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Abstract

Temporal sentence grounding (TSG) is crucial
and fundamental for video understanding. Pre-
vious works typically model the target activ-
ity referred to the sentence query in a video
by extracting the appearance information from
each whole frame. However, these methods
fail to distinguish visually similar background
noise and capture subtle details of small ob-
jects. Although a few recent works additionally
adopt a detection model to filter out the back-
ground contents and capture local appearances
of foreground objects, they rely on the quality
of the detection model and suffer from the time-
consuming detection process. To this end, we
propose a novel detection-free framework for
TSG—Grounding with Learnable Foreground
(GLF), which efficiently learns to locate the
foreground regions related to the query in con-
secutive frames for better modelling the tar-
get activity. Specifically, we first split each
video frame into multiple patch candidates of
equal size, and reformulate the foreground de-
tection problem as a patch localization task.
Then, we develop a self-supervised coarse-
to-fine paradigm to learn to locate the most
query-relevant patch in each frame and aggre-
gate them among the video for final ground-
ing. Further, we employ a multi-scale patch
reasoning strategy to capture more fine-grained
foreground information. Extensive experiments
on three challenging datasets (Charades-STA,
TACoS, ActivityNet) show that the proposed
GLF outperforms state-of-the-art methods.

1 Introduction

Temporal sentence grounding (TSG) (Gao et al.,
2017; Anne Hendricks et al., 2017) is an impor-
tant yet challenging topic of video understanding
in computer vision. Given an untrimmed video,
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Figure 1: (a) An illustrative example of the TSG task.
(b) The Illustration of our motivation: we learn to se-
lectively focus on the foreground patch in each frame
in a detection-free manner, which alleviates the prob-
lems of redundant backgrounds in most previous works
(without detection) and the low detection quality in time-
consuming detection-based methods. The green box
marks the focused region.

it aims to retrieve a temporal segment that seman-
tically corresponds to a given sentence query, as
shown in Figure 1 (a). Compared to other video-
and-language tasks like video captioning (Song
et al., 2015; Chu et al., 2015) and video action
localization (Shou et al., 2016; Zhao et al., 2017;
Xiong et al., 2022), TSG is substantially more chal-
lenging as it need not only capture the complicated
visual and textual information, but also learn the
complex multi-modal interactions among them for
modelling the target activity.

To localize the target segment, most previous
works either pre-define abundant segment propos-
als (Chen et al., 2018; Zhang et al., 2019; Yuan
et al., 2019; Liu et al., 2021b; Zhang et al., 2020b;
Zeng et al., 2020; Mo et al., 2022; Liu et al., 2022a)
to match the query semantic for ranking and selec-
tion, or employ proposal-free frameworks (Chen
et al., 2020; Zhang et al., 2020a; Mun et al., 2020)
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to directly regress the start/end timestamps of the
segment. Although these methods have made sig-
nificant progress in recent years, they extract the ap-
pearance information of each whole frame among
the entire video, thus limiting the effective inte-
gration of the foreground contexts for modelling
the target activity due to the visually similar back-
grounds and the missing subtle details of small
objects. To alleviate such limitations, a few recent
works (Zeng et al., 2021; Liu et al., 2022e) attempt
to additionally adopt a pre-processing detection
model (i.e., Faster R-CNN (Ren et al., 2015)) that
detects the foreground objects for filtering out the
background noise. However, they rely on the qual-
ity of the detection model while suffering from the
time-consuming detection process.

Based on the above considerations, this paper
aims to develop a detection-free grounding net-
work, which efficiently selects the most query-
relevant region in each frame to represent the frame-
level features among the entire video for better
modelling the target activity. As illustrated in Fig-
ure 1(b), in order to effectively represent different
local regions in each frame, we divide it into mul-
tiple patches that serve as the region candidates to
be selected according to their semantic similarity
with the query. Once the best patch is determined
in each frame during the network learning, they are
extracted to model the activity by spatial-temporal
correlation reasoning. Compared to previous meth-
ods, such detection-free network provides more
fine-grained foreground details by filtering out the
background regions and capturing the local con-
texts in an efficient and end-to-end manner, leading
to better grounding results.

