1,2 1,2 6 6,7
IClI 20 15 15 28 36

Table 1: candidate size |C| of each datasets (extractive).
|n’| is the clipped candidate size, AV is a set containing
all number of possible sentence.

X as H.,. and the decoder hidden states of the tar-
get summary as Hg... We get the document repre-
sentation from the encoder output of the 0-th token
zx = H? .. The feature representation of the i-th

candidate C; with length = |C;| is derived from the
last step of the decoder output z¢, = H G- Hid-

dec
den states of other steps can not represent the entire
sequence because of the sequence mask in trans-
former decoder. finally we formulate the ranking

loss following Eq. 1.

Inference Stage of Abstractive Model The in-
ference stage of our abstractive version is similar
to the extractive version. We save the feature rep-
resentation of the document and each beam during
beam search. The final output is determind by the
cosine distance between zx and z;.

4 Experimental Setup

4.1 Datasets

We conduct experiments on five mainstream
datasets to evaluate the effectiveness of our
approach.

CNN/DailyMail (Hermann et al., 2015) is a
classic benchmark which contains articles from the
CNN/Daily Mail newspapers. We use the cased
version from datasets?

XSum (Narayan et al., 2018a) is a one-sentence
summary dataset from BBC News. Gold sum-
maries are professionally written by the authors of
documents.

Reddit (Kim et al., 2019) is collected from social
media platform and we use the TIFU-long version.
PubMed (Cohan et al., 2018) is a long document
summarization dataset from scientific domain
whose avg summary length is about 4 times longer
than CNN/DM.

SSN (An et al., 2021a) consists of papers mainly
from math, physics and computer science with the

https://github.com/huggingface/
datasets

abstract section as gold reference.

4.2 TImplementation Details

For the simplity of experimental settings, both ex-
tractive model and abstractive mode are based on
BART. We use the encoder of BART (170M) as
the backbone and a 3-layer MLP as the classifier
to implement the extractor. We add two special
token ‘<cls>’ to generate the sentence representa-
tion and ‘<sep>’ as sentence separator. ‘<doc>’
token is used to generate the document feature rep-
resentation. candidate size for each dataset can be
found in 1 We use adam optimizer (Kingma and
Ba, 2014) learning rate schedule follows the setting
in transformer (Vaswani et al., 2017). We train our
model for 15000 steps with BCELoss and 32000
steps with BCELoss and Rankingl.oss where each
step has a batch size of 36. The margin parameter
v is set to 0.01. The size of generated candidates
|C| is set to 20 for CNN/DM. We report the re-
sults. Other settings follow the default setting in
Liu and Lapata (2019). Our model is trained on sin-
gle GeForce RTX 3090 GPU for 8 hours. Both our
abstractive model and extractive model are trained
on 24G GeForce RTX 3090 GPUs and the infer-
ence process is on 12G GeForce GTX TITAN XP
GPUs.

For abstractive model, we choose BART ini-
tialized with facebook/bart-large-cnn from trans-
formers® as the basic summarizer. We further fin-
tune this model by NLLLoss and RankingLoss for
15000 steps where each step with a batch size of
8. Other setting is the same with our extractive
version. To encourage diversity, we use the diverse
beam search (Vijayakumar et al., 2016) to generate
the candidates with beam size set to 16 and diver-
sity penalty set to 1.0. Our model is trained on 8
GeForce RTX 3090 GPUs for about 18 hours.

4.3 Evaluation Metrics

We examine our approach with 4 metrics that mea-
sure the distance between generated summaries
against the gold reference. ROUGE (Lin, 2004)
where R-1 and R-2 measure informativeness based
on n-gram overlapping and R-L represents flu-
ency. JS-2 Divergence (Louis and Nenkova,
2013) measures Jensen-Shannon divergence be-
tween the bigram distributions of two input texts.

