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Abstract

Dense video captioning aims to identify the
events of interest in an input video, and gen-
erate descriptive captions for each event. Pre-
vious approaches usually follow a two-stage
generative process, which first proposes a seg-
ment for each event, then renders a caption
for each identified segment. Recent advances
in large-scale sequence generation pretraining
have seen great success in unifying task for-
mulation for a great variety of tasks, but so
far, more complex tasks such as dense video
captioning are not able to fully utilize this pow-
erful paradigm. In this work, we show how
to model the two subtasks of dense video cap-
tioning jointly as one sequence generation task,
and simultaneously predict the events and the
corresponding descriptions. Experiments on
YouCook2 and ViTT show encouraging results
and indicate the feasibility of training complex
tasks such as end-to-end dense video caption-
ing integrated into large-scale pretrained mod-
els.

1 Introduction

Online videos have become an important source of
knowledge and skills (O’Neil-Hart, 2017). In order
to help users locate information of interest, search
engines and video platforms often show anchors at
“key moments”, usually accompanied by descrip-
tions of the segment’s content (Baheti, 2019). This
is a direct application of the dense video caption-
ing task (Krishna et al., 2017), thus methods for
improving performance on this task are relevant to
any video platform.

Intuitively, dense video captioning can be de-
composed into two subtasks: event localization
and segment-level video captioning. Following this
approach, prior work (Krishna et al., 2017; Zhou
et al., 2018a; Li et al., 2018; Wang et al., 2018;
Zhou et al., 2018c; Mun et al., 2019; Iashin and
Rahtu, 2020) has used a two-stage, “localize-then-
describe” pipeline. Such methods usually involve

two separate modules with different underlying
model architectures for event localization and event
captioning, with captions for dense events rendered
based on the predicted event spans.

Recently, with the advance of large-scale
datasets and model architectures, there has been an
explosion of pretrained multimodal (for text, im-
age, video) Transformer models (Tan and Bansal,
2019; Sun et al., 2019; Li et al., 2019; Luo et al.,
2020; Li et al., 2020a,b; Gan et al., 2020; Kim
et al., 2021). Such models have proved to be
highly effective when fine-tuned for a wide range
of downstream tasks, such as visual question an-
swering (Agrawal et al., 2015), image caption-
ing (Chen et al., 2015), visual common sense rea-
soning (Zellers et al., 2019), visual entailment (Xie
et al., 2019), etc. These end-tasks can be expressed
as sequence generation tasks in a straightforward
manner. In contrast, this is non-trivial for dense
video captioning, as the segmentation subtask does
not lend itself naturally to such a formulation. Does
this mean more complex tasks cannot benefit from
the pretraining paradigm in an end-to-end fashion?
In this work, we study dense video captioning as
an example of a complex task that can be cast as
sequence generation and, as a result, can benefit
from large-scale pretraining.

More specifically, we propose to solve the dense
video captioning task as a single sequence-to-
sequence modeling task using a multimodal Trans-
former. To this end, we design several task for-
mulations to encode both segmentation and cap-
tion prediction in one target string. Thus, our task
formulations allow the model to simultaneously
predict event locations and corresponding captions
in one pass, using one decoder. This opens the
door to leveraging large-scale pretrained models,
as well as the option of participating in large-scale
multi-task training more easily by reusing existing
infrastructure.

We evaluate our model on two dense video
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captioning benchmarks, YouCook2 (Zhou et al.,
2018a) and ViTT (Huang et al., 2020a). Our se-
quence generation formulations provide a feasible
path forward – we obtain encouraging results com-
pared to prior work that used a two-stage scheme
with specialized architectures for each step. On
the pretraining front: (a) we are able to benefit
from models pretrained on very different data and
tasks, such as T5 (Raffel et al., 2020), (b) pretrain-
ing on more domain-specific data (WikiHow) and
pretraining tasks (predicting headings for how-to
steps) lead to a similar amount of gain, but (c) hav-
ing the domain-specific pretraining start from a
T5 checkpoint (T5 + WikiHow) provides a signif-
icantly larger gain. The noteworthy result is that,
even in the presence of large-scale domain- and
task-specific pretraining (WikiHow), one can still
observe measurable benefits from a task-agnostic
general-purpose pretrained model (T5).

While the primary motivation for modeling the
two tasks jointly is to be able to utilize the pretrain-
ing paradigm, the segmentation subtask (finding
event boundaries) and the captioning subtask (de-
scribing what happens in an event) are related tasks,
and intuitively stand to benefit from being modeled
jointly. Our experimental results are aligned with
this intuition: a model that does both segmenta-
tion and captioning simultaneously, outperforms
(in terms of segmentation accuracy) a variant that
focuses only on the segmentation task.

Overall, our results point to a viable alternative
direction for modeling complex tasks such as end-
to-end dense video captioning, in which we can
leverage the large-scale pretraining paradigm to
achieve modeling improvements.

2 Related Work

2.1 Multimodal Transformer

Recently, vision-and-language pre-training has at-
tracted a lot of attention for jointly learning from vi-
sual and textual inputs in order to better solve mul-
timodal tasks. Following the success of BERT (De-
vlin et al., 2019), multimodal pre-training usually
adopts the Transformer (Vaswani et al., 2017) en-
coder structure to encode both the visual features
and textual features. The late-fusion approaches
first process visual and textual information sepa-
rately and subsequently fuse them using another
Transformer layer (Tan and Bansal, 2019; Lu et al.,
2019). The early-fusion approaches jointly encode
visual and texual representations (Chen et al., 2020;

Sun et al., 2019; Li et al., 2019; Luo et al., 2020; Li
et al., 2020a; Qi et al., 2020; Huang et al., 2020b;
Li et al., 2020b; Lin et al., 2020; Gan et al., 2020;
Kim et al., 2021). During pre-training, tasks such
as masked language modeling, masked region mod-
eling, and image-text matching are used to learn a
cross-modal encoding which benefits downstream
multimodal tasks.

