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Abstract

Despite the recent success of pretrained lan-
guage models as on-the-fly knowledge sources
for various downstream tasks, they have been
shown to inadequately represent trivial com-
mon facts that vision typically captures. This
limits their application to natural language un-
derstanding tasks that require commonsense
knowledge. We seek to determine the capa-
bility of pretrained visual–linguistic models as
knowledge sources on demand. To this end,
we systematically compare language-only and
visual–linguistic models in a zero-shot com-
monsense question answering inference task.
We find that visual–linguistic models are highly
promising regarding their benefit for text-only
tasks on certain types of commonsense knowl-
edge associated with the visual world. Sur-
prisingly, this knowledge can be activated even
when no visual input is given during inference,
suggesting effective multimodal fusion during
pretraining. However, we also reveal that there
is still a huge scope for improvements towards
better cross-modal reasoning abilities and pre-
training strategies for event understanding.1

1 Introduction

Commonsense knowledge is essential in human
life for task solving and communication. Being
aggregated knowledge acquired from past experi-
ences and communications, it is usually left im-
plicit in human communication, and used sub-
consciously for reasoning and drawing inferences.
This puts a challenge on natural language under-
standing systems, and a large body of work has
put forward approaches to provide commonsense
knowledge to models for downstream tasks (Yang
et al., 2019; Chen et al., 2018; Mihaylov and Frank,
2018). While knowledge bases have been a pop-
ular way to provide relevant knowledge for a task

1Our datasets, CWWVImg and CWWVClip, are provided
at https://github.com/Mallory24/CS_Probing

at hand, more recently, pretrained language mod-
els (PTLMs) have become a popular mechanism
to extract knowledge in free-form text on demand.
Tasks range from, e.g., persona-grounded dialog
(Majumder et al., 2020), narrative story generation
(Ammanabrolu et al., 2020), to metaphor genera-
tion (Stowe et al., 2021). Shwartz and Choi (2020)
and Bisk et al. (2020), however, suggest that text
corpora alone may be insufficient for knowledge ac-
quisition due to reporting bias found in them (Gor-
don and Durme, 2013). This has led to analyzing
the knowledge that PTLMs possess through dedi-
cated probing studies (Petroni et al., 2019; Singh
et al., 2021; Zhou et al., 2020b)

Existing works on probing PTLMs have used a
loose categorization of commonsense, which lim-
its a comprehensive understanding of the types of
commonsense they possess and lack, respectively.
At the same time, the literature proposes vision as a
promising knowledge source (Izadinia et al., 2015;
Bagherinezhad et al., 2016; Sadeghi et al., 2015). It
seems therefore straightforward to leverage visual–
linguistic (VL) models for knowledge extraction
on demand—these representation models are ex-
tensions of PTLMs to the visual–linguistic domain
by pretraining LMs and image recognition models
jointly on multimodal data (Tan and Bansal, 2019;
Chen et al., 2020; Lu et al., 2019). Yet, the ques-
tion on their capability to capture commonsense
knowledge that can be activated through language
only (Yun et al., 2021) is yet to be explored system-
atically.

In this work, we address this research gap by
conducting a controlled comparison of text-only
and VL models. Specifically, we extend a synthetic
commonsense question answering (QA) dataset
based on Ma et al. (2021)’s work, which structures
knowledge relations into abstract types (called di-
mensions henceforth), and transform it to a QA
inference task. We use the task to compare the
models by applying them in a zero-shot manner,

https://github.com/Mallory24/CS_Probing
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and in their natural setting—masked language mod-
eling.

The overarching question of our study is:

Do VL models learn to encode commonsense
knowledge through multimodal pretraining,
that can be activated during inference from

textual input only?

In particular, we seek to empirically answer:
(Q1) Which dimensions of commonsense do VL

models possess compared against text-only
PTLMs?

(Q2) During pretraining, does explicit visual infor-
mation (i.e., images) benefit commonsense
knowledge encoding?

(Q3) During inference, is explicit visual observa-
tion (i.e., images) necessary for recalling com-
monsense knowledge?

(Q4) Do commonsense acquisition and retrieval de-
pend on the architecture of VL models?

We address the questions by performing a range
of experiments using various pretrained models and
ablated variants. We find that existing VL models
do complement PTLMs on certain commonsense
dimensions, which are related to the visual world
(part-whole, spatial , i.a.), and that they can be ac-
tivated through language input only, making them
promising for their use in natural language tasks
that do not require explicit visual context. We also
identify a range of limitations opening up several
avenues for future work, including enhanced pre-
training and modality integration strategies, and
improved multimodal prompting (Shin et al., 2020;
Zhong et al., 2021; Liu et al., 2021).

2 Related Work

Commonsense Knowledge Mining from Vision
Although recent interest in commonsense knowl-
edge mining remains text-based (Jastrzębski et al.,
2018; Zhou et al., 2020b; Liang and McGuinness,
2021; Bosselut et al., 2019), several studies have
explored the visual world: Chen et al. (2013) ex-
tract commonsense relationships from the web to
improve visual understanding, while Zellers et al.
(2018) exploit commonsense priors from visual
resources (Krishna et al., 2017) for scene graph
generation. Several works learnt specific types of
commonsense, including object affordances (Goyal
et al., 2017) and temporal causal knowledge (Zhang
et al., 2020a). Only few works used VL models
for purely text-based tasks (Cui et al., 2020; Tang

et al., 2021) in a pipeline approach to extract com-
monsense from them.

The works above focus on explicit visual com-
monsense extraction. We, in contrast, seek to study
the extent and types of commonsense knowledge
that pretrained VL models implicitly capture and
that complement pretrained text-based models.

Machine Commonsense Evaluation Common-
sense knowledge evaluation is usually conducted
with dedicated benchmarks specific for selected
knowledge types. Existing formulations range from
multiple choice question answering (Zellers et al.,
2019; Zhou et al., 2019; Bisk et al., 2020; Richard-
son and Sabharwal, 2020) and machine reading
comprehension (Huang et al., 2019) to knowledge
base completion tasks (Petroni et al., 2019; Davi-
son et al., 2019), which makes a systematic and
comprehensive commonsense knowledge evalua-
tion even more challenging (Santos et al., 2020).
Recent works assess model consistency in common-
sense reasoning by introducing linguistic perturba-
tions, complementary counterparts, and logically-
equivalent rephrased sentences (Zhou et al., 2020b;
Singh et al., 2021; Zhou et al., 2020a). Akin to
Ilievski et al. (2021), our goal is to present a com-
prehensive comparison of the commonsense knowl-
edge resided in pretrained models. While previous
research dominantly employs pretrained language-
only models (PTLMs), we are not aware of any
work like ours—a structured analysis of the types
of commonsense knowledge implicitly encoded in
pretrained VL models.