*https://github.com/huggingface/
transformers

5787

BERTScore (Zhang et al., 2019) measures soft
overlap between BERT embeddings of two texts
instead of using lexical matching methods. Mover-
Score (Zhao et al., 2019) is also based on the neural
model but applies a earth mover distance measure
to contextualized BERT embeddings.

5 Results

We denote the model without contrastive learn-
ing as the baseline system. Since the backbone
of our extractive model is BART encoder so that
we call the baseline model BARTEXT. The baseline
model for abstractive system is BART. Our extrac-
tive model is called COLOg,; and its abstractive
version is denoted as COLO 4.

5.1 Extractive Results

We compare our models with baseline models
which has similar amount of parameters and de-
coding speed of our models in this section. Our
extractive results on CNN/DM are shown in Table 2
We compare our model with previous strong extrac-
tive baseline built on pre-trained model (Zhong
etal., 2019; Bae et al., 2019; Liu and Lapata, 2019)
and strong multi-stage systems (Zhong et al., 2020).
From the third section of Table 2, we can see that
our model COLOg,; beats the baseline model by
1.49 ROUGE-1 score and achieve the state-of-the-
art among all end-to-end systems when input length
set to 512 and the results can be further improved
while extending the input length to 1024. Even
compared with the BERTSUM-large (340M) (Liu
and Lapata, 2019) which is built on large PTM, We
still have an improvement of 0.42 with only the half
number of parameters of theirs. Though RL-based
methods hold the motivation of optimizing towards
the evaluation metric, but it does not gain much
improvement on performance in practice.

To verify whether our model is effective on
datasets of various lengths, we also evaluate our
model on datasets with short summaries (Reddit
and XSum) and long document dataset PubMed
and results are shown in Table 3. On reddit and
XSum, we achieve the advantage of more than 1.0
point ROUGE-1 than baseline systems and close
performance with the upper bound ORACLE. We
also gain improvements when tested on the long
document summarzation dataset PubMed. Detailed
results on long document dataset can be found in
Appendix A.

Model R-1 R-2 R-L

LEAD
ORACLE

4043 17.62 36.67
52.59 31.23 48.87

Transformer(Vaswani et al., 2017) 40.90 18.02 37.17
BERT-EXT(Bae et al., 2019) 42.29 19.38 38.63
BERT-EXT + RL 4276 19.87 39.11
BertSum (Liu and Lapata, 2019) 42.57 19.96 39.04
BertSum-large 43.85 20.34 39.90

4278 20.24 39.24
43.65 20.88 40.19

BARTEXT
BARTEXT (len = 1024)

43.53 20.54 39.62
44.10 20.97 40.19
44.27 21.01 40.34
44.58 21.25 40.65

Naive one-stage
COLOE¢

COLOEz+ + BERTScore
CoOLOgz: (len = 1024)

Table 2: Extractive results on CNN/DM test set. len
means the input length of the document, results without
the marker using 512 tokens as input. +RL means the
addition of reinforcement learning. +BERTScore means
we use BERTScore to determine positive-negative sam-
ples. COLO clearly outperform all previous one-stage
summarization systems. The best results are in bold and
the second best ones are underlined.

5.2 Abstractive results

Early work also successfully applies reinforcement
learning on abstractive summarization (Paulus
et al.,, 2017; Li et al., 2019). But we do not
find related works that successfully combine rein-
forcement learning with strong pre-trained models.
Therefore, most of our baselines are strong per-
trained model finetuned with NLLLoss. Our results
is shown in Table 4, due to the huge cost of using
large pre-trained model with length set to 1024,
we also report results with 512 input tokens and it
is able to significantly outperform other baselines
which has longer input length (1024). COLO g3
has an improvement of 2.17 R-1 socre on the very
strong BART-large baseline without adding addi-
tional parameters or modules. Additionally, our
method is able to outperform all one-stage baseline
systems by a large margin. We also conduct exper-
iments on long document summarzation datasets
(see in Table 11 in Appendix).