2.2 Dense Video Captioning

Krishna et al. (2017) introduced the dense video
captioning (DVC) task and proposed a solution
based on two separate modules: one for propos-
ing events, and another for captioning them. Re-
cent work (Zhou et al., 2018a; Li et al., 2018;
Wang et al., 2018; Zhou et al., 2018c; Mun et al.,
2019; Iashin and Rahtu, 2020) follows the two-
stage “detect-then-describe” framework, in which
the event proposal module first predicts a set of
event segments, then the captioning module con-
structs captions for each candidate event segment.
Another line of work (Deng et al., 2021; Wang
et al., 2021) removes the explicit event proposing
process. Deng et al. (2021) tackles the DVC task
from a top-down perspective, in which they first
generate a video-level story, then ground each sen-
tence in the story into a video segment. Wang et al.
(2021) considers the DVC task as a set prediction
problem, and applies two parallel prediction heads
for event localization and captioning. To the best
of our knowledge, our work is the first to simulta-
neously conduct event localization and captioning
in a single run1 within the same prediction head for
the dense video captioning task.

3 Task Definition

The DVC task consists of annotating each input
video into multiple segments, where each segment
corresponds to an event of interest accompanied by
a short description (caption). Figure 1 shows an
example from the YouCook2 dataset.

Modified dense video captioning In YouCook2,
each segment is marked by a start and an end time,
often with gaps between segments. The burden
of identifying not just the right start-time but also
the right end-time increases the difficulty of the

1Note that on a different task (object detection), contem-
poraneous work (Chen et al., 2022) has combined spatial
localization and object description via a sequence generation
formulation by predicting bounding box coordinates and ob-
ject labels in sequence.
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Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

Segment Prediction 
+ Dense Caption Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Multimodal 
Input

Target 
Output

Figure 1: An example of the input video and output segmentations and captions from the YouCook2 dataset.

Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

ASR Timestamp [0, 1, 2, 3, ...]

Dense Caption
Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Modified Input:

Multimodal 
Input

Figure 2: Modified dense video captioning: a simplified
setting where the segments are concatenated to form
the modified input with gaps removed. Table 1, 5, 6
show our preliminary experiments using this set up; all
other results reported in the paper are carried out in the
original setting as depicted in Figure 1.

segmentation task. Thus, we start our exploration
with a simpler task where we introduce a variant of
the YouCook2 dataset as shown in Fig. 2: all the
annotated segments in a given video are concate-
nated to form a modified input, leaving out the gaps
between segments. We refer to this setting as the
modified dense video captioning: given an input
from Fig. 2, the model only needs to predict n start
times to fully define n segments. In this setting, the
segmentation subtask becomes a partition task for
identifying the set of start times of segments.

4 Method

As noted earlier, prior work often decomposes
dense video captioning into two subtasks, (a) a
segmentation subtask, and (b) a segment-level cap-
tioning subtask. These two subtasks are often ad-
dressed with different model architectures. In con-
trast, our approach solves both subtasks simultane-
ously with one single model.

We first describe how we jointly model segmen-
tation and captioning subtasks as one single se-
quence generation task. To this end, we need to
formulate target strings in ways that encode both
segmentation and captioning predictions.

The typical input to a DVC task includes both
visual information and speech in textual form – Au-
tomatic Speech Recognition (ASR) tokens. We
start by introducing our target string formulations
assuming only textual input, with segmentation in-
formation expressed in terms of the positions of

the corresponding ASR tokens2. We then describe
multi-modal models where the visual information
is added to the input while retaining the aforemen-
tioned scheme to represent segmentation informa-
tion.

4.1 Target string formulations

We describe two approaches to formulate the tar-
get strings. We refer to a model that encodes only
segmentation information in the target strings as
a Seg-only model, and one that encodes both seg-
mentation and captioning as a Seg+Cap model.

Tagging-based target formulation We encode
the segmentation subtask in a manner similar to the
encoding of the chunking task as tagging tokens
in the IOB format (Ramshaw and Marcus, 1995).
Fig. 3 illustrates how we model the segmentation
task with two tags (in the modified setting): the
ASR token at the start of a segment receives a spe-
cial token ⟨sep⟩ as the start-of-segment tag, and the
rest of the tokens in the segment receive a continu-
ation tag (we reuse the ⟨pad⟩ token). This can be
extended to cover the original setting (with gaps be-
tween segments) with an additional end-of-segment
tag. In this formulation, the ground-truth target out-
put string has the exact same length as the input
ASR string. To model the captioning annotation,
the ⟨sep⟩ token is followed by the corresponding
ground-truth caption, which is then padded till the
next ⟨sep⟩ token.

While treating the segmentation task as a tagging
task seems natural, the tagging-based formulation
enforces equal lengths between predicted output
and the input ASR tokens, which leads to potential
inefficiencies: the input ASR string is usually much
longer than all the descriptive captions combined,
which results in many padding tokens in the tar-
get output, and leads to an unnecessary slow-down

2Our motivation for treating DVC as a sequence genera-
tion task is to take advantage of existing pretrained sequence
generation models, currently dominated by text models; thus,
we take a text-centric view in this work.
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welcome  to          our         channel     we     will          start    by      preparing  the      lamb   chops     ...

<sep>      <pad>   <pad>     <pad>        <sep>  <pad>     <pad> <pad> <pad>        <pad> <pad> <pad>    …
<sep>     opening sentence <pad>        <sep>  prepare   the       lamb    chops       <pad> <pad> <pad>    …

<sep>     4                                             <sep>   8                                                                                          …
<sep>     4  opening sentence               <sep>   8  prepare  the     lamb   chops                                           …

event 0 event 1( #token=4 ) ( #token=8 )

Partition-only:
Partition+Captioning:

Partition-only:
Partition+Captioning:

ASR Input:

Target Output with the Length-based Formulation

Target Output with the Tagging-based Formulation

Figure 3: The tagging-based and length-based target formulations for modified dense video captioning.

in training and prediction time. Additionally, the
longer-form target strings are markedly different
from the usual generative pattern of the pretrained
text decoder, which can reduce the effectiveness
of the pretrained checkpoints. Furthermore, this
formulation also assumes that captions are shorter
than the ASR string for each segment; while this is
mostly true, for segments where little is being ex-
plained (short ASR string), this formulation leaves
insufficient capacity in the target string between
the two consecutive ⟨sep⟩ tags to encode the corre-
sponding caption, resulting in caption truncation.

Length-based target formulation To cope with
the limitations of the tagging-based formulation,
we predict the length of each segment explicitly.