3 The QA Dataset CWWVImg

To compare VL models against purely textual mod-
els with respect to the commonsense knowledge
they capture, we extend Ma et al. (2021)’s pro-
cedure for creating a synthetic dataset of prompt–
answer candidate instances (CWWV) to that of a
multimodal commonsense dataset (CWWVImg).

It provides a set of QA instances for various
knowledge relations, structured into 10 dimensions
of commonsense knowledge (e.g., spatial ). Ques-
tions are in the form of filled prompts (Le Scao
and Rush, 2021; Liu et al., 2021): an instance in
CWWVImg has three natural language statements,
each associated with a set of images. Each state-
ment is a pair of a prompt (e.g., Shade is not) and
one of three candidate answers (e.g., sunny). Ta-
ble 1 shows an example for each dimension (asso-
ciated images are omitted for space reasons).
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CS dimension Starting prompt Answer candidates # Instances

part-whole Furry animals have A1: effect of chilling innovation. A2: millions of hair. A3: hole in. 1,165
taxonomic Recruit is a way to A1: rate. A2: enlist. A3: slope. 1,323
distinctness Shade is not A1: flat. A2: postal worker. A3: sunny. 828
similarity Throw up is a synonym of A1: rutinic acid. A2: random. A3: vomit. 644
quality A wet floor is A1: slippery. A2: light brown. A3: abbreviated to unido. 1,840
utility A fork is used for A1: speed of transit. A2: confuse voters. A3: picking up food. 2,090
creation Music is created by A1: olive oil mill. A2: mapping process. A3: instruments. 100
temporal Going for a haircut requires A1: finding barber. A2: hard examinations. A3: write persuasively. 1,889
spatial You are likely to find a document folder in A1: file drawer. A2: madagascar jungle. A3: minerals. 1,599
desire You would thank someone because you want to A1: accomplish mutual goal. A2: feel good. A3: cool off. 1,781

Table 1: CWWVImg: examples and their number per dimension (13, 259 in total). Correct answers are in bold.
Topic words with retrieved images are underlined (images not shown for space reasons).

CSKG

Q. You are likely to find a mouse in

A. attic. B. beach. C. forest.

(mouse,  /r/AtLocation ,  attic)

Lexicalization

Selecting Negative Examples

Bad Negatives Good Negatives

You are likely to find a mouse in ...

Retrieve Images

Topic-Image
 Lookup 
Table

(mouse,  /r/IsA ,  animal)

(spider,  /r/AtLocation , attic)

(mouse,  /r/AtLocation ,  desktop)

(pond,  /r/AtLocation ,  beach)

(lizard,  /r/AtLocation ,  forest)

Figure 1: CWWVImg construction pipeline.

In §3.1, we first describe Ma et al.’s (2021)
pipeline, shown in Figure 1, to create the purely
textual CWWV.2 Then, to build our QA dataset
CWWVImg, we retrieve images for CWWV’s in-
stances through a topic-lookup table (Zhang et al.,
2020b), as we explain in §3.2.

3.1 Generation of CWWV
The Commonsense QA data CWWV is auto-
matically generated from a consolidated com-
monsense knowledge graph (Ilievski et al., 2020,
CSKG). CSKG is an aggregation of 7 knowl-
edge bases that represents knowledge state-
ments as structured triples (h, r, t) of their start
node h, relation label r, and end node t, as
in (mouse,/r/AtLocation, attic). All knowledge
relations are categorized into one of 13 abstract
dimensions, e.g., spatial , similarity, temporal . To
create CWWV from CSKG, we only consider the
knowledge bases ConceptNet (Speer et al., 2017),
WordNet (Miller, 1995), Visual Genome (Krishna
et al., 2017) and Wikidata (Vrandecic and Krötzsch,
2014), and 10 dimensions (30 knowledge relations,
see App. A, Tab. 5 for the mapping).

Ground-Truth QA Generation Given a
knowledge triple (h, r, t) in CSKG, a ground-

2We use Ma et al.’s 2021 script provided at
https://github.com/Mayer123/HyKAS-CSKG.

truth prompt–answer pair is generated by
treating the start node h and the end node t
as prompt and correct answer, respectively,
and applying pre-defined sentence templates
to lexicalize them into a sentence. For exam-
ple, the triple (mouse,/r/AtLocation, attic)
in Figure 1 is transformed into a sentence
“You are likely to find a mouse in an attic”.
To prevent models from applying shortcuts,
triples with overlapping content words be-
tween the start and end nodes are discarded;
e.g., (bread slicer,/r/UsedFor, slicing bread)
won’t be included. Uncommon concepts or named
entities are also filtered out.3

Selecting Negative Candidates For each gen-
erated QA instance, Ma et al. (2021) select two
negative answer candidates according to two prin-
ciples: (i) the negative candidate is related to the
prompt, and thus remains informative for decision,
and (ii) it can be clearly discriminated from the
correct one, and thus maintains fairness for the
model.

To satisfy informativeness, negative candidates
are randomly chosen from a pool of relation
triples (h′, r′, t′) with r′ = r, i.e., the relation is
the same as the original one. In this sense, a bad
negative would be, e.g., (mouse,/r/IsA, animal)
(Fig. 1). To ensure fairness, the end node
must not be the ground-truth one, t′ ̸= t,
and h′ must not share any overlapping tokens
with h; e.g., (spider,/r/AtLocation, attic) and
(mouse,/r/AtLocation, desktop) (Fig. 1) are dis-
carded for violating these two heuristics.

We create CWWV by randomly sampling
2, 500 QA instances for each dimension (creation
only has 141 samples), totalling 22, 641 instances.