To this end, we propose a novel TSG model,
called Grounding with Learnable Foreground
(GLF), which learns to focus on the query-relevant
foreground regions among video frames to model
the fine-grained target activity for more accurate
grounding. Specifically, we reformulate the fore-
ground detection problem as a patch localization
task. Considering the spatial-temporal information
within the video, we extract 3D spatial-temporal
patches instead of 2D spatial ones on the video
clips (i.e., several consecutive frames). We first
introduce a 3D patch embedding layer to encode
the local information of each patch candidate, and
concatenate it with an additional global represen-
tation extracted from its current video clip. Then,
we interact the patch candidates in each clip with

the query semantic to learn their matching scores
for distinguishing the foreground and background
patches. Particularly, we develop a two-level
coarse-to-fine paradigm to gradually localize the
most relevant (foreground) patch in each clip. At
last, we aggregate the representations of the most
relevant patches among the entire video to model
the target activity. In addition, considering the
sizes of the foreground regions may vary in dif-
ferent videos, we further extend the GLF model
with multi-scale patch design to capture more fine-
grained and complete foreground information for
better grounding.

Our main contributions are summarized as fol-
lows:

• To the best of our knowledge, we are the first
to propose a detection-free grounding frame-
work with the foreground learned for the TSG
task. To learn to determine the foreground
region in each clip, we split the clip into multi-
ple patch candidates and reformulate the fore-
ground detection problem as a patch localiza-
tion task.

• We propose a coarse-to-fine self-supervised
paradigm to localize the most query-relevant
region in each clip for final grounding. We
further extend the paradigm with multi-scale
patch reasoning in a parallel manner to capture
more fine-grained foreground details.

• Comprehensive evaluations on three challeng-
ing TSG benchmarks (Charades-STA, TACoS,
ActivityNet) demonstrate that our GLF out-
performs the state-of-the-art performance.

2 Related Work

Temporal sentence grounding (TSG) is a new task
introduced recently (Gao et al., 2017; Anne Hen-
dricks et al., 2017), which aims to localize the
most relevant video segment from a video with
sentence descriptions. Most previous works (Chen
et al., 2018; Zhang et al., 2019; Yuan et al., 2019;
Liu et al., 2021b, 2020b, 2021a,c, 2022b; Liu and
Hu, 2022) generate multiple segment proposals
and then rank them according to the similarity be-
tween proposals and the query for selecting the
best matching one. Instead of generating complex
proposals, some works (Zhang et al., 2020a; Chen
et al., 2020; Mun et al., 2020; Liu et al., 2022d,c)
directly regress the temporal locations of the target
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Figure 2: Overview of the proposed GLF model. It consists of the multi-modal encoders and the self-supervised
patch localization.

segment by either regressing the start/end times-
tamps based on the entire video representation or
predicting at each frame to determine whether this
frame is a start or end boundary. Although the
above two types of methods achieve outstanding
performance, they all extract the appearance infor-
mation of each whole frame among the entire video
for activity modelling, which fails to capture fine-
grained local object details for semantic composing
and may suffer from visually similar background
contents. A few recent works (Zeng et al., 2021;
Liu et al., 2022e) attempt to alleviate such limi-
tations by detecting and learning the correlations
between the foreground objects for reasoning the
multi-modal semantics. These methods can well
filter out the background noise and focus more on
local details of small objects. However, they rely on
the quality of the time-consuming detection model.
In this paper, we propose a detection-free ground-
ing network to learn to focus on the foreground
region in each frame for activity composing, which
is more efficient than the detection-based methods
since our model is trained end-to-end with a learn-
able foreground attention mechanism. Besides, our
model is also more effective than previous proposal-
based and proposal-free methods by filtering out
the background appearances and capturing more
fine-grained subtle details.