Let li be the number of ASR tokens in the i-th
segment. In the modified setting, the segmentation
information for an input string with n segments
is fully specified by the sequence {l1, l2, ..., ln}.
Fig. 3 provides an example of this length-based
formulation. The ground-truth target string in a
Seg-only model is simply a sequence of numbers
corresponding to segment lengths (measured by
the number of tokens); in a Seg+Cap model, each
number is followed by the caption for that segment.

In the original setting with gaps between seg-
ments, let gi be the offset from the last ASR token
in the previous segment to the start of segment i.
The target string will now aim to predict both (gi,
li) instead of just li for each segment. The sequence
of all (gi, li) will fully specify all segment bound-
aries and can be used to compute the index of the
start and end ASR tokens for each segment.

This formulation has the advantage of a more ef-
ficient representation of the segmentation informa-
tion, and thus a much shorter target length. The seg-
mentation information is now explicitly expressed
as numbers in the target strings, so the model needs
to both figure out segmentation boundaries and be
able to count appropriately. We explicitly want to

empirically measure the ability of our models to do
the latter.

4.2 Input formulation for multimodal signals

Simple Concatenation (SimpleConcat) Visual
information for a given video is represented as a
fixed-length sequence of pre-computed frame-level
features. These features are projected to the token
embedding space via a fully connected layer. We
simply concatenate the sequence of ASR token em-
beddings and the sequence of projected visual fea-
tures to form the multimodal input to the encoder.
There’s one potential caveat: while the visual fea-
tures are extracted at a fixed frame rate, the ASR
tokens are often not spoken at a fixed speed; thus
positions in this multimodal input sequence do not
provide straightforward information on which vi-
sual frames are temporally aligned with a certain
ASR span. Since segmentation prediction is ex-
pressed relative to the ASR-token position index, it
is not clear whether the model is able to take full
advantage of visual information, absent how these
two modalities align temporally.

Prior work on multimodal pretraining has found
visual-textual information alignment to be a reason-
ably solvable task. Huang et al. (2020a) reported
87% accuracy for aligning video segments and
ASR spans in HowTo100M (Miech et al., 2019),
so it is possible that the decoder can learn to attend
to appropriate visual information while “counting”
the ASR tokens.

Temporal embedding (EmbTIME) We can also
express the temporal alignment more explicitly in
the input by adding temporal embeddings to both
ASR tokens and visual frames. In this formulation,
we learn a temporal embedder shared between the
text modality and the visual modality, which maps
timestamps to temporal embeddings. Embeddings
computed from token timestamps are then added to
ASR token embeddings, and embeddings computed
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from frame timestamps are added to projected vi-
sual frame features. This way, ASR tokens and
frames that are temporally close to each other re-
ceive similar temporal embeddings, making their
representations closer to each other.

For more explorations on explicitly expressing
temporal alignment in the input, see Appendix A.1
for an additional method to insert explicit times-
tamp markers into the input text sequence.

5 Experiments

5.1 Datasets
Dense Video Captioning Datasets We use two
publicly available datasets to verify the effective-
ness of our model formulations: YouCook2 (Zhou
et al., 2018a) and ViTT (Huang et al., 2020a).3

The YouCook2 dataset is restricted to videos re-
trieved from YouTube from the cooking domain,
targeting 89 recipes; each event segment is manu-
ally marked with a start and end time, along with a
human-generated caption for each tightly-bounded
segment. The ViTT dataset contains instructional
videos from YouTube-8M (Abu-El-Haija et al.,
2016) and covers a broader range of topics. Its
segment annotation focuses on event start time and
rater-provided captions for the corresponding seg-
ment (spanning two consecutive start-time annota-
tions). Both datasets are annotated with captions
written in English.

Note that while the YouCook2 data release con-
tains training, dev, and test sets, its test set does
not come with human annotations. Thus, we split
the original validation set into validation and test
splits for our experiments. For ViTT, we use the
original train/val/test splits provided with the data.
The number of videos available for use at the time
of our work4 for Youcook2 is 925 for train, 206
for validation and 105 for test. For ViTT there are
4736 train, 932 validation and 932 test videos.

Domain-specific pretraining with WikiHow In
addition to general-purpose pre-trained models
like T5, we also experiment with domain-specific
pretraining. To this end, we use the WikiHow
dataset (Koupaee and Wang, 2018). WikiHow con-
sists of instructional (how-to) articles, which makes
it in-domain data for the two dense video caption-
ing datasets considered here, while being much

3YouCook2 released under an MIT license; ViTT released
under an “AS IS” license.

4As of 2021; note that YouTube videos are subject to user
deletion.

Ground Truth:

Prediction:

ASR Token Index:   2                                                                        10 
       Timestamps:    1s                                                                       8s

ASR Token Index:   1                                                                    8 
       Timestamps:    0s                                                                  6s

Intersection

Union

Token Index-based IoU 
• GT: [2, 10], Prediction: [1, 8] 

• Intersection: [2, 8] → 7 tokens 
• Union: [1, 10] → 10 tokens 

• IoU = 7 / 10

Timestamp-based IoU 
• GT: [1s, 8s], Prediction: [0s, 6s] 

• Intersection: [1s, 6s] → 5s 
• Union (8s): [0s, 8s] → 8s 

• IoU = 5 / 8

Figure 4: Comparisons between the token index-based
and timestamp-based IoU used in our study.

larger in size5. In addition, WikiHow articles con-
tain detailed step-by-step instructions. Each step
comes with a summary, which usually serves as
the section title. Both the step boundaries and sum-
maries are easily extracted according to the page
meta-data. This provides the ground-truth annota-
tion for a “dense document caption” task: given the
full article as a sequence of text tokens, predict the
step boundaries and summaries. This enables us to
also include a domain-specific pretraining task that
closely resembles our task. For each formulation
described in Sec. 4, we experiment with a check-
point pre-trained on the WikiHow data using the
corresponding target string formulation.

5.2 Evaluation Metrics

Segmentation Performance Following previous
works (Zhou et al., 2018b; Shi et al., 2019), we use
the mean Intersection-over-Union (mIoU) metric
to evaluate the segmentation performance. Recall
that the ground-truth segments are marked by start
(and end) times, whereas the predicted segments
are expressed according to the position of the corre-
sponding ASR token. For the modified dense video
captioning task, we compute the token index-based
IoU: each ground-truth segment is defined by the
start and end ASR token index, and will be com-
pared against the predicted index. For the original
task, we compute the timestamp-based IoU: pre-
dicted indices are mapped into the corresponding
ASR token timestamps and compared against the
segment’s ground-truth start and end timestamps.
Fig. 4 provides an example of the two types of IoU
used in this study.