3Uncommon concepts are determined by low word
frequency in a corpus https://pypi.org/project/
wordfreq/ (accessed 9 September 2020) and named enti-
ties are identified through the capital letter.

https://github.com/Mayer123/HyKAS-CSKG
https://pypi.org/project/wordfreq/
https://pypi.org/project/wordfreq/
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3.2 Generation of CWWVImg

Retrieving Images from Conceptual Captions
The VL models we use in our experiments are pre-
trained on the training set of Conceptual Captions
(Sharma et al., 2018, CC), a widely adopted dataset
of weakly-associated image–text pairs collected
from the web which may be regarded as a model’s
visual experience. We hence use the training set
of CC as image retrieval pool to augment CWWV
with images. As an efficient way to provide a vi-
sual environment, as realistic as possible, for a
purely linguistic task, we perform an efficient re-
trieval method inspired by Zhang et al. (2020b):
We first transform CC’s image–caption pairs into
a topic–image lookup table T . Given a prompt–
answer candidate pair (statement) of CWWV, we
then select several topic words based on TF–IDF
weights, QAtopic = {t1, t2, ..., tq}, and use them
to query T for associated images; for example,
“A wet floor is slippery” has a set of topic words
{wet,floor, slippery} (Further details can be found
in Appendix. B.1). Recall that each QA instance
has three statements. As shown in Figure 1, by
querying T for the three candidate answers “attic”,
“beach”, “forest”, we retrieve their corresponding
images. If no image can be retrieved for a statement
of an instance, the instance is discarded altogether.
The resulting image-grounded commonsense QA
dataset, CWWVImg, has 13, 259 QA instances in
total with the image grounding rate of 58.6%.1

Quality of Retrieved Images We assessed the
effectiveness of our simple retrieval approach
through a human annotation study on Amazon Me-
chanical Turk (AMT), in which we asked workers
to judge the association of image–word pairs. We
sampled 1, 000 pairs from CWWVImg uniformly
across the 10 commonsense dimensions, and asked
AMT workers to judge each pair as either “associ-
ated” or “not associated”. Details on the annotation
methodology and data analyses are given in Ap-
pendix B.2. According to majority vote (2 out of 3
judges per pair), 64.2% of the pairs are associated,
among which part-whole and spatial have more
than average associated pairs (74.3% and 70.2%,
respectively). The inter-annotator agreement under
Fleiss’ Kappa coefficient (Fleiss, 1971) is between
0.21− 0.44 across dimensions, which is only a fair
to moderate agreement, indicating the high subjec-
tivity of this task. We also found, unsurprisingly,
that concrete words and nouns tend to get higher
scores with their paired images.

4 Experiments: QA Task and Inference

Our goal is to assess the benefit of pretrained VL
models for purely linguistic tasks underlying com-
monsense (CS) knowledge. Specifically, we seek
to answer the questions (Q1) – (Q4) that we put
forward in §1. To this end, we use our derived
image-grounded dataset, CWWVImg, and evalu-
ate pretrained VL models against language-only
PTLMs in a prompt-based QA task setting (§4.1).
We stress that in order to solve CWWVImg, only
natural language understanding and commonsense
knowledge is required, but no explicit visual input
(images).

We perform our experiments in a zero-shot set-
ting, i.e., without fine-tuning the models on the task,
since our goal is to study the ability of task-agnostic
pretrained models to capture commonsense knowl-
edge (Tamborrino et al., 2020; Ma et al., 2021).

4.1 Task: Prompt-based Zero-Shot QA

Given an instance T ∈ T of CWWVImg, compris-
ing three natural language statements (and associ-
ated images Ii), Ti = (Q||Ai), i = 1, . . . , 3, where
Q is the prompt, and Ai a candidate answer. Let
tj ∈ Ti, j = 1, . . . , |Ti| denote the sequence of to-
kens in Ti. Then, the task is to determine which
of the three statements is a true assertion (given
visual context Ii or not). To mitigate the bias that
some template prompts can favor one model over
the other in terms of knowledge retrieval (Jiang
et al., 2020), we use a two-stage inference pro-
cedure, namely a generative and a discriminative
setting. During the generative stage, we test rep-
resentative PTLMs and VL models, respectively,
under their natural setting—masked language mod-
eling (MLM) (as detailed in §4.3). Later in the
discriminative stage, the ranking of the candidate
answers Ai is determined by how well the model
can reconstruct the masked tokens of the respective
statement Ti by comparing the MLM loss.

4.2 Tested Models

Pretrained Language Models (PTLMs) We use
BERT (Devlin et al., 2019) for our comparison,
since this model serves as the linguistic backbone
of the VL models that we study. We also compare
against RoBERTa (Liu et al., 2019), which was pre-
trained on ten times more data than BERT (160GB
vs. 16GB of text, resp.). We use the BASE models
of the HuggingFace library (Wolf et al., 2019).



5546

VL Models We select the single-stream model,
UNITER (Chen et al., 2020), and the dual-stream
variant, VILBERT (Lu et al., 2019), as the re-
spective representative models of the two common
VL architectures. UNITER is built to have un-
constrained inter-modal and intra-modal attentions
across all attention blocks, whereas VILBERT has
certain attention blocks specifically constrained to
perform inter-modal attention only.

We use the pretrained models of VOLTA

(Bugliarello et al., 2021), which provides both
architectures in an unified framework and under
a controlled setup to allow a fair comparison.4

The models were initialized with the pretrained
BERTBASE , and further trained on the training set
of Conceptual Captions (CC) under three objec-
tives: masked language modeling (MLM), masked
object classification and image–text matching.

The visual input is preprocessed into a se-
quence form of visual tokens v ∈ V consisting of
an [IMG] feature and 36 object region features.5

Each visual token is accompanied with its corre-
sponding spatial encodings in a 5-d vector.6

4.3 Inference Variants

Common to all models is that they are queried
with each of the three statements Ti = (Q||Ai)
of an instance T ∈ CWWVImg, and the Ti that
receives the lowest mean MLM loss S(Ti) will
be returned as answer. We explain the respective
precise formulations of S(Ti) that the textual and
VL models apply in the following.

Inference in Language Models To com-
pute S(Ti) in the case of the language-only
LMs, we sequentially mask out each token qj
in Ti’s prompt Q of length LQ, and compute its
log-likelihood, conditioning on the remaining to-
kens Ti\j

7:

S(Ti) = − 1

LQ

LQ∑
j=1

logP (qj |Ti\j), qj ∈ Q

4We choose UNITER and VILBERT since they perform
the best among each respective variant on a wide range of VL
benchmarks (Bugliarello et al., 2021).

5Region features are extracted by a Faster R-CNN with
a ResNet-101 backbone (Anderson et al., 2018) trained on
Visual Genome with 36 regions of interest; [IMG] is the
mean-pooling of the 36 features (Bugliarello et al., 2021).

6(x1, y1, x2, y2, w ∗ h): normalized left/top/right/bottom
coordinates and the area.

7For convenience, we use the notation Xi\j to refer to a
sequence of elements (x1, . . . , xj−1, xj+1, . . . , x|X|).

Figure 2: Different inference modes in the VL models
(dual-stream shown here): Retrieved (TV ), Text-Only
(T ), Vision-Only (V ) Modes.

This way, the statement score is not affected by
the internal bias of the answer’s tokens, e.g., word
frequency (Tamborrino et al., 2020).