3 Our Method

Given an untrimmed video V and a sentence query
Q, the TSG task aims to determine the start and end
timestamps of a specific video segment referring
to the sentence query. Formally, we represent the
video as V = {ct}Tt=1 clip-by-clip, where ct is the
t-th clip and T is the total clip number. We also
denote the query as Q = {ws}Ss=1 word-by-word,

where S is the length of the sentence.
In this section, we introduce the overall archi-

tecture of our proposed GLF model. As shown
in Figure 2, the model consists of two main parts:
multi-modal encoders and self-supervised patch lo-
calization. First of all, GLF splits each video clip
into multiple spatial-temporal patch candidates of
equal size and encodes them with a shared 3D em-
bedding layer. Then, the model extracts the query
embeddings and interact them with all patch candi-
dates. After that, a coarse-to-fine patch localization
paradigm is proposed to gradually score the patches
in each clip according to their query-relevant sim-
ilarity. At last, a single best patch in each clip
is selected by a learned policy module to repre-
sent the current query-guided clip feature for final
grounding. Considering the sizes of the foreground
regions may vary in different videos, we further
extend the model with a multi-scale patch design to
aggregate different-level foreground contexts. We
elaborate on each module below.

3.1 Multi-Modal Encoders

Video encoder. For the input video V , to extract
different regional local information in the t-th clip
ct, we first split ct into spatial-temporal patch can-
didates with the same temporal dimension as ct
and no spatial overlap, where the total number of
spatial-temporal patches is Np = K ×K and K
is the patch number in each column/row. Then,
we take a shared-weight 3D kernel with a further
projection layer as the patch embedding module to
encode all Np patches of ct into {pt,i}

Np

i=1, where
pt,i ∈ Rdv1 and i denotes the patch index, and dv1
is the feature dimension. Considering the global
feature of the whole clip contains the non-local in-
formation across different patches, we also utilize
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the pre-trained C3D model (Tran et al., 2015) to
extract clip-level feature vt ∈ Rdv2 of each clip ct.

Since it is necessary to consider both spatial
and temporal locations of each patch for reasoning
patch-wise relations, we follow (Dosovitskiy et al.,
2021) to encode the spatial position embeddings
of each patch pt,i as espai , and follow (Mun et al.,
2020) to define its temporal position embeddings as
etemt . The final patch-wise feature is concatenated
as:

(pt,i)
′ = [pt,i;vt; e

spa
i ; etemt ]. (1)

We further employ a plain Transformer en-
coder (Vaswani et al., 2017) on all patches
{(pt,i)

′}t=T,i=Np

t=1,i=1 to model their intra-modality
contexts, and obtain corresponding contextual-
ized representations as P̂ = {p̂t,i}

t=T,i=Np

t=1,i=1 ∈
RT×Np×dv3 .
Query encoder. For the query Q, following pre-
vious works (Chen et al., 2018; Liu et al., 2021b),
we first utilize the Glove model (Pennington et al.,
2014) to embed each word into a dense vector, and
then employ a Bi-GRU (Chung et al., 2014) to
encode its sequential information. The encoded
features can be denoted as Q = {qs}Ss=1 ∈ RS×dq1 .
We also employ another plain Transformer encoder
to model the contextual textual representations as
Q̂ = {q̂s}Ss=1 ∈ RS×dq2 .

3.2 Self-Supervised Patch Localization
Since there is only temporal-level annotation of
the target segment and no spatial-level annota-
tion of the foreground regions, we develop a self-
supervised learning paradigm to guide the GLF
learn to focus on the potential foreground patches.
Specifically, we first interact video and query fea-
tures to align their relevant semantics, and then im-
pose two cooperated modules on the multi-modal
features to compute the clip-query matching scores
by scoring and weighting different patches in the
same clip. We further propose a coarse-to-fine
patch localization strategy to gradually select a
patch in each clip to effectively represent the clip-
level query-relevant semantic for more fine-grained
and accurate grounding.
Multi-modal interaction. To capture the relation-
ship between each patch and the query, we employ
a multi-modal interaction module that selectively
injects textual evidences into the visual patches.
We first utilize an attention mechanism to aggre-
gate the word features for each patch. For the patch
p̂t,i, we calculate the attention weights over word

features {q̂s}Ss=1 and aggregate them as:

αt,i,s = w⊤tanh(Wα
1 p̂t,i + Wα

2 q̂s + bα),

rt,i =
S∑

s=1

softmax(αt,i,s) · q̂s,
(2)

where Wα
1 ,Wα

2 are projection matrices, bα is the
bias and w⊤ is the row vector (Zhang et al., 2019).
rt,i is the patch-aware textual feature for each patch
i in the t-th clip. Next, we build the textual gate
that takes language information as the guidance to
weaken the text-irrelevant patches, and generate
the cross-modal patch features as:

gt,i = σ(Wgrt,i + Wb), p̃t,i = [p̂t,i ⊙ gt,i; rt,i],
(3)

where σ is the sigmoid function, ⊙ is the element-
wise multiplication, gt,i means the textual gate for
patch i. P̃ = {p̃t,i}

t=T,i=Np

t=1,i=1 is the query-guided
patch features.
Learning to focus on the foreground. We propose
a self-supervised learning paradigm to estimate the
potential foreground patches by learning to selec-
tively aggregate the patch information within each
clip for clip-query matching. Considering patches
of the same clip have different semantic similar-
ities with the query and their contribution to the
query-guided clip-level semantic is often quite dif-
ferent, we develop two separate scoring and weight-
ing modules to evaluate the patch-query similarity
and patch-to-clip weight, respectively. Both mod-
ules are implemented by two linear layers. For
the patches in the t-th clip, we formulate the self-
supervised learning process as:

β1
t,i = scoring(p̃t,i), β

2
t,i = weighting(p̃t,i),

γt =

Np∑
i=1

softmax(β2
t,i) · σ(β1

t,i),
(4)

where β1
t,i represents the score whether the i-th

patch in the t-th clip is the query-relevant one, β2
t,i

is the predicted weight for aggregating all patches
within the current clip. γt denotes the final clip-
query matching score, which represents whether
the t-th clip is in the ground-truth segment or not.
To prevent the two modules merging into the simi-
lar or identical parameters, we utilize the sigmoid
function following the scoring module to force it
to learn the score whether the patch matches the
query, and we utilize the softmax function follow-
ing the weighting module to predict the weights for
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aggregating all patches within the current frame.
Once the clip-level scores are well-trained, the scor-
ing module can best predict the similarity between
each patch and the query, and guide the model to
focus more on the foreground patches.

To supervise the above two modules, we use
the clips falling into the ground-truth segment as
positive samples and the others as negative samples,
and formulate a balanced binary cross-entropy loss
as:

Lmatch =−
Tpos∑
t=1

Tneg

T
yt log(γt)

−
Tneg∑
t=1

Tpos

T
(1− yt) log(1− γt),

(5)

where Tpos, Tneg are the numbers of positive and
negative clips. Since most videos are long while
the lengths of annotated target segments is short,
the numbers of positive and negative clips are un-
balance. Therefore, we utilize Tneg/T and Tpos/T
to balance their losses. yt is the ground-truth la-
bel that equals to 1 for positive samples and 0 for
negative samples.
Coarse-to-fine patch localization. Equation (4)
is a vanilla solution to aggregate the potential fore-
ground contexts by patch-wise scoring and weight-
ing. Since the query-related activity mainly appears
in one small region of each clip, based on the above
coarse foreground localization operation, we fur-
ther design a fine-level localization module to only
select one patch feature to represent its clip-level
query-guided semantic for grounding. Specifically,
we develop a selection policy module to choose a
single patch from a Gaussian distribution which
is transformed from the previous predicted patch-
wise scores in each clip. There is no learnable
parameter for this module, and the patch with a
higher patch-wise score will get a larger probability
to represent the frame. We denote such generated
clip-level representations as F = {ft}Tt=1, where
ft is the feature of the selected patch in the t-th clip.
After that, we apply the effective grounding heads
following (Zhang et al., 2019; Liu et al., 2020b,a)
on F to generate NΦ fine-grained segment propos-
als for ranking via both confidence scoring loss
Liou and boundary adjustment loss Lb as:

Liou = − 1

NΦ

NΦ∑
i=1

(IoUilog(csi)+(1−IoUi)log(1−csi)),

(6)
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strategy.

Lb =
1

Npos

Npos∑
j

R1(δ̂
s
j − δsj )+R1(δ̂

e
j − δej ), (7)

where csi is the predicted confidence score of each
segment proposal, IoUt,i is corresponding ground-
truth. Npos denotes the number of the positive
proposals, and R1 is the smooth L1 loss. There-
fore, the grounding loss can be formulated with a
balanced parameter λ as follows:

Lground = Liou + λLb. (8)

Let ϕt,i denote the probability of patch p̃t,i being
selected, the goal of this selection policy module
is to minimize

∑
ϕt,i · Lground, where Lground is

the reward to enforce it to select the patch that
enables the network to produce correct grounding
in high confidence. In this manner, the coarse-level
localization module gradually finds the important
patches of each clip and yields a better clip-wise
feature representation. Meanwhile, the selected
foreground patch and corresponding representation
can further lead to more precise grounding results
in the fine-level localization module that in turn
provides better supervisions for patch-wise scoring
at the coarse level.