An IoU score can be computed for each (ground-
truth, predicted) segment pair. The mIoU measure
provides a summary score for segmentation perfor-
mance over the entire video. For each ground-truth
segment, we take its maximal IoU to predicted

5WikiHow has 157,116 articles in its training set, and 5,593
articles in its validation set.
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* Target
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0 Random Partition 37.74 26.13 24.88 23.52 - - - - - -

1
Tagging-based

- 33.59 23.04 29.37 24.46 19.72 17.09 0.07 0.91 0.03 2.07
2 T5 12.06 1.78 7.46 2.81 6.73 0.24 0.00 0.01 0.00 0.03

3
Length-based

- 36.30 26.23 28.79 25.81 33.62 24.69 0.24 1.62 0.04 4.03
4 T5 42.71 31.85 33.04 31.21 42.82 32.16 1.83 4.17 0.21 8.74

Table 1: Preliminary experiments comparing the tagging-based and the length-based formulation on YouCook2
modified dense video captioning. We report the evaluation results on the validation set (one run per setting) with
models initialized from random weights or from T5 checkpoints.

segments as the IoU score for this ground-truth seg-
ment, and mIoU is the average of this value across
all ground-truth segments. The individual mIoU
for each video is then averaged across the test data
and reported as the overall mIoU.

For diagnostic purposes, we also compute: 1) the
percentage of predicted segments which have an
IoU score with at least one ground-truth segment
above a certain threshold t (precision@t); 2) the
percentage of ground-truth segments which have
an IoU score with at least one predicted segment,
above a certain threshold t (recall@t), as well as
their geometric mean as F1. Following prior work,
we compute these scores for a set of IoU thresholds
t={0.3, 0.5, 0.7, 0.9}, and report the average over
these thresholds.

Captioning Performance We compute BLEU-
4 (Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), CIDEr (Vedantam et al., 2015), and
ROUGE (Lin, 2004) scores between generated cap-
tions and the ground truth when the predicted and
ground-truth segment “match” (i.e., with IoU score
above a given threshold t); if a ground truth seg-
ment does not have a matching prediction, it con-
tributes a zero to the average score for the corre-
sponding threshold. Again, we compute this for a
set of IoU thresholds of {0.3, 0.5, 0.7, 0.9}, and
report the average over these thresholds.

5.3 Implementation Details

Models were trained on 4x4 TPUs, and we used
about 180k GPU hours for around 1380 training
runs, including pretraining the WikiHow check-
point, pilot studies with toy examples, debugging,
and hyperparameter tuning. The models have ap-
proximately 70 million parameters. We used the
Adafactor (Shazeer and Stern, 2018) optimizer and
a learning rate schedule of 1000 warmup steps fol-
lowed by square-root decay. We did a few initial

exploratory runs over base learning rates of {0.001,
0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1, 2, 5} to determine
that a base learning rate of 1 worked well and used
it for all the experiments reported.

For our visual representations, we computed 3D
CNN features pre-trained on the Kinetics (Carreira
and Zisserman, 2017; Kay et al., 2017) dataset for
frames sampled at 30 fps, resulting in one feature
for each 1 second clip.

5.4 Experiments in the modified setting

Experimental setup We conduct comparisons
of the two different target formulations, tagging-
based and length-based, in the modified setting,
using the following experimental setup: (a) max
input text length and target length are set to 1024,
and max input visual feature length is set to 800;
this can truncate longer ASR sequences, but allow
us to quickly iterate through different settings with
fewer computational resources; (b) only one run
for each setting. We report results on the validation
set in Table 1.

Target formulations The best performing model
(row #4 in Table 1: length-based with T5 check-
point) outperforms a random partition baseline6

(row #0 in Table 1), which indicates our target for-
mulation approach to the segmentation task is cap-
turing some segmentation information effectively.

When trained from scratch, the length-based
formulation achieves higher performance across
the board (#3 vs #1), with a smaller gap for the
Seg-only model, and a more marked lead for the
Seg+Cap model. We hypothesize that while treat-
ing the segmentation task as a tagging task is more
or less feasible on its own, combining segmentation
tags and captions is not a suitable formulation for

6For the random partition baseline, a video is randomly
partitioned into n segments, with n sampled uniformly from 1
to 15 (The mean number of segments in the ground-truth is 8).
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Dataset * Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU mIoU B@4 METEOR CIDEr ROUGE-L

Youcook2

0 Random Segmentation 20.61 ± 1.04 - - - - -

1

SimpleConcat

- 12.99 ± 1.55 16.45 ± 8.72 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 24.21 ± 1.64 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 23.33 ± 0.79 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 30.26 ± 1.24 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ EmbTIME

- 18.51 ± 1.95 18.71 ± 0.17 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
6 T5 23.02 ± 1.05 23.96 ± 0.08 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
7 WikiHow 21.68 ± 1.93 21.88 ± 0.86 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
8 WikiHow T5 26.51 ± 0.45 28.70 ± 0.92 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

9 Random Segmentation 21.90 ± 0.15 - - - - -

10

SimpleConcat

- 33.85 ± 0.70 32.69 ± 0.71 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
11 T5 37.89 ± 0.10 38.07 ± 0.65 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
12 WikiHow 38.20 ± 0.27 37.80 ± 0.62 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
13 WikiHow T5 41.87 ± 0.26 42.40 ± 0.30 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

14

+ EmbTIME

- 33.89 ± 0.21 35.37 ± 3.18 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
15 T5 37.78 ± 0.15 38.50 ± 0.55 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
16 WikiHow 37.27 ± 0.08 36.97 ± 0.48 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
17 WikiHow T5 41.64 ± 0.12 43.22 ± 0.72 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 2: Dense video captioning performance on YouCook2 and ViTT test sets with the length-based formulation.
We ran 3 trials for each setting, and report the evaluation results (mean ± std) with models initialized from random
weights, T5 checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow. Note: Seg
stands for the segmentation task, and Cap stands for the captioning task.

the combined task – to the point that the Seg+Cap
model underperforms Seg-only model in segmenta-
tion metrics (mIoU of 19.72 vs. 33.59 in #1).