Inference in VL Models Recall that
CWWVImg provides multiple images to
serve as visual context for each statement (§4.1).
Apart from examining the behavior of the VL
models when they get exactly the same input as
the textual LMs (Text-Only), we further analyse
them on modes differing in their input (Fig. 2):
(i) their natural setting with multimodal input
(Retrieved), (ii) Vision-Only, and (iii) visual
noise with random images (Dummy).

Text-Only Mode To examine Q3 (see §1), if ex-
plicit, situated visual input is required for using
VL models for purely language-based tasks un-
derlying CS knowledge, we apply inter-modal at-
tention masks on the models’ visual input. This
way only the representations of the linguistic en-
coder affect the model decision. Hence, we can
test if the VL models encode aggregated visual ex-
posures which they can activate through language
only input. Models under this mode are suffixed
∗T , e.g., UNITERT .

Retrieved Mode Given a statement in sequence
form, Ti = (t1, t2, . . . , t|Ti|), with its associated
images Ii = {e1, . . . , eq} based on the q topic
tokens tl identified in Ti (see §3.2). Instead of
testing the models under a situated context like the
standard VQA task, our goal is to examine their
effectiveness in activating world knowledge from
explicit visual input during inference. We thus
deviate from the conventional setup and do not
provide a single, but multiple images that represent
general visual concepts to the models. We apply a
threshold τ on the object detection score to choose
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row part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All

1 RoBERTa 68.5 61.8 80.2 67.4 69.7 74.2 72.0 60.9 54.8 65.9 67.5
2 BERT 62.8 71.2 80.1 54.8 68.1 72.4 74.0 53.7 52.4 60.4 65.0
3 BERTCC 68.4 62.0 66.6 51.1 66.0 65.4 62.0 53.6 63.7 58.3 61.9
4 UNITERT 70.9 59.8 71.3 51.2 69.9 71.5 71.0 52.7 61.5 62.5 64.0
5 VILBERTT 63.9 60.3 64.9 46.7 66.1 71.2 58.0 52.2 61.0 62.8 60.7

Table 2: Accuracy on CWWVImg under Text-Only inference mode (The full table can be seen in App. C, Tab.7).

a set of salient regions from each individual image8,
resulting in a set of extracted visual tokens Vei ∪
{[IMG]} which we feed into the model. Now,
during MLM inference, we need to ensure fairness
to the LMs by avoiding information leakage from
the visual modality. Hence, when masking out
token qj in Ti’s prompt Q, we also mask out the
subset of visual tokens Vqj associated to qj ∈ Q:

S(Ti) = − 1

LQ

LQ∑
j=1

logP (qj |(Ti\qj∥Vei\Vqj
)

To reconstruct qj , it is conditioned on the concate-
nation of the unmasked textual tokens Ti\qj and the
remaining visual tokens Vei\Vqj

that are not associ-
ated to qj . Models evaluated under this mode are
denoted as UNITERTV and VILBERTTV .

Vision-Only Mode We ablate the textual modal-
ity via inter-modal attention masking, the VL mod-
els can hence rely only on visual observation to
reconstruct masked tokens in the prompt Q of a
candidate statement. For example, to reconstruct
the masked “vegetables” token in prompt “You are
likely to find [MASK] in” (Fig. 2), answer candi-
date A3 (“garden”) is not given as observable input,
but only its respective associated image I3. Note
that also the visual tokens associated to “vegetables”
are masked:

S(Ti) = − 1

LQ

LQ∑
j=1

logP (qj |(Qi\qj∥Vei\Vqj
)

This posits a challenging task on testing the mod-
els’ cross-modal integration ability of non-aligned
concepts without the help of the corresponding tex-
tual part as a bridge (e.g., relate the appearance
of “garden” to the concept of “vegetables”). The
variants are suffixed ∗V , e.g., VILBERTV .

Dummy Mode We sample 3 images from the CC
image pool that are not in CWWVImg to serve as
random visual input for each QA instance. During
inference, we allow the VL models to fully observe

8Starting at τ ≥ 0.7, we decrease τ by 0.1 steps until at
least one region is found.

this visual input Ṽei since it is not or barely related
to any textual token qj ∈ Q:

S(Ti) = − 1

LQ

LQ∑
j=1

logP (qj |Xi\qj∥Ṽei)

, where X = T in the Retrieved Mode, and X = Q
for Vision-Only. This is an adversarial test of the
cross-modal reasoning ability of the VL models
and we expect a lower performance. In addition,
it enables us to assess in how far the VL mod-
els can deal with noise. These variants are suf-
fixed ∗(T )Ṽ , e.g., UNITERT Ṽ .

5 Results

To address the overarching question we put forward
in §1, namely if VL models can serve as common-
sense knowledge base, and to what extent they com-
plement pure linguistic model, we first examine the
encoded knowledge of the VL models on individ-
ual commonsense dimensions, i.e., (Q1) in §1. We
report the models’ effectiveness by measuring their
mean accuracy in selecting the correct answer out
of the three statement candidates of each QA in-
stance in CWWVImg. We declare outperformance
if p < 0.05 according to the paired student’s t-test
(Fisher, 1949) for statistical significant differences
between any two accuracy scores.9

Table 2 shows the effectiveness of all models per
commonsense dimension and overall when they are
given the exact same input, i.e., natural language
statements. Comparing the VL models, UNITERT

and VILBERTT , against their linguistic backbone
BERT, we see that both are more effective on the
part-whole, spatial, and desire dimensions.10

On spatial, both UNITERT and VILBERTT

even outperform RoBERTa, which was pretrained
on an order of magnitude more data than BERT

9We used Anderson-Darling’s (Anderson and Darling,
1954) method to test for normal distribution.

10We also evaluate UNITER initialized with BERT weights,
without further pretraining on CC, called UNITER_BERTT .
It yields similar results as BERT (see App. C, Tab. 7+8) and
indicates pretraining on visual data may lead to a catastrophic
forgetting on some CS dimensions that require linguistics.