5.3 Comparison with Multi-stage Systems

Apart from the one-stage systems, we also compare
our model with these powerful multi-stage systems:
CTRLSum, multi-stage re-ranking models. CTRL-
Sum needs other systems to previously produce a
control signal.

5788

Reddit XSum PubMed
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
LEAD 1238 217 1012 1440 146 1059 3758 1222, 33.44
ORACLE 2010 1108 2310 2562 7.62 1872 4512 2033 40.19
BERTSUM 2386 5.85 1911 2286 448 17.16 41.05 1488 36.57
BARTEXT 2397 5.68 1924 2296 470 1729 4140 16.18 37.89
COLOp.: 2506 590 1952 2451 504 1821 4193 1651 3828

Table 3: Results on test sets of reddit, XSum and PubMed. Our model achieve significant improvement on the
baseline model BARTEXT. LEAD means we select the first k& sentences from the source document as the output
summary and ORACLE is the upper bound of extractive methods.

Model R-1 R-2 R-L

BertSumAbs(Liu and Lapata, 2019)
Pegasus(Zhang et al., 2020)
BART(Lewis et al., 2020)
BART+R3F(Aghajanyan et al., 2020)
BART (len = 512)

41.72 19.39 38.76
44.17 21.47 41.11
44.16 21.28 40.90
44.38 21.53 41.17
43.82 20.96 40.63

Model R-1 R-2 R-L

extractive systems

COLOg¢ 44.27 21.01 40.34
BERT+BERT® (Zhong et al., 2020) 44.22 20.62 40.38
BERT+RoBERTa”™ (Zhong et al., 2020) 44.41 20.86 40.55
COLOg,¢ +ROBERTa® 44.70 21.03 40.74

ConSum (Sun and Li, 2021)
SeqCo (Xu et al., 2021)

44.53 21.54 41.57
45.02 21.80 41.75

Naive one-stage (ROUGE, len = 512) 43.90 20.88 40.69
CoL0 s (ROUGE, len = 512) 45.45 21.53 42.35
COL0 45s(ROUGE) 46.33 22.15 43.08

Table 4: Abstractive results on CNN/DM test set. len
means the maximum input length of the encoder, results
without the marker using 1024 tokens as the input. Con-
Sum (Sun and Li, 2021) and SeqCo (Xu et al., 2021) in
the second block are also previous contrastive learning
based methods without re-ranking.

performance The addition of another pre-trained
model implicitly introduces more parameters and
knowledge, thus it is usually unfair to directly com-
pare one-stage systems with the two-stage systems.
But we show that COLO is able to achieve com-
parable performance with the multi-stage systems.
As is shown in the first part of Table 5, compared
with the multi-stage models that ensembles another
pre-trained encoder as a re-ranker, COLO g, still
performs better than their BERT+BERT™ version
without the need to re-feed the generated candi-
dates to another model meanwhile we obtain a
~x5 speed up over the multi-stage systems. We
also try concatenating a re-ranker ROBERTa for
our model, results shows that COLOg,; can be
further improved by combing another pre-trained
re-ranker reaching new extractive SOTA on the test
set of CNN/DM. For abstractive models, our end-
to-end model still legs behind multi-stage systems
but we do not need training another model and keep

abstractive systems

COLO aps 46.33 22.15 43.08
CTRLSum(He et al., 2020) 45.65 22.35 42.50
BART+RoBERTa"™ (Liu and Liu, 2021) 46.67 22.15 43.54

Table 5: Comparision with the multi-stage systems.
RoBERTa™ means a ROBERTa re-ranker is is added
to the summarization model.

similar inference speed with baseline models.