The length-based formulation overall benefits
from the T5 checkpoint (#3 vs #4 in Table 1) across
different sub-tasks. Note that for the Seg-only
model, the target strings (sequences of numbers)
are not typically seen in T5 pretraining, but the
T5 checkpoint still boosts its performance. In con-
trast, the tagging-based formulation is not able to
benefit from the T5 checkpoint in our experiments.
One possible explanation is that the target strings
in tagging-based (with large chunks of padding to-
kens) are just too different from the T5 pretraining
targets.

Given the results obtained in the modified setting,
we focus our efforts on using length-based target
formulation in the more challenging original setting
in the following section.

Ablation studies We conducted ablation stud-
ies on input modalities, and find models that take
text-only inputs stand to benefit more from the pre-
trained checkpoints than the models that only take
visual inputs. We also conducted ablation studies
on partial parameter initialization, and found that
partially loading checkpoints from pre-trained mod-
els does not work as well as fully loading check-
points for both the encoder and the decoder. See
Appendix (A.2) for more details.

5.5 Experiments in the original setting

Experimental setup Using the length-based tar-
get formulation, we conduct a more extensive com-
parison of the effect of different pretraining strate-
gies, as well as different input formulations on
the original dense video captioning task on both
YouCook2 and ViTT. Maximum sequence lengths
are set to ensure no truncation happens in either
dataset – input text: 4096; visual feature: 800
(YouCook2) / 500 (ViTT); target: 512 (YouCook2)
/ 256 (ViTT). We ran each experiment with differ-
ent seeds three times to account for performance
variance from random initializations. We report
the mean and standard deviation (using 3 runs) for
each metric in Table 2. We choose the best check-
point based on performance on the validation set
and report the performance on the test set.

Effects of Pretraining For both datasets, there
are significant performance improvements from uti-
lizing pre-trained checkpoints in terms of both seg-
mentation metrics and captioning metrics. Interest-
ingly, training from the WikiHow checkpoint (us-
ing in-domain task over in-domain data) provides
similar performance improvement to T5 alone (see,
for instance, #2 vs #3, or #11 vs #12 in Table 2).
However, starting from the generic-language T5
checkpoint and adding in-domain WikiHow pre-
training (WikiHow T5, e.g., #4 and #13) boosts all
metrics by a large and significant margin.
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Model mIoU Prec. Rec. B@4 M

vsLSTM (Zhang et al., 2016) 32.2 24.1 22.1 - -
SCNN-prop (Shou et al., 2016) 26.7 23.2 28.2 - -
ProcNet (Zhou et al., 2018b) 37.0 30.4 37.1 - -
Bi-LSTM + TempoAttn (Zhou et al., 2018c) - - - 0.08 4.62
End2end Transformer (Zhou et al., 2018c) - - - 0.30 6.58
Context-aware Fusion (Shi et al., 2019) 41.4 - - 2.61 17.43

End2end Sequence Generation (Ours) 30.3 24.5 24.2 2.96 3.49

Table 3: Dense video captioning performance on
YouCook2 in the context of prior work. Following prior
work, the segmentation performance is measured by the
mIoU, the precision (Prec.) and recall (Rec.) at IoU
threshold t=0.5. Captioning performance is measured
by the average BLEU-4 (B@4) and METEOR (M) at
IoU thresholds t ∈{0.3, 0.5, 0.7, 0.9}.

Effects of Joint Modeling If we compare the
mIoU score achieved by the Seg+Cap model to
the mIoU score achieved by the Seg-only model in
Table 2, across different settings, we observe a gen-
eral trend where the Seg+Cap model outperforms
the Seg-only model on this segmentation metric.
This indicates that with the right formulation, the
segmentation subtask (predicting event boundary)
can indeed benefit from joint learning with a related
captioning subtask (summarizing event content).

Input formulations Results using SimpleConcat
compared to their counterparts using EmbTIME in
Table 2, are mixed. While EmbTIME seems to bring
non-trivial improvement to models trained from
scratch, the training from scratch settings also has
the largest variance in our experiments7. That said,
the Seg+Cap model did achieve its best mIoU score
on ViTT using EmbTIME. More work is needed to
fully understand the potential of EmbTIME.

Comparison against prior work for YouCook28

Table 3 provides a summary of dense video cap-
tioning performance on YouCook2 reported in prior
work. Some of the prior work (Zhang et al., 2016;
Shou et al., 2016; Zhou et al., 2018b) focused only
on the segmentation subtask, while some (Zhou
et al., 2018c; Shi et al., 2019) approached the end-
to-end task as a two-stage task and solved the two
subtasks separately. In this context, we find the

7To the extent that the Seg+Cap model performance in #1
can be considered an outlier: its mIoU scores for the three
runs are (11, 11, 26), which resulted in a large std value not
seen anywhere else in the table. We looked into these three
runs in more details, and our best guess was that one of them
incidentally got an advantageous random initialization.

8ViTT is a relatively newer dataset and past work has
only reported performance of the segment-level captioning
subtask using ground-truth segments; we are not aware of
existing work reporting end-to-end dense video captioning
performance.

results from our simple end-to-end sequence gener-
ation based approach quite encouraging, and hope
this inspires future studies to fully realize the po-
tential of this alternative approach.

Qualitative Analysis We provide a few example
model outputs from our Seg+Cap model. More
examples can be found in the Appendix A.4.

Figure 5 presents example segmentation results.
As reflected in Figure 5(a), a segmentation pre-
diction that is largely correct for a few segments,
but is missing out on some ground-truth segments
and contains over-segmentation of others can re-
sult in a relatively low mIoU score. For examples
with relatively high mIoU scores, see Figure 5(b)
(taken from the more challenging YouCook2 set-
ting, with gaps between ground-truth segments),
and Figure 5(c) (taken from ViTT, with no gaps
between segments).

Next, we observe that caption quality is good
when the segment boundary prediction is highly ac-
curate: if we restrict to segments with IoU ≥ 90%
between the prediction and the target, the aver-
age ROUGE-L score for corresponding captions is
30.18 for YouCook2 and 44.33 for ViTT. Table 4
presents qualitative examples.