5548

row part-whole spatial taxonomic distinctness
CWWVImg CWWVClip CWWVImg CWWVClip CWWVImg CWWVClip CWWVImg CWWVClip

1 UNITERT 70.9 76.6 61.5 59.4 59.8 58.0 71.3 72.5
2 VILBERTT 63.9 70.7 61.0 58.8 60.3 59.4 64.9 62.6
3 UNITERTV 63.0 68.1 57.4 54.1 54.0 55.9 65.9 68.1
4 VILBERTTV 55.0 58.0 52.9 59.4 49.9 58.0 55.9 62.6

Table 3: Model accuracy on CWWVImg and CWWVClip. Bold represents the highest score per commonsense
dimension.

and the VL models (§4.2). The benefit of visual–
linguistic pretraining for spatial (and concrete part–
whole) relations is in accordance with what we
would expect, and in line with existing work on the
spatial dimension (Yatskar et al., 2016; Cui et al.,
2020). UNITERT is also on par with RoBERTA
on part–whole and quality. On the other hand, the
VL models failed to retain knowledge associated
with other dimensions during VL pretraining, per-
forming significantly worse (p < .05) than BERT
in particular on taxonomic and distinctness. Re-
garding taxonomic (and similarity), we observe
that the VL models tend to struggle with visually
non-depictable concepts (e.g., speculate, remem-
ber). And contemplating distinctness (e.g., flood
vs. drought) may be challenging for the VL models
due to the unnatural, simultaneous co-occurence of
opposite concepts in a single image.

Regarding temporal, where events are expressed
as verbal phrases (e.g., checking vital signs, wait on
tables), the ability of the VL models to leverage the
potential benefit of visual information is limited
by their pretraining on isolated images (and re-
gions) instead of, e.g., videos, and with objectives
(§4.2) which essentially stipulate the models to
learn modality alignments, and in particular region-
level recognition (Chen et al., 2020), which limits
their ability to capture inter-object interactions, rel-
evant for verb-centric and event understanding (see
also Hendricks and Nematzadeh 2021).

6 Analysis

To answer our questions (Q2)-(Q4) we put forward
in §1, we first examine (Q2), the benefit of visual
information during pretraining. We then investi-
gate (Q3), the role of explicit visual input during
inference. Lastly, we look into (Q4), whether the
process of knowledge acquisition and retrieval act
consistently across VL models.

6.1 Role of Visual Input during Pretraining

The VL models show the ability to learn certain
types of commonsense knowledge that comple-

ments that in text-based models by leveraging infor-
mation during visual–linguistic pretraining (cf. Cui
et al. 2020), which they can activate even when
no visual information is given during inference.
While we found that this does not attribute to the
mere size of the training data, it is not clear if the
models benefit from the explicit visual information
(i.e., visual features), or from the weakly associated
verbalizations (i.e., captions) of its visual data. The
latter would just be an effect of the domain shift
to the visual world, providing information that is
typically not found in text corpora.

To examine the contribution of visual features,
we further pretrained BERT on the textual part
of the VL models’ training data (CC captions)11,
referred to as BERTCC . The model’s effective-
ness drops on all dimensions except part–whole
and spatial (rows 2+3, Tab. 2), so the verbaliza-
tions are indeed beneficial for these dimensions,
but detrimental for the others. Notably, UNITERT ,
being pretrained additionally on images, overall
obtains a higher accuracy than BERTCC , and out-
performs it on part–whole. For spatial, though,
the captions seem to serve as sufficient surrogate
of visual spatial relationships, while explicit visual
information is of less benefit for UNITERT . We
see these effects only for single-stream UNITERT ,
while double-stream VILBERTT falls short against
BERTCC . We will return to the aspect of the archi-
tecture differences in the following section. With
regard to (Q2), our results indicate that pretrain-
ing on explicit visual input is indeed crucial for
encoding certain commonsense dimensions.

6.2 Role of Visual Input during Inference
§5 showed promising results regarding the benefit
of VL models for text-based tasks underlying cer-
tain types of CS knowledge. The fact that the VL
models were designed to receive multimodal input
raises the question if their inference ability bene-
fits from being fed both, textual and visual input.
We analyse the VL models when we feed in the

11Code from Frank et al. (2021), with MLM and 5 epochs.
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dim.: spatial dim.: part-whole dim.: quality

You are likely to A boat has: A hill can be:
find vegetables in:
A. workplace. A. reached legal age. A. steep.
B. stationary shop. B. sails B. about to change.
C. garden. C. different rules. C. important for

normal living.

Table 4: Positive examples of VILBERTV ’s inference with visual answer tokens only. Images correspond to the
visual input for the correct textual answer tokens (i.e., “garden”, “sails”, “steep”). The bounding boxes mark the
highly attended (> 0.3) visual tokens of VILBERTV on the last inter-modal layer.

images along the textual prompts of CWWVImg.
We also compare against a subset of CWWVImg,
CWWVClip, to study how the strength of image–
text association may affect the models. To obtain
CWWVClip, we estimate the association quality
of the image–word pairs of every QA instance in
CWWVImg by measuring their CLIPScore (Hes-
sel et al., 2021), and keep those instances with an
average score of > 0.6.12 The proportion of con-
crete words (concreteness scores > 4, Brysbaert
et al., 2014) in CWWVClip vs. CWWVImg are
35% vs. 27%, respectively.

Table 3 provides results for selected CS dimen-
sions (we refer to Tab. 7+8 in App. C for all results).
We see that while the retrieval-based multimodal
models, UNITERTV and VILBERTTV , do inte-
grate information from the visual input, they both
perform noticeably worse than their text-only coun-
terparts, UNITERT and VILBERTT , that do not
get visual input during inference. Partially, this
seems to be an effect of noise in the visual stream
in the form of weakly-associated or abstract words.
For some dimensions, including part–whole, taxo-
nomic and distinctness, both UNITERTV and
VILBERTTV yield higher accuracy scores on
CWWVClip which has more strongly associated
and concrete image–text pairs than on CWWVImg

(see Tab. 3). These performance gains cannot
solely be attributed to a differing intrinsic diffi-
culty level of CWWVClip, since the purely text-
based models, in contrast, consistently perform
worse on CWWVClip than on CWWVImg (with
a mean accuracy drop on CWWVClip of -4.7pp
and -1.5pp for RoBERTa and BERT, respectively;
results shown in App. C, Tab. 7+8). In sum, our
findings support our hypothesis that abstract con-
cepts and weak cross-modal associations affect the
inference ability of VL models, an issue we ob-
served for taxonomic and distinctness.

12We determined this threshold with the mean CLIPScore
under the image–word pair group that has absolute association
according to human evaluation (§3.2).

Does Visual Input Alone Activate CS Knowl-
edge? We address the question of whether visual
context alone can provide substantial and informa-
tive cues with the Vision-Only mode, which disen-
tangles the contribution of the visual from the tex-
tual modality. Both, UNITERV and VILBERTV

perform much worse than when being also fed tex-
tual input (results not shown, see App. C). Yet, we
find that visual context does play a beneficial role
in some cases as opposed to under Ṽ -only mode,
where the accuracy drops to random (UNITER)
or close above random (VILBERT). Table 4 illus-
trates several cases for which visual cues alone can
provide reasonable and sufficient information.