Inference Efficiency Despite the fact that multi-
stage models outperform all end-to-end systems,
they frequently suffer from inefficiency. In this part
we mainly focus on analysing the efficiency of 3
kinds of systems: 1) baseline, which is trained only
with BCELoss or NLLLoss, 2) COLO, our end-to-
end constrastive learning framework, 3) Rerank,
which means the multi-stage re-ranking systems.
it has more 110M parameters than baseline model
and CoLo. The efficiency experiments for train-
ing and inference are respectively conducted on
24G RTX 3090 GPUs and 12G TITAN XP GPUs.
For extractve summarization, figures 3(a),3(b) give
a detailed comparison of the inference speed be-
tween the three models. Y-axis represents the num-
ber of samples processed per second. To give a fair
comparison, we test the inference efficiency in two
settings: 1) all models are tested with batch size
fixed to 1. ii) all models are tested with the max-
imum batch size allowed by the GPU. While the
candidate size varies from 4~32, both our model
have a 3x ~ 8x speed-up ratio over the multi-
stage re-ranking model. When the candidate size

5789

Systems Stagel Preprocess Stage2 Total hours
Ext+RoBERTa® 4 5 (+20) 128 137 (+20)
CoOLOEat 7 - - 7 130)
Abs+ROBERTa® 80 132 (+18) 128 340 (+18)
COLO abs 224 - - 224 116)

Table 6: GPU hours spent on training for each
process on the training set of CNN/DM(reported
results are rounded down after the decimal point.
Ext+RoBERTa®/Abs+RoBERTa” denotes the multi-
stage re-ranking systems with an extracitve/abstrastive
summarizer. (+18)/(+20) means 18/20 CPU hours are
spent on calculate ROUGE score for each candidate
with 32 threads.

is set to 20, the baseline model is able to process
~31.2/41.9 (batch = 1/MAX) samples per second,
the decoding speed of COLO g, is ~30.4/38.9 sam-
ples/s (batch=1/MAX) and the decoding speed of
the multi-stage re-ranking model is only ~4.9/7.0
samples/s(batch=1/MAX). Our model almost does
no harm on inference speed while the candidate
size |C| is less than 16. However, when the can-
didate size grows larger there is more time spent
on generating the representations of the candidates.
Figure 4 show the comparison of inference time
of the abstractive models. While the bottleneck of
abstractive models is the auto-regressive generation
process. Our abstractive model generally save ~0.5
GPU hours compared to the re-ranking model.

—~—Baseline Colo Rerank

sample per second

4 8 12 16 20 24) 4 8 12 16 20 24
Draft size Draft size

(a) CNN/DM (batch=1) (b) CNN/DM (batch =MAX)

Figure 3: Inference speed on CNN/DM (extractive). we
use the candidate size |C| as the X-axis. The Y-axis
represents the number of samples processed per second.
batch=MAX means we use the maximum batch size
allowed by GPU memory.

Training Efficiency Table 6 gives an overview
of the training time of our system and the multi-
stage models on the training set of CNN/DM. The
general pipeline for the multi-stage models is: 1)
training a generator (Stagel), ii) Preprocess, ii)
training a re-ranker (Stage2). The preprocess in-

4 TisarrlicoLo [Rerank

QJEJJJIQ

beam size

GPU hours

Figure 4: Test inference time with beam size for abstrac-
tive model. We use the maximum batch size allowed by
GPU memory.

MetricUsed R-1 R-2 R-L JS-2 BS MS
Baseline 4278 2024 39.23 54.24 43.52 58.27
ROUGE-1,2 44.10 20.97 40.19 54.07 44.26 58.63
ROUGE-L 44.09 20.93 40.34 54.06 44.32 58.60
JS-2 43.85 21.13 39.98 53.92 44.19 58.60
BERTScore 44.27 21.01 40.34 54.08 44.85 58.71
MoverScore 44.21 20.81 40.25 54.33 44.47 58.78

Table 7: Extractive results of using different evaluation
metrics as the discriminator on CNN/DM test set.

cludes generating the training/dev/test set for train-
ing re-ranker and sorting candidates by ROUGE.
For extractive system we save 130 GPU hours com-
pared to the multi-stage systems whose bottleneck
is training the re-ranking model. For abstractive
model, apart from the 128 GPU hours spent on
training the ranker, using beam search to generate
the training set for re-ranker model is also very time
consuming, generally we obtain 116 GPU hours
and 18 CPU hours saved.