6 Conclusion

In this paper, we describe different task formula-
tions for solving the dense video captioning task
using an end-to-end sequence generation approach,
which allows us to leverage pre-trained text-only
encoder-decoder models. We conduct experiments
on YouCook2 and ViTT in several pretraining set-
tings. Experimental results show that general (T5)
and in-domain (WikiHow) text-only pre-trained
models both improve video partitioning and seg-
mentation performance, and the gains are cumula-
tive. Also, the segmentation subtask benefits from
joint modeling with the captioning subtask. We
hope our work can inspire future studies on lever-
aging pre-trained models, large-scale text corpora
and language generation formulations to solve mul-
timodal tasks such as dense video captioning.

Ethical Statement

Our experiments are conducted only on videos with
available English ASR annotations, as we inherit
this limitation from the available data for this task.
We use existing datasets based on public YouTube
videos. As a consequence, any videos that are
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(b) mIoU = 69.79%  [YouCook2]

Target:
Prediction:
Timestamp (ms):

(a) mIoU = 38.01%  [YouCook2]

Target:
Prediction:
Timestamp (ms):

 

(c) mIoU = 91.22%  [ViTT]

Target:
Prediction:
Timestamp (ms):

Figure 5: Example segmentation predictions corresponding to different mIoU scores.

IoU Segment Border (ms) Caption

Tgt.
90.0%

[58000.0, 77000.0] whisk eggs and season with salt
Pred. [57309.0, 78429.5] whisk the eggs in the deep plate

Tgt.
99.3%

[28000.0, 45000.0] chop up the garlic in the food processer
Pred. [28005.0, 44894.0] chop garlic and place in the food processor

Tgt.
94.7%

[64199.0, 98080.0] Preparining remaining ingredients
Pred. [65710.0, 98380.0] Chopping the remaining ingredients

Tgt.
97.0%

[65100.0, 124729.0] Blow-drying the roots
Pred. [63239.5, 124714.5] Blow-drying hair

Table 4: Example caption predictions where the IoU ≥ 90% between the target (Tgt.) and the predicted (Pred.)
segments. The first two examples are from YouCook2, the last two examples are from ViTT.

no longer publicly available on YouTube (e.g., re-
moved by the user) at the time of the study needed
to be excluded from our experimental setup.
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A Appendix

A.1 Timestamp markers (T-marker)

Here we describe an alternative way to encode tem-
poral alignment between textual and visual input.
Since the frames are extracted at a fixed rate, we
can explicitly add time markers to the text input
to “mark” out tokens spoken at the corresponding
time points. The video features are extracted with
a frame rate of 1 frame per second in our work. We
insert a time marker for each frame after the last
ASR token spoke before the corresponding times-
tamp. A time marker consists of a special anchor
token, followed by the timestamp token (an integer
corresponding to the timestamp in seconds).

Performance using this input formuation can be
found in the T-marker rows in Table 7. For models
trained from scratch, including the timestamp mark-
ers can positively impact model performance, indi-
cating that these markers do indeed provide helpful
information. However, adding these markers only
hurt the performance of any model trained from an
existing checkpoint. We hypothesize that this is
because the text sequence with frequent markers
is too different from the pre-trained datasets, leav-
ing the pre-trained checkpoints less effective for
models using this input formulation.

A.2 Ablation studies

Ablation on Input Data Table 5 shows compar-
isons of different input sources on YouCook2 dense
video captioning task. For all three settings (text-
only, video-only, text+video), pre-training on Wik-
iHow has the best performance on both subtasks,
and using the T5 checkpoint has better performance
than training from scratch. With the pre-trained
WikiHow checkpoint, the “Text-only” setting has
comparable performance as the “Text+Video” set-
ting that takes both the ASR transcript and the
video features as input. Using the video features
alone results in worse performance, indicating the
high value of text transcripts to the captioning task.

Ablation on T5 Checkpoint Table 6 compares
performances when using different pre-trained
checkpoints on YouCook2 modified dense video
captioning. Using either the T5 or the WikiHow T5
checkpoints outperforms the model initialized from
random weights, which verifies the effectiveness
of pre-training. Since the targets in the end task are
markedly different from, say, T5 pretraining targets,
we also experimented with loading partial check-

points (e.g., only encoder weights). Interestingly,
using the full checkpoint has better performance
than loading only encoder or only decoder weights.

A.3 Comprehensive experimental results
Table 7 provides a more comprehensive summary
of our experimental results in the original setting.
It is the same experimental setting as Table 2, but
we also report additional performance metrics for
the segmentation tasks, as well as performance for
the T-marker input formulation. Table 8 is again
under the same experimental setting, but reports
median instead of (mean, std) to summarize the 3
repeats for each setting, so that the metrics are less
affected by occasional outliers.

A.4 Qualitative examples
Here we provide more examples for the segmenta-
tion subtask and the captioning subtask.

Figure 6 and Figure 7 illustrate several sets of
segmentation results predicted by our Seg+Cap
model on YouCook2 and ViTT. We can see that
the predicted segmentation predictions on ViTT
(Figure 7) are relatively more aligned with the
ground-truth. This is because ViTT has a com-
parably simpler formulation with no gaps between
video segments. In the more challenging setup on
YouCook2 (Figure 6) where the model needs to pre-
dict both the start and end point for each segment,
the listed examples show that when predictions are
mostly correct for a few segments, the IoU scores
can be relatively low. Common types of segmenta-
tion misalignment include:

• “over-segmentation”: the prediction splits a
ground-truth span into several sub-chunks
(Figure 6 (a)(b)(c));

• “under-segmentation”: one predicted segment
covers several ground-truth events (Figure 6
(c)(f));

• “prediction-not-covered”: the predicted event
is not labeled by the ground-truth annotation
(Figure 6 (b)(d)(e)).

Table 9 shows examples of the jointly predicted
segments and corresponding captions. We have
similar findings as in the main paper that when the
segment boundary prediction is well aligned with
the ground truth, the corresponding captions are
often high-quality as well.
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Input Checkpoint Segmentation Segmentation + Captioning

Precision Recall F1 F1 B@4 METEOR CIDEr ROUGE-L

Text-only
- 31.86 30.66 31.25 30.39 0.55 1.88 0.07 5.23
T5 36.22 37.06 36.64 37.89 3.36 4.76 0.28 10.61
WikiHow T5 71.13 63.77 67.25 58.71 9.57 11.99 0.85 23.21

Video-only
- 28.02 19.48 22.98 27.5 0.52 1.89 0.07 4.82
T5 27.43 27.25 27.34 27.86 0.40 1.65 0.05 4.11
WikiHow T5 25.45 24.93 25.19 23.19 0.42 1.48 0.05 3.84

Text + Video
- 32.53 30.90 31.69 29.09 0.34 1.68 0.06 4.78
T5 36.96 37.99 37.47 32.58 2.99 4.22 0.26 9.20
WikiHow T5 71.07 62.76 66.66 57.84 9.87 11.96 0.86 23.25

Table 5: Ablation on input modalities. Performance using length-based target formulation on YouCook2 dense
video captioning task with IoU threshold=50%. Results are reported on three ablated input settings: “Text-only”
feeds in the ASR tokens, “Video-only” reveals the video features, while “Text+Video” provides both the ASR and
the video features as input.