3.3 Multi-Scale Patch Aggregation
In order to obtain more reliable foreground infor-
mation among video clips for final grounding, we
exploit the multi-scale property to fuse the contents
of the best patch with multiple scales in each clip.
Specifically, we split the same video clip into dif-
ferent numbers of patch, and then separately train
different patch localization modules for different
patch scales. Since a patch with a smaller scale cap-
tures major local details and a patch with a larger
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scale preserves more global contexts, fusing the
information from multi-scale best patches in the
same clip leads to more representative foreground
features. However, directly fusing the multi-scale
results cannot take full advantage of the comple-
mentary information in different scales. Therefore,
we propose a gate-based multi-scale aggregation
module to distill each scale patch information for
better fusion. Details are illustrated in Figure 3.

For coarse-level patch localization, we ex-
tend the multi-scale strategy by learning the self-
supervised process in Equation (4) with different
patch scales, respectively. For fine-level patch lo-
calization, we first separately select one patch in
each clip t with multiple scales as f j

t , where j
denotes the scale index and j ∈ J which is em-
pirically defined. Then, we generate a distilled
gate gj

1,t and a reset gate gj
2,t which play a simi-

lar role to the gates in LSTM. The gates at each
scale control how much the feature at each scale
contributes to the final fused feature. This process
can be formulated as:

(f j
t )

′ = (1− gj
1,t)⊙ f j

t +
∑

j′∈J ,j′ ̸=j

ηj
′,jgj

1,t ⊙ f j′

t ,

f̂ j
t = gj

2,t ⊙ tanh((f j
t )

′) + (1− gj
2,t)⊙ f j

t , j ∈ J ,
(9)

where ηj
′,j is a learnable parameter to adjust the

relative ratio of the distilled gate which controls
information flow of features from a different scale
j′ combined with the current scale j. f̂ j

t is the up-
dated patch feature at scale index j, and we concate-
nate {f̂ j

t }Jj=1 of all scales as the fused features f̃t
and send it to the grounding heads in Equation (8).

3.4 Training and Testing
Training. To ensure our proposed GLF is trained
properly, we propose a three-stage training scheme.
At the first stage, we do not integrate the fine-level
patch localization module into GLF. Instead, we
train the coarse-level one with multi-scale patch
definition by minimizing the loss Lmatch in Equa-
tion (5). In this stage, the network is trained to
score the foreground patches. At the second stage,
we fix the trained network obtained from stage-1,
and evoke the fine-level patch localization mod-
ule with the multi-scale strategy to focus on the
selected patch in each clip by minimizing the loss
Lground in Equation (8). At last, we fine-tune the
whole GLF model.
Testing. During testing, we select patches of high-
est scores in the fine-level patch localization mod-

ule for grounding.

4 Experiments

4.1 Datasets and Evaluation

Charades-STA. This dataset (Gao et al., 2017) con-
sists of 9848 videos of daily life indoor activities.
There are 12408 sentence-video pairs for training
and 3720 pairs for testing.
TACoS. This dataset (Regneri et al., 2013) collects
127 long videos, which are mainly about cooking
scenarios, thus lacking the diversity. We use the
same split as [Gao et al., 2017], which has 10146,
4589 and 4083 sentence-video pairs for training,
validation, and testing, respectively.
ActivityNet. It is a large dataset (Krishna et al.,
2017) which contains 20k videos with 100k lan-
guage descriptions. This dataset pays attention to
more complicated human activities in daily life.
Following public split, we use 37417, 17505, and
17031 sentence-video pairs for training, validation,
and testing, respectively.
Evaluation. We adopt “R@n, IoU=m” as our eval-
uation metric, which is defined as the percentage
of at least one of top-n selected moments having
IoU larger than m.