5.4 Ablation for Different Discriminators

In addition to ROUGE, we also select other metrics
as the discriminator (shown in Table 7). ROUGE
and JS-2 is based on lexical matching while
BERTScore and MoverScore are based on the con-
textualized embedding from BERT. Our model gen-
erally obtains the best results on the metric used
in training. Because these metrics are not actually
separated, using one of these metrics as the discrim-
inator can also gain significant improvements on
other metrics. Overall, the neural evaluation metric
BERTScore and MoverScore bring more improve-
ments compared with metrics that based on the
lexical matching. But incorporating neural model
based metrics in training will obviously increase
the training time.

5790

5.5 Visualization Experiment

We conduct a visualization experiment on our ex-
tractive model to get a close look on the distri-
bution of candidates in semantic space. We ran-
domly sample 100 documents with more than 10
sentences from the test set of CNN/DM. We first
select the top 10 sentences based on the predicted
score from the classifier. We set the possible num-
ber of sentences to {2, 3} resulting a candidate size
of C%, + C3, = 165 for each sample. We visual-
ize the learned embedding of these candidates and
the anchor in a two-dimensional space by apply-
ing the t-SNE algorithm. As shown in Figure 5,
there is an obvious cluster of the top 50 candidates
(colored in purple) and the candidates with higher
score are closer to the anchor while the distribution
of uninformative candidates (gray,cyan points) is
relatively random.

o 00
e s % LA °
. o . . (Y-
LI e s 255
HERCAE SR - ° s A%
0% 305 et
o8 . @ 7
. . "8 o
% o o
.. « anchor 20 LA o e anchor
L 700 ‘ e top50 . % o’ o2 o topsO
RS o top100 (LA A s top100
'~ ” o top150 - . o top150

Figure 5: T-SNE Visualization of two examples from
CNN/DM test set. We divide the candidates into 3
groups based on ROUGE score: candidates ranking
1~50, candidates ranking 51~100, candidate ranking
101~150. The red point denotes the anchor and the
purple/cyan/gray points respectively denote the top
50/100/150 candidates.

5.6 Human Evaluation

We also conduct a human evaluation on our mod-
els to get more accurate results . We randomly
select 30 articles from the test set of CNN/DM, and
each articles have 5 candidate summaries 4 from
automatic systems and 1 is the gold reference. We
recruit 2 PhD students majoring in computer sci-
ence and ask them to rank the candidate summries
based on the fluency, informativeness. If two of
these systems generate the same summary for the
source document, this sample will be filtered out.
As we can see from Table 8, the COLO g, with the
discriminator as BERTScore achieve the best re-
sult among all automatic systems. However, using
BERTScore will bring much training time. We also
suggest taking JS-2 divergence as the discriminator
which also does a good job in human evaluation.

Metric Used 1st 2nd 3rd 4th 5th AvgR.
Baseline 0% 83% 83% 233% 60% 4.33
JS2 6.7% 25% 33.3% 21.7% 13.3% 3.10
R14R2 5% 20% 28.3% 30.3% 16.7% 3.35
BERTScore 10% 35% 20% 25% 10% 2.90
Gold label ~ 78.3% 11.7% 10% 0% 0% 1.32

Table 8: Results of human evaluation results. Base-
line means the BARTEXT model, Gold-label means the
means the human written summary. Avg R. denotes the
average ranking of the system.

6 Limitations and Future Work

Compared with the most well-known contrastive
learning framework simCLR (Chen et al., 2020)
which propose to construct positive and negative
pairs from training samples in the same batch,
Drawing negative-positive pairs from the summa-
rization model requires more training time. Ideally,
providing more positive and negative samples will
benefit the performance of COLO . However, de-
coding with very large beam size in training mode
will cost more GPU memory and training time.
Future work can search for an efficient way to con-
struct these positive-negative pairs to perform re-
ranking during training.