Checkpoint F1 B@4 METEOR CIDEr ROUGE-L

- 30.39 0.55 1.88 0.07 5.23

T5 (full) 37.89 3.36 4.76 0.28 10.61
T5 (enc-only) 31.00 0.28 1.93 0.07 4.88
T5 (dec-only) 32.37 1.39 3.02 0.14 7.73

WikiHow T5 (full) 58.71 9.57 11.99 0.85 23.21
WikiHow T5 (enc-only) 59.30 8.44 11.72 0.80 22.89
WikiHow T5 (dec-only) 36.88 0.99 3.19 0.15 8.00

Table 6: Ablation on pretrained checkpoints. Performance using length-based target formulation on YouCook2
modified dense video captioning with IoU threshold=50%. Results are reported on three settings: “full” loads the
complete checkpoint, “enc-only” loads the Transformer encoder weights, while “dec-only” loads the Transformer
decoder weights.

* Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

YouCook2

0 Random Segmentation 20.61 ± 1.04 11.25 ± 0.61 12.49 ± 0.36 10.49 ± 0.59 - - - - - -

1

SimpleConcat

- 12.99 ± 1.55 12.24 ± 1.08 8.60 ± 0.90 9.39 ± 0.75 16.45 ± 8.72 11.23 ± 5.16 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 14.22 ± 0.16 15.09 ± 0.85 14.10 ± 0.44 24.21 ± 1.64 14.20 ± 1.35 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 13.39 ± 0.96 14.57 ± 1.19 13.27 ± 1.00 23.33 ± 0.79 14.22 ± 0.94 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 16.68 ± 1.04 18.43 ± 0.75 16.87 ± 0.62 30.26 ± 1.24 20.24 ± 1.06 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ T-marker

- 20.13 ± 2.59 13.68 ± 1.78 12.18 ± 1.88 12.01 ± 1.91 18.41 ± 2.65 9.99 ± 1.55 0.08 ± 0.02 0.44 ± 0.04 0.01 ± 0.00 1.33 ± 0.15
6 T5 20.29 ± 1.30 12.13 ± 2.52 11.43 ± 0.64 11.09 ± 1.38 22.12 ± 1.29 12.56 ± 0.74 0.88 ± 0.23 1.38 ± 0.22 0.08 ± 0.02 3.07 ± 0.39
7 WikiHow 19.98 ± 0.55 10.54 ± 1.36 12.11 ± 1.29 10.68 ± 1.32 20.84 ± 1.02 11.82 ± 0.64 0.39 ± 0.05 0.99 ± 0.09 0.05 ± 0.00 2.44 ± 0.18
8 WikiHow T5 20.98 ± 0.69 11.99 ± 1.07 12.49 ± 0.60 11.86 ± 0.82 20.22 ± 0.70 11.20 ± 0.70 0.38 ± 0.08 0.92 ± 0.05 0.05 ± 0.00 2.27 ± 0.13

9

+ EmbTIME

- 18.51 ± 1.95 10.85 ± 0.59 11.42 ± 1.16 10.29 ± 0.58 18.71 ± 0.17 9.80 ± 0.80 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
10 T5 23.02 ± 1.05 13.52 ± 0.76 14.15 ± 0.94 13.23 ± 0.77 23.96 ± 0.08 15.44 ± 0.67 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
11 WikiHow 21.68 ± 1.93 13.13 ± 1.42 13.88 ± 1.60 12.83 ± 1.41 21.88 ± 0.86 13.15 ± 0.74 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
12 WikiHow T5 26.51 ± 0.45 15.61 ± 0.61 17.08 ± 0.58 15.82 ± 0.62 28.70 ± 0.92 18.71 ± 0.94 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

13 Random Segmentation 21.90 ± 0.15 12.22 ± 0.09 16.12 ± 0.25 12.48 ± 0.10 - - - - - -

14

SimpleConcat

- 33.85 ± 0.70 23.54 ± 0.36 24.04 ± 0.40 22.98 ± 0.22 32.69 ± 0.71 22.49 ± 0.36 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
15 T5 37.89 ± 0.10 28.16 ± 1.18 27.15 ± 0.19 27.15 ± 0.53 38.07 ± 0.65 27.39 ± 0.91 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
16 WikiHow 38.20 ± 0.27 26.95 ± 0.67 27.71 ± 0.25 26.85 ± 0.41 37.80 ± 0.62 26.74 ± 0.81 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
17 WikiHow T5 41.87 ± 0.26 31.75 ± 1.94 31.74 ± 0.34 31.26 ± 1.10 42.40 ± 0.30 32.01 ± 0.50 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

18

+ T-marker

- 32.19 ± 1.17 20.05 ± 1.89 21.62 ± 0.82 20.04 ± 0.48 32.03 ± 0.14 20.89 ± 0.28 0.05 ± 0.00 2.96 ± 0.13 0.06 ± 0.00 2.93 ± 0.07
19 T5 34.94 ± 0.37 21.24 ± 0.11 23.95 ± 0.41 22.07 ± 0.21 37.56 ± 0.78 27.50 ± 0.69 0.59 ± 0.09 5.11 ± 0.52 0.16 ± 0.01 6.26 ± 0.56
20 WikiHow 33.00 ± 0.10 19.13 ± 0.87 22.02 ± 0.13 20.05 ± 0.54 35.14 ± 0.99 22.88 ± 0.41 0.23 ± 0.04 3.51 ± 0.14 0.09 ± 0.01 4.12 ± 0.37
21 WikiHow T5 34.23 ± 0.55 21.01 ± 1.34 23.26 ± 0.51 21.62 ± 0.94 33.20 ± 1.65 19.63 ± 0.98 0.16 ± 0.02 3.01 ± 0.22 0.08 ± 0.01 3.40 ± 0.36