4.2 Implementation Details

For each video input, we adopt 112 × 112 pixels
of every frame. We define consecutive 16 frames
as a clip and each clip overlaps 8 frames with ad-
jacent clips. The kernel size of the 3D patch em-
bedding layer is adaptive to the defined patch size.
We extract clip-level global features from a pre-
trained C3D (Tran et al., 2015) or I3D (Carreira
and Zisserman, 2017) model. Since some videos
are overlong, we uniformly downsample clip se-
quences to T = 200 for TACoS, ActivityNet, and
T = 64 for Charades-STA. For each sentence in-
put, we set the length of word feature sequences
to S = 20, and utilize Glove (Pennington et al.,
2014) to embed each word to 300 dimension fea-
tures. The hidden dimension of Bi-GRU is 512,
and the hyper-parameter λ is set to 0.005. The
numbers Np = K × K of the split multi-scale
patches in each clip are set to 3× 3, 5× 5, 7× 7.
We train the whole model with batch size of 64
and early stopping strategy. Parameter optimiza-
tion is performed by Adam optimizer with leaning
rate 4× 10−4 for Charades-STA and 3× 10−4 for
TACoS, ActivityNet, and linear decay of learning
rate and gradient clipping of 1.0.
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Method
Charades-STA TACoS

Feature R@1, R@1, R@5, R@5, Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL C3D 23.63 8.89 58.92 29.57 C3D 18.32 13.30 36.69 25.42
QSPN C3D 35.60 15.80 79.40 45.50 C3D 20.15 15.32 36.72 25.30
CBP C3D 36.80 18.87 70.94 50.19 C3D 27.31 24.79 43.64 37.40
GDP C3D 39.47 18.49 - - C3D 24.14 - - -

VSLNet I3D 47.31 30.19 - - C3D 29.61 24.27 - -
IVG-DCL I3D 50.24 32.88 - - C3D 38.84 29.07 - -

DRN I3D 53.09 31.75 89.06 60.05 C3D - 23.17 - 33.36
CBLN I3D 61.13 38.22 90.33 61.69 C3D 38.98 27.65 59.96 46.24

MARN* C3D+Object 62.08 41.46 91.65 70.03 C3D+Object 43.24 32.70 61.33 51.59
MARN* I3D+Object 64.31 42.82 93.30 71.76 I3D+Object 45.57 34.06 62.64 52.92

GLF C3D+Patch 63.60 42.75 92.91 71.49 C3D+Patch 44.82 34.38 62.75 52.26
I3D+Patch 65.57 44.32 94.86 73.07 I3D+Patch 47.14 35.63 65.24 53.77

Table 1: Overall performance comparison among our method with proposal-based and proposal-free methods on the
Charades-STA and TACoS datasets under the official train/test splits. * denotes that we remove MARN’s additional
ResNet feature for fair comparison.

Method
Charades-STA TACoS

Feature R@1, R@1, R@5, R@5, Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

MMRG Object 44.25 - 60.22 - Object 57.83 39.28 78.38 56.34
MARN* C3D+Object 46.19 32.01 63.25 39.88 C3D+Object 59.56 40.47 80.30 58.74
MARN* I3D+Object 47.67 33.49 65.02 40.51 I3D+Object 61.16 42.33 82.75 59.90

GLF C3D+Patch 47.85 33.68 64.54 41.20 C3D+Patch 61.37 41.72 81.96 59.45
I3D+Patch 49.59 35.01 66.34 42.79 I3D+Patch 62.98 43.11 83.52 60.13

Table 2: Comparison with detection-based method MMRG on Charades-STA and TACoS datasets under MMRG’s
train/test splits.

Method
ActivityNet

Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL C3D 29.01 10.34 59.17 37.54
QSPN C3D 33.26 13.43 62.39 40.78
CBP C3D 35.76 17.80 65.89 46.20
GDP C3D 39.27 - - -

VSLNet C3D 43.22 26.16 - -
IVG-DCL C3D 43.84 27.10 - -

DRN C3D 45.45 24.36 77.97 50.30
CBLN C3D 48.12 27.60 79.32 63.41

Ours C3D+Patch 51.35 30.97 83.26 67.32
I3D+Patch 53.48 32.15 85.02 68.81

Table 3: Overall performance comparison on the Activi-
tyNet dataset under the official train/test splits.