7 Conclusion

We introduce COLO, a contrastive learning based
summarization framework for one-stage summa-
rization where positive-negative pairs are generated
directly from the summaizer with online sampling.
COLO can be both easily applied on extractive and
abstractive methods. Results show that we greatly
exceed previous stage-of-the art one-stage systems
with no additional parameters and obivious decline
of the inference efficiency.

Acknowledgement

We would like to thank Yixin Liu and the
anonymous reviewers for their valuable advice.
This work was supported by the National Key
Research and Development Program of China
(No0.2020AAA0106702) and National Natural Sci-
ence Foundation of China (N0.62022027).

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.

5791

2020. Better fine-tuning by reducing representational
collapse. arXiv preprint arXiv:2008.03156.

Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,
Xipeng Qiu, and Xuanjing Huang. 2022. Cont:
Contrastive neural text generation. arXiv preprint
arXiv:2205.14690.

Chenxin An, Ming Zhong, Yiran Chen, Danging Wang,
Xipeng Qiu, and Xuanjing Huang. 2021a. Enhancing
scientific papers summarization with citation graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12498-12506.

Chenxin An, Ming Zhong, Zhichao Geng, Jiangiang
Yang, and Xipeng Qiu. 2021b. Retrievalsum: A
retrieval enhanced framework for abstractive summa-
rization. arXiv preprint arXiv:2109.07943.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10-20.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. arXiv
preprint arXiv:1506.03099.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597-1607. PMLR.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 484—494.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 615-621.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098-4109.

Junxian He, Wojciech Kryscifiski, Bryan McCann,
Nazneen Rajani, and Caiming Xiong. 2020. Ctrl-
sum: Towards generic controllable text summariza-
tion. arXiv preprint arXiv:2012.04281.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684—1692.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive summarization of reddit posts with
multi-level memory networks. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2519-2531.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Seanie Lee, Dong Bok Lee, and Sung Ju Hwang.
2020. Contrastive learning with adversarial perturba-
tions for conditional text generation. arXiv preprint
arXiv:2012.07280.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Siyao Li, Deren Lei, Pengda Qin, and William Yang
Wang. 2019. Deep reinforcement learning with dis-
tributional semantic rewards for abstractive summa-
rization. arXiv preprint arXiv:1909.00141.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3721-3731.

Yixin Liu and Pengfei Liu. 2021. Simcls: A simple
framework for contrastive learning of abstractive
summarization. arXiv preprint arXiv:2106.01890.

Annie Louis and Ani Nenkova. 2013. Automatically as-
sessing machine summary content without a gold
standard. Computational Linguistics, 39(2):267—
300.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018

5792

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797-1807.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747-1759.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379-389.

Felix Stahlberg and Bill Byrne. 2019. On nmt search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 3356-3362.

Shichao Sun and Wenjie Li. 2021. Alleviating expo-
sure bias via contrastive learning for abstractive text
summarization. arXiv preprint arXiv:2108.11846.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu Wei.
2021. Sequence level contrastive learning for text
summarization. arXiv preprint arXiv:2109.03481.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In /n-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 563-578.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 6197-6208. Association for Computa-
tional Linguistics.

Ming Zhong, Pengfei Liu, Danging Wang, Xipeng Qiu,
and Xuan-Jing Huang. 2019. Searching for effective
neural extractive summarization: What works and
what’s next. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1049-1058.

Ming Zhong, Yang Liu, Suyu Ge, Yuning Mao, Yizhu
Jiao, Xingxing Zhang, Yichong Xu, Chenguang Zhu,
Michael Zeng, and Jiawei Han. 2022. Unsupervised
summarization with customized granularities. arXiv
preprint arXiv:2201.12502.

5793

