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Abstract

Semantic Role Labeling (SRL) is the task of
labeling semantic arguments for marked seman-
tic predicates. Semantic arguments and their
predicates are related in various distinct man-
ners, of which certain semantic arguments are
a necessity while others serve as an auxiliary
to their predicates. To consider such roles and
relations of the arguments in the labeling order,
we introduce iterative argument identification
(IAI), which combines global decoding and
iterative identification for the semantic argu-
ments. In experiments, we first realize that the
model with random argument labeling orders
outperforms other heuristic orders such as the
conventional left-to-right labeling order. Com-
bined with simple reinforcement learning, the
proposed model spontaneously learns the op-
timized labeling orders that are different from
existing heuristic orders. The proposed model
with the IAI algorithm achieves competitive or
outperforming results from the existing models
in the standard benchmark datasets of span-
based SRL: CoNLL-2005 and CoNLL-2012.

1 Introduction

Semantic role labeling (Carreras and Màrquez,
2004, 2005) is the task of identifying and resolv-
ing the relations between semantic predicates and
their arguments based on the PropBank (Kingsbury
and Palmer, 2002) predicate-argument structure.
In span-based SRL, semantic predicates comprise
several semantic arguments that are expressed as
spans of tokens in the sentence. Recent span-based
SRL models incorporate neural networks into a
global decoding approach. Here syntactic features
are injected into the neural network model (Strubell
et al., 2018), span-based scoring for semantic ar-
gument is adapted (Ouchi et al., 2018), and the
unified representations for both span-based and
dependency-based SRL are applied (Li et al., 2019;
Zhou et al., 2020). However, in these approaches,
the labeling order is not determined inside the neu-
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Figure 1: Example of the iterative argument identifi-
cation with the given predicate “look”. At the bottom
of the final state τ = 6, all semantic arguments are
presented with spans and labels. The time step τ corre-
sponds the iterative process of the proposed model.

ral network and hence models require some extrap-
olated graph decoding procedures, similar to the
graph-based approaches that rely on external graph
decoding (Lewis et al., 2015). Such external decod-
ing procedures are typically not trained during the
model training and hence hinder accurate decoding.

The sequential labeling approach is another ma-
jor branch of span-based SRL models (Màrquez
et al., 2005; Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Li et al., 2020), wherein the models
resolve sentences from the beginning to the end or
left-to-right ordering by attaching labels that repre-
sent both semantic spans and roles. Li et al. (2020)
proposed the BIO labeling-based model with prede-
fined regularizers of unique case roles, exclusively
overlapping roles and PropBank frame definitions.
However, sequential labeling approaches often suf-
fer from the error-propagation problem(Senge et al.,
2014; Dinarelli and Tellier, 2018). One reason is
that they are not able to arrange the argument iden-
tification orderings in decoding.

Thus, in this study, we explore an SRL model
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that combines global decoding and iterative label-
ing approaches: iterative argument identification
(IAI). Our model works iteratively: the model iden-
tifies one argument individually and stores it for
each time step. The stored semantic arguments are
used as “clues” for identifying other arguments in
later time steps. Moreover, our models can identify
semantic arguments from arbitrary orders because
our model identifies arguments from any part of
the sentence. This means that our model can con-
sider relations of predicates and arguments in the
decoding order. In SRL, semantic