Regarding (Q3), the visual stream of the VL
models does not seem to play a dominant role dur-
ing inference; nevertheless, in the extreme case
where of missing textual information, the VL mod-
els rely on visual input for decision making.

6.3 Role of VL Model Architectures

If visual noise is indeed the reason for low in-
ference abilities, then the models should fail
when they receive only noisy, non-sensible vi-
sual input. We observe this effect in the single-
stream UNITERT Ṽ , where we see slight effec-
tiveness drops when we feed in a set of un-
related (dummy) images Ṽe along the textual
prompt Q (§4.3) (−1.3pp/−2.4pp for All on
CWWVImg/CWWVClip, resp.; results shown in
App. C, Tab. 7+8). Noise is only part of the reason,
though, since overall, UNITERTV yields lower
scores on CWWVClip than on CWWVImg (-.6pp,
see Tab. 7+8, App. C for all scores). Unexpectedly,
the difference between T and TV is even larger on
CWWVClip than on CWWVImg, this amplifica-
tion may be explained by a higher distribution of
concrete concepts in CWWVClip: It may be in
particular the visual information of concrete con-
cepts that the model can most effectively learn to
ground better in the linguistic encoder, and then
activate textually even if no visual inputs are given
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during inference (Park and Myaeng, 2017). So,
as can be assumed in a linguistic task, the textual
stream seems to be the driving force for successful
inference. An analysis of the Modality Importance
(MI) score (Cao et al., 2020) of UNITERTV fur-
ther supports this. The MI measures the average
attention traces of the masked tokens in prompt Q
during inference to determine the relevance of tex-
tual input vs. visual input (see App. D, Fig. 5 for
visualizations and calculation details). The visual-
ization of the average MI scores clearly shows a
higher attention density on the textual than on the
visual modality.

VILBERT, in turn, which fell short against
BERT and BERTCC , behaves differently: On
CWWVClip, VILBERTTV more effectively in-
cludes visual input for decision making, with an
overall accuracy that is closer to UNITERTV

than it is on CWWVImg (+2.5pp, see Tab. 7+8).
And on taxonomic and spatial, VILBERTTV ’s
accuracy is even higher than UNITERTV ’s
(Tab. 3; the proportion of concrete concepts in
CWWVClip is 32% for taxonomic, 47% for
spatial, and 34% for part-whole vs. 25%, 44%,
and 32%, resp., in CWWVImg). Finally, Dummy-
Mode VILBERTT Ṽ remarkably outperforms VIL-
BERTTV across all commonsense dimensions on
CWWVImg (+4.9pp on All) and notably on taxo-
nomic, spatial and part–whole, but is on par on
CWWVClip (p < .05). We examine the aspect
of noise further with samples where VILBERTT Ṽ
predicts correctly but VILBERTTV fails. We con-
stantly find VILBERTT Ṽ to only pay substantial
attentions (> 0.3) to the same single visual token
across all samples as well as in all CS dimensions
(see App. E).

In summary, regarding (Q4), in the case of single
stream UNITER, it indicates that (explicit) visual
input is beneficial for pretraining, but not for infer-
ence. In contrast, double-stream VILBERT seems
to be more dependent on receiving signals from
both, text and vision, during inference, but also on
a strong semantic image–text association, which
it can more effectively use if provided. In case of
noise, it relies on textual input for decision-making.

7 Conclusion

Regarding our research questions put forward in
§1, our findings strongly suggest that the VL mod-
els learn to encode certain visual knowledge in
their textual streams during multimodal pretrain-

ing, in particular for concrete concepts (see also
Kiela et al., 2018), which they can activate from
purely textual input during inference, i.e., visual
information is not required, or not even beneficial.
The fact that the textual stream is the driving force
for inference is promising, given that we examined
the benefit of VL models for a purely linguistic
task.

Regarding the dependence of the architecture
for commonsense acquisition and activation, we
conclude that the examined single-stream seems
to be better suited for text-only QA tasks, while
double-stream seems to require some form of signal
in the visual stream during inference (but cannot
leverage it properly to the extent that it would be
better than text-only input).

In summary, we find VL models to be promis-
ing regarding their potential use for natural lan-
guage tasks requiring commonsense knowledge.
We also identified a range of limitations for future
work: The ability to handle visual noise, to under-
stand events and verbs, and to integrate inconsistent
modalities towards metaphorical, rather than situ-
ated understanding. Future work lies also on mul-
timodal prompt-engineering for improved knowl-
edge retrieval on commonsense intensive tasks.
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A Details to the Creation of CWWV

A.1 Data Sources
Following Ma et al. (2021), we use the knowledge
sources whose relations can be mapped to Concept-
Net relation labels, viz. ConceptNet (Speer et al.,
2017), WordNet (Miller, 1995), Visual Genome
(Krishna et al., 2017) and Wikidata (Vrandecic and
Krötzsch, 2014). ConceptNet represents common-
sense knowledge in a graph structure of concept
nodes connected by relational edges. WordNet
focuses on lexical taxonomic knowledge. Visual
Genome is a resource of images densely anno-
tated with region descriptions that describe the de-
picted objects, their attributes and relationships,
and which can be represented as scene graphs.
Wikidata is a relational knowledge base of entities.

A.2 Relations
Since, in contrast to Ma et al. (2021), our goal is
not to pretrain models on selected knowledge re-
lations, but to reach a high coverage of relations
for model evaluation, we consider more relations
(30 in total), covered by 10 dimensions (Ma et al.
(2021) used 14 and 7, resp., refer to Table 5 for the
mappings between the commonsense dimensions
and knowledge relations evaluated here). We do
not consider the relations lexical , comparative , and
relational-other. According to (Ma et al., 2021)’s
categorization, ConceptNet does not support any
relation type that can be mapped to comparative.
Relational-other clusters noisier relations, which
may counteract a clean evaluation. Lexical re-
quires understanding of formal linguistic knowl-
edge, which is not our target here.