22

+ EmbTIME

- 33.89 ± 0.21 20.75 ± 2.37 23.69 ± 0.08 21.27 ± 1.49 35.37 ± 3.18 22.28 ± 0.49 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
23 T5 37.78 ± 0.15 25.98 ± 0.20 27.12 ± 0.16 26.05 ± 0.16 38.50 ± 0.55 27.95 ± 0.46 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
24 WikiHow 37.27 ± 0.08 25.96 ± 0.38 26.87 ± 0.04 25.91 ± 0.21 36.97 ± 0.48 26.37 ± 0.36 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
25 WikiHow T5 41.64 ± 0.12 31.07 ± 0.67 31.53 ± 0.12 30.84 ± 0.33 43.22 ± 0.72 32.49 ± 0.25 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 7: Dense video captioning performance on YouCook2 and ViTT test sets with the length-based and the
Timestamp markers formulations. We report the evaluation results (mean ± std) with models initialized from
random weights, T5 checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow.
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Figure 6: Examples of our Seg+Cap model’s segmentation performance on YouCook2.
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Figure 7: Examples of our Seg+Cap model’s segmentation performance on ViTT.
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* Dataset Input
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0

YouCook2

Random Segmentation 20.10 11.14 12.53 10.69 - - - - - -

1
SimpleConcat

- 12.83 12.80 8.62 9.07 11.47 8.78 0.22 0.64 0.03 1.95
2 T5 24.18 14.19 14.83 13.89 25.13 14.09 0.86 1.47 0.09 3.39
3 WikiHow 22.36 13.11 14.42 12.99 23.00 14.16 0.66 1.50 0.08 3.48
4 WikiHow T5 27.81 17.21 18.16 17.01 30.97 20.57 2.85 3.48 0.24 7.02

5

+ T-marker

- 18.82 14.42 11.28 11.38 17.18 9.53 0.06 0.45 0.01 1.34
6 T5 20.91 13.21 11.48 11.65 22.75 12.87 0.90 1.42 0.08 3.19
7 WikiHow 19.76 10.17 11.52 10.19 21.09 11.79 0.37 0.94 0.05 2.35
8 WikiHow T5 21.26 12.34 12.83 12.24 20.56 11.35 0.38 0.89 0.05 2.31

9

+ EmbTIME

- 19.52 10.99 11.70 10.26 18.77 9.83 0.11 0.52 0.02 1.46
10 T5 22.93 13.84 13.78 13.30 24.00 15.70 1.34 1.90 0.11 4.24
11 WikiHow 21.41 13.11 13.88 12.76 22.08 13.18 0.79 1.30 0.07 3.09
12 WikiHow T5 26.61 15.86 17.28 16.08 28.80 18.41 2.67 3.18 0.23 6.41

13

ViTT

Random Segmentation 21.93 12.22 16.07 12.41 - - - - - -

14
SimpleConcat

- 33.74 23.71 23.95 23.10 33.10 22.59 0.12 3.78 0.08 3.87
15 T5 37.90 28.28 27.14 27.13 38.35 27.66 0.57 5.85 0.15 6.36
16 WikiHow 38.23 26.82 27.78 26.89 37.75 26.92 0.44 5.58 0.14 6.06
17 WikiHow T5 41.78 31.00 31.62 30.78 42.25 31.85 1.34 7.97 0.25 9.21

18

+ T-marker

- 32.62 19.94 22.02 20.27 32.01 20.90 0.05 2.96 0.06 2.95
19 T5 34.83 21.20 23.89 22.08 37.36 27.80 0.57 5.31 0.16 6.46
20 WikiHow 33.00 19.12 22.09 20.09 35.54 23.09 0.23 3.43 0.09 4.03
21 WikiHow T5 33.92 21.12 23.01 21.52 34.04 19.46 0.16 2.96 0.07 3.23

22

+ EmbTIME

- 33.79 21.21 23.68 21.61 34.56 22.37 0.05 3.12 0.06 2.92
23 T5 37.75 25.97 27.13 26.13 38.44 27.94 0.69 6.18 0.18 7.15
24 WikiHow 37.22 25.85 26.86 25.84 37.07 26.39 0.37 5.28 0.13 5.73
25 WikiHow T5 41.62 30.76 31.52 30.68 43.51 32.50 1.19 8.05 0.25 9.02

Table 8: Performance on the dense video captioning on YouCook2 and ViTT test set with the length-based and the
Timestamp markers formulations. We report the evaluation results with models initialized from random weights, T5
checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow. We ran 3 sets of repeating
experiments for each setting, and report the median value on each metric in this Table.

Dataset IoU Segment Border (ms) Caption

Youcook2

Tgt.
82.2%

[49000.0, 67000.0] chop 2 garlic cloves grate ginger about 2 tsp and green onions finely
Pred. [47114.0, 65354.5] chop some garlic ginger and green onions and put them in a bowl

Tgt.
82.4%

[73000.0, 117000.0] mix an egg milk and the mashed potatoes
Pred. [72194.0, 109904.5] mix the egg and milk with the potato

Tgt.
81.1%

[89000.0, 101000.0] mix and boil the ingredients
Pred. [90424.5, 102034.0] add miso paste soy sauce diced vegetables and mushrooms to boiling water

Tgt.
82.1%

[18000.0, 48000.0] heat butter in a pan and cook bacon in it
Pred. [18224.0, 54254.0] fry pancetta in a pan with bacon

ViTT

Tgt.
90.5%

[147890.0, 189680.0] Dipping sticks then cake balls
Pred. [148905.0, 192934.0] Dipping cake balls in candy melts

Tgt.
90.2%

[209050.0, 253460.0] Buttering in between baking, baking continues
Pred. [211445.0, 255634.5] Brushing the dough with butter

Tgt.
90.6%

[209630.0, 272000.0] Stretching the hamstrings
Pred. [213230.0, 269750.0] Performing the hamstring stretch

Tgt.
92.3%

[104000.0, 144000.0] Adding more layers
Pred. [105404.0, 145815.0] Repeating the same process

Table 9: Examples of the jointly predicted segments and corresponding captions for YouCook2 and ViTT generated
by our Seg+Cap model. Tgt.: Target. Pred.: Prediction.