4.3 Comparisons with the State-of-the-art

Compared Methods. To demonstrate the effec-
tiveness of GLF, we compared it with several
state-of-the-art methods: Traditional: CTRL (Gao
et al., 2017), QSPN (Xu et al., 2019), DRN (Zeng
et al., 2020), CBLN (Liu et al., 2021b), CBP
(Wang et al., 2020), GDP (Chen et al., 2020),
VSLNet (Zhang et al., 2020a), IVG-DCL (Nan
et al., 2021); Detection-based: MMRG (Zeng et al.,
2021), MARN (Liu et al., 2022e). In particular,
the MARN model relies on many types of feature

CTRL DRN CBLN MARN (+detection) GLF
Speed 2.23s 0.15s 0.18s 0.13s (+19.64s) 0.17s

Table 4: Seconds per video on TACoS dataset.

inputs (i.e., C3D, Object, ResNet) for better repre-
sentation learning. Specifically, their object feature
is extracted by detection model, and their ResNet
model is utilized to encode such object contexts.
Compared to MARN, we only feed single C3D
feature as input. Since our method is proposal-free,
we re-implement and remove their detector and
ResNet models as a new variant MARN* to make
a fair comparison with our method.
Comparison on Charades-STA. As shown in Ta-
ble 1, we reach the highest results over all evalu-
ation metrics on the Charades-STA dataset. Par-
ticularly, our C3D+Patch variant outperforms the
best detection-based method MARN* by 1.29%
and 1.46% in terms of R@1, IoU=0.7 and R@5,
IoU=0.7, respectively. Compared to I3D+Patch
variant of MARN*, our model also outperforms it
by 1.50% and 1.31% in terms of R@1, IoU=0.7
and R@5, IoU=0.7, respectively. We also compare
our model following the same data splits of MMRG
in Table 2 for fair comparison. It shows that our
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Multi-modal
Encoders

Self-supervised Patch
Localization Multi-scale

Strategy
R@1,

IoU=0.7
R@5,

IoU=0.7Lmatch Lground

✓ × × × 33.71 62.35
✓ ✓ × × 37.28 65.86
✓ ✓ × ✓ 40.44 69.17
✓ ✓ ✓ × 39.53 68.20
✓ ✓ ✓ ✓ 42.75 71.49

Table 5: Main ablation study on Charades-STA dataset.

Components Variants R@1, R@5,
IoU=0.7 IoU=0.7

Video
Encoder

w/o global feature 40.47 70.13
w/ global feature 42.75 71.49

w/o position encoding 39.86 68.94
w/ position encoding 42.75 71.49

w/o transformer 40.38 69.82
w/ transformer 42.75 71.49

Query
Encoder

w/o Bi-GRU 41.64 70.71
w/ Bi-GRU 42.75 71.49

w/o transformer 41.53 70.70
w/ transformer 42.75 71.49

Table 6: Ablation study on the multi-modal encoders.

GLF leads to large improvement.
Comparison on TACoS. Table 1 and 2 also show
that our GLF achieves the best grounding results
on TACoS dataset. Table 1 and 2 also report the
grounding results on TACoS dataset. Compared to
MARN*, our C3D+Patch model outperforms it by
1.58%, 1.58%, 1.42%, and 0.67% in terms of all
metrics. Our I3D+Patch model also outperforms
MARN* by a large margin.
Comparison on ActivityNet. Since both MMRG
and MARN methods are not implemented on the
ActivityNet dataset, we only report the perfor-
mances on this dataset under official splits as shown
in Table 3. Compared to previous best method
CBLN, our C3D+Patch model outperforms it by
3.23%, 3.37%, 3.94%, and 3.91% in terms of all
metrics. Our I3D+Patch model also outperforms
CBLN by a large margin.
Efficiency Comparison. As shown in Table 4, we
evaluate the efficiency of our GLF model, by fairly
comparing its running time with existing methods
on TACoS dataset. It shows that our GLF is more
efficient than the detection-based method MARN
while on par with the other common methods DRN
and CBLN.

4.4 Ablation Study

We perform in-depth ablation studies to evaluate
the effectiveness of each component in GLF on
Charades-STA dataset. We utilize the C3D+Patch
variant as our backbone here.