B Retrieving Images of CWWVImg

B.1 Topic-Image Lookup Table
Topic words are identified through term frequency-
inverse document frequency (TF-IDF) weight. For
a preprocessed caption containing non-stop words
only Cj = {w1, w2, ..., wl}. The TF-IDF weight
wi,j of each word wi in a caption Cj is computed:

wi,j =
ni,j∑
k nk,j

× log
|C|

1 + |Cj : wi ∈ Cj |
where the term frequency of wi in Cj is calcu-

lated by dividing its appearances ni,j by the to-
tal number of words in Cj ; inverse document fre-
quency is computed by taking the inverse propor-
tion of the number of captions in which wi occurs
|Cj : wi ∈ Cj | within a batch of captions |C|.
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Dimension Relation Type Template

part-whole /r/PartOf h is a part of t
/r/HasA h has a t
/r/MadeOf h can be made of t

taxonomic /r/IsA h is a t
/r/InstanceOf h has an instance of t
/r/MannerOf h is a way to t

distinctness /r/Antonym h is the opposite of t
/r/DistinctFrom h is not t

similarity /r/Synonym h is a synonym of t
/r/SimilarTo h is similar to t
/r/DefinedAs h is the t

quality /r/HasProperty h is/are t
/r/NotHasProperty h is/are not t
/r/SymbolOf h is a symbol of t

utility /r/ReceivesAction h can be t
/r/UsedFor h is/are for t
/r/CapableOf h can t
/r/NotCapableOf h do not t

creation /r/CreatedBy h is created by t
temporal /r/HasFirstSubevent The first thing you do when you h is t

/r/HasLastSubevent The last thing you do when you h is t
/r/HasSubevent Something that might happen when you h is t
/r/HasPrerequisite h requires t
/r/Causes The effect of h is t

spatial /r/AtLocation You are likely to find h in t
desire /r/CausesDesire h would make you want to t

/r/MotivatedByGoal You would h because you want t
/r/Desires h wants to t
/r/NotDesires h doesn’t want t
/r/ObstructedBy h is obstructed by t

Table 5: Knowledge dimensions with their clustered
knowledge relation types and the corresponding lexical-
ized templates evaluated in this work.

Each caption is now a sequence of topic words
sorted according to their TF-IDF weights, we take
the top-k topic words to represent the new caption
C ′
j = {t1, t2, ..., tk}. We save the lemma form of

ti and its paired image Ij accompanied by its com-
puted TF-IDF weight into the topic-image lookup
table T , where each topic is mapped to several im-
ages because of its multiple occurrences in differ-
ent image-caption pairs. Under the assumption that
there exists alignment between each image-caption
pair, the TF-IDF weights can be further treated as
an approximation of how relevant the paired image
depicts the topic. The higher the TF-IDF weight,
the better the paired image captures the theme of a
topic.

B.2 Image-word Pair Association Analysis

We assess the effectiveness of our simple retrieval
approach through a human annotation study on
Amazon Mechanical Turk (AMT) in which we ask
workers to judge the association of image–word
pairs. To this end, we sample 1, 000 pairs from
CWWVImg uniformly across the 10 commonsense
dimensions. Each HIT comprises a random se-
quence of 10 image–words pairs, one for each di-
mension. For each HIT, we ask 3 AMT workers
to judge each pair as either “associated” or “not

associated”. We define an image as “associated”
to its paired word when it can “successfully cap-
ture the word’s meaning by either containing the
object, picturing the event, depicting the action, or
characterizing the appearance, emotion, or manner
that the word can describe". For polysemous words
(e.g., clean can refer to an action or appearance),
the workers are encouraged to judge whether the
image can capture at least one sense of the word.

In total, 37 workers13 participated; we paid 0.20
per HIT with an hourly wage of $12. According to
majority vote (2 out of 3), 64.2% of the pairs are
associated, among which part-whole and spatial
have more than average associated pairs (74.3%
and 70.2% respectively). The inter-annotator agree-
ment under Fleiss’ Kappa coefficient (Fleiss, 1971)
is between 0.21− 0.44 across dimensions, which
is only a fair to moderate agreement, indicating the
high subjectivity of this task.

Since some words are inherently more visualiz-
able, we further analyze the pair association score
from different facets, such as POS tags and word
concreteness (Brysbaert et al., 2014). Table 6
shows the analysis of majority association score
and Fleiss Kappa score, broke down into three cat-
egories: commonsense dimensions, POS tags and
word concreteness. POS tags are recognized us-
ing spacy-nlp package while word concreteness is
categorized based on the concreteness ratings (5
point scale from abstract to concrete) provided by
Brysbaert et al. (2014). Brysbaert et al. (2014) de-
fined concrete words as those that can be directly
experienced through senses (e.g. sweetness can
be experienced through tasting) whereas abstract
words can only be inferred from the linguistic con-
text; they surveyed at least 25 annotations for each
word in the list (37,058 words and 2,896 two-words
expressions). To obtain a categorical analysis, we
define words that receive mean concreteness rating
above 4 as concrete.

Figure 3 and Figure 4 display concrete words
distribution and POS tags distribution over each
commonsense dimension respectively, where we
see that both spatial and part-whole dimensions
contain more concrete words.

C Results of CWWVImg and CWWVClip

The full results of CWWVImg and CWWVClip

can be found in Tables 7 and 8, respectively.

13Workers must reside in the UK, USA, CA, NZ, or AU.
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Majority Association Fleiss Kappa
(Absolute Association)

Commonsense Dimensions
part-whole 70.3% 0.32

(42.9%)
taxonomic 64.9% 0.21

(31.6%)
distinctness 63.2% 0.38

(33.7%)
similarity 61.1% 0.27

(35.8%)
quality 51.5% 0.23

(24.7%)
utility 63.2% 0.27

(32.6%)
creation 59.4% 0.44

(40.6%)
temporal 64.9% 0.33

(39.4%)
spatial 74.2% 0.25

(44.3%)
desire 69.1% 0.21

(41.5%)

POS tags
NOUN 68.6% 0.33

(42.9%)
VERB 58.4% 0.24

(27.9%)
ADJ 62.1% 0.24

(30.1%)

Word Concreteness
Conc. 81.2% 0.30

(57.0%)
Non-Conc. 58.5% 0.28

(29.9%) 0.28

All 64.2% 0.30
(36.7%)

Table 6: Majority association measures how often the
image-word pair is annotated as “ associated” by the
majority of the annotators (2 out of 3) whereas absolute
association refers to the whole agreement. Fleiss Kappa
score is the inter-annotator agreement.

Figure 3: concrete words distribution across common-
sense dimensions

Figure 4: POS tags distribution across commonsense
dimensions

D Modality Importance Scores

Following Cao et al. (2020), we analyze which
modality of single-stream model (textual v.s. vi-
sual) is more dominant during inference by exam-
ining the modality importance score (MI score). In
particular, we are interested in the average atten-
tion traces on the [MASK] tokens that refer to the
head h of the original knowledge triple (h, r, t)
before it is transformed into a QA statement
(i.e., [MASK] tokens that represent the prompt
template, e.g., “You are likely to find X in’, are
not considered). Similar to Cao et al. (2020), for
the textual modality we disregard the attention val-
ues spent on the two special tokens [CLS] and
[SEP]; analogously, for the visual modality, the
attention value paid to the [IMG] is also ignored.
Therefore, the MI scores of the modalities do not
sum up to 1.