Components Variants R@1, R@5,
IoU=0.7 IoU=0.7

Multi-scale
Aggregation

w/o gate 41.33 70.16
w/ gate 42.75 71.49

Patch
Definition

overlap 42.84 71.21
unoverlap 42.75 71.49

Scale Size Np

{9} 40.45 69.27
{25} 40.72 69.50
{49} 40.57 69.48
{81} 40.13 69.06

{9,25} 42.04 70.79
{25,49,81} 42.25 70.98
{9,25,49} 42.75 71.49

{9,25,49,81} 42.81 71.64

Table 7: Ablation study on the multi-scale strategy,
where scale sizes 9, 25, 49, 81 denote 3× 3, 5× 5, 7×
7, 9× 9, respectively.

Main ablation. As shown in Table 5, we verify
the contribution of each part in our GLF. We first
implement the baseline model by directly applying
the grounding heads on the interacted multi-modal
features of all patches without both self-supervised
patch localization and multi-scale strategy modules.
The baseline model achieves 33.71% and 62.35%
in terms of R@1, IoU=0.7 and R@5, IoU=0.7, re-
spectively. By adding the coarse-level patch local-
ization module Lmatch to the baseline, the model
brings the improvement of 3.57% and 3.51% since
it selectively focuses on the important foreground
regions. After further adding the fine-level Lground

for filtering out the redundant patches, the model
achieves better results. Besides, the multi-scale
strategy also brings a significant improvement to
the full model.
Ablation on multi-modal encoders. We also con-
duct the investigation on different variants of multi-
modal encoders in Table 6. We find that the full
model performs worse if we remove the global fea-
ture that helps to better explore the non-local infor-
mation among the patches. Besides, it also presents
the effectiveness of the position encoding in identi-
fying spatial-temporal knowledge. The transformer
modules in both video and query encoders and the
Bi-GRU module also bring additional performance
to the full model.
Ablation on the multi-scale strategy. We fur-
ther perform ablation study on our proposed multi-
scale patch strategy in Table 7. It shows that our
gate-based multi-scale aggregation module brings
the improvement of 1.42% and 1.33% in terms of
R@1, IoU=0.7 and R@5, IoU=0.7, respectively.
Besides, the overlapped and unoverlapped patches
have little impact on the final grounding perfor-
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Sentence Query: The person opens a bottle of wine and drinks it.

3 3u
Scale

Scale
5 5u

Scale
7 7u

Ground Truth | |12.8s 26.3sGround Truth | |12.8s 26.3s

Our Prediction | |12.7s 26.3sOur Prediction | |12.7s 26.3s

Figure 4: Visualization results on the predicted scores
of patches.

mance. Therefore, we choose the unpverlapped
one in all our experiments. Moreover, with more
various patch scales, the model usually performs
better than an individual scale. The variant with
four scales {9, 25, 49, 81} achieves the best result
but only performs marginally better than the three-
scale one {9, 25, 49} at the expense of a signif-
icantly larger cost of GPU memory. Thus, we
choose Np = {9, 25, 49} in our all experiments.

4.5 Visualization

We show the visualization on the scored multi-scale
patches in Figure 4, where the patches with highest
scores contain the most query-related visual appear-
ances. From this figure, we can find that our scoring
function can well learn the patch-query similarities
among different grains. By jointly combing the
contexts from different attended patches, our GLF
model performs accurate grounding result.

5 Conclusion

In this paper, we make the first attempt to pro-
pose a novel detection-free framework for tempo-
ral sentence grounding (TSG), called Grounding
with Learnable Foreground (GLF). In particular, we
split each video frame into patches with multiple
scales, and reformulate the foreground detection
problem as a patch localization task. In detail, we
interact each patch with the query semantic to learn
their matching scores supervised by our newly de-
signed self-supervised losses. Further, we develop
a two-level coarse-to-fine paradigm to gradually lo-
calize the most query-relevant (foreground) patch
in each clip. Moreover, considering the sizes of the
foreground regions may vary in different videos,

we extend the GLF model with multi-scale patch
design to capture more fine-grained and complete
foreground information for better grounding. Ex-
perimental results on three challenging datasets
(Charades-STA, TACoS, ActivityNet) validate the
effectiveness of our proposed model.
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