For a sequence of bimodal tokens,
S = ([CLS], t1, ..., tm,[SEP], v1, ..., vn),
where t1, ..., tm refer to the textual tokens, and
v1, ..., vn denote the visual ones, the average MI
score IM,j for each attention head j is calculated
as follows:

IM,j =
1

Lh

Lh∑∑
i∈S

1(i ∈ M) · αi,j

αi,j refers to the attention score of the [MASK]
token spends on the token i at head j The MI score
of each respective commonsense dimension can
be seen in Figure 6; Figure 5 gives the mean MI
scores across all dimensions.

The visualization of the average MI scores shows
a clearly higher attention density on the textual than
on the visual modality (Fig. 6). We also observe
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Figure 5: Visualization of MI scores of UNITERTV

across 144 attention heads for the cases where
UNITERTV is correct and BERT incorrect. Left: tex-
tual MI; right: visual MI.

that the MI scores vary across commonsense di-
mensions. We see a higher attention density on
the lower textual layers, and a low density on the
visual parts on spatial, temporal, desire; on the
other dimensions, we see a higher density on the
upper textual layers and overall a higher density
on the intermediate visual layers.

E Results with Dummy Images

The visualization of attention traces of VIL-
BERTT Ṽ is displayed in Figure. 7.
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row Images part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All
1, 165 1, 323 828 644 1, 840 2, 090 100 1, 189 1, 599 1, 781 13, 259

1 RoBERTa – 68.5 61.8 80.2 67.4 69.7 74.2 72.0 60.9 54.8 65.9 67.5
2 BERT – 62.8 71.2 80.1 54.8 68.1 72.4 74.0 53.7 52.4 60.4 65.0
3 BERTCC – 68.4 62.0 66.6 51.1 66.0 65.4 62.0 53.6 63.7 58.3 61.9
4 UNITER_BERTT – 70.1 74.5 81.4 62.4 72.0 73.8 79.0 54.5 53.9 61.5 66.5
5 UNITERT – 70.9 59.8 71.3 51.2 69.9 71.5 71.0 52.7 61.5 62.5 64.0
6 VILBERTT – 63.9 60.3 64.9 46.7 66.1 71.2 58.0 52.2 61.0 62.8 60.7

7 UNITERTV retrieved 63.0 54.0 65.9 46.4 62.4 65.4 62.0 49.2 57.4 58.5 58.4
8 VILBERTTV retrieved 55.0 49.9 55.9 42.2 57.4 60.5 52.0 47.2 52.9 56.6 53.0
9 UNITERTṼ dummy 61.5 51.6 63.4 42.2 63.6 66.4 55.0 49.4 58.2 59.7 57.1

10 VILBERTTṼ dummy 60.4 58.9 64.9 43.9 63.4 65.5 55.0 48.4 56.8 62.0 57.9

11 UNITERV retrieved 36.4 36.6 40.1 38.5 34.2 36.6 32.0 34.8 36.2 34.3 36.0
12 VILBERTV retrieved 37.8 35.1 37.7 39.8 36.8 35.7 41.0 33.0 37.6 34.0 36.8
13 UNITERṼ dummy 30.8 26.3 45.7 28.6 29.2 28.7 19.0 28.7 29.6 30.7 29.7
14 VILBERTṼ dummy 34.8 35.8 50.5 40.4 30.4 31.1 30.0 29.4 33.5 30.1 34.6

Table 7: Model accuracy on CWWVImg . Bold represents the highest score per commonsense dimension across all
models and settings; underlined scores denote the best model under the same setting per commonsense dimension.

row Images part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All
170 85 86 188 143 120 8 154 144 91 1, 189

1 RoBERTa – 70.2 60.1 75.8 61.6 64.3 68.3 75.0 56.5 52.4 57.6 62.8
2 BERT – 61.2 70.6 73.6 45.3 69.5 65.8 87.5 52.9 48.2 57.6 63.2
3 BERTCC – 71.8 61.5 65.9 44.2 66.9 64.2 75.0 42.4 61.8 52.1 60.6
4 UNITER_BERTT – 69.6 72.7 75.8 55.8 70.8 68.3 87.5 56.5 47.7 59.0 64.3
5 UNITERT – 76.6 58.0 72.5 52.3 66.9 70.0 75.0 44.7 59.4 54.9 63.0
6 VILBERTT – 70.7 59.4 62.6 53.5 63.6 70.0 62.5 43.5 58.8 59.7 60.5

7 UNITERTV retrieved 68.1 55.9 68.1 43.0 61.0 64.2 62.5 42.4 54.1 58.3 57.8
8 VILBERTTV retrieved 58.0 58.0 62.6 38.4 57.8 56.7 62.5 41.2 59.4 54.2 54.9
9 UNITERTṼ dummy 66.0 51.7 62.6 45.3 62.3 69.2 37.5 42.4 59.4 57.6 55.4

10 VILBERTTṼ dummy 62.8 54.5 63.7 41.9 58.4 63.3 50.0 44.7 56.5 59.0 55.5

11 UNITERV retrieved 33.5 38.5 45.1 40.7 37.0 31.7 37.5 35.3 35.3 34.0 36.9
12 VILBERTV retrieved 39.4 34.3 41.8 37.2 35.1 40.0 25.0 31.8 40.6 31.2 35.6
13 UNITERṼ dummy 29.3 19.6 48.4 36.0 23.4 26.7 25.0 34.1 28.2 27.8 29.8
14 VILBERTṼ dummy 38.8 30.8 49.5 38.4 29.9 30.0 25.0 28.2 34.1 29.2 33.4

Table 8: Model accuracy on CWWVClip. Bold represents the highest score per commonsense dimension across all
models and settings; underlined scores denote the best model under the same setting per commonsense dimension.
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Figure 6: Visualization of the average modality importance scores of UNITERTV across 144 attention heads and
across commonsense dimensions under the cases where UNITERTV predicts correctly whereas BERT predicts
incorrectly. The order (from top to bottom and from left to right) of commonsense dimension is: part-whole,
taxonomic, distinctness, similarity, quality, utility, creations, temporal, spatial, desire.

(a) Dummy Image 1 (b) Dummy Image 2 (c) Dummy Image 3

Figure 7: Attention traces of VILBERTT Ṽ last inter-modal layer averaged across cases where VILBERTT Ṽ

predicts correctly. The bounding boxes represent salient visual tokens of each dummy image and the values in
yellow boxes refer to the averaged attention scores. VILBERTT Ṽ overly pays attention (0.35) to one single visual
token in the second dummy image (7b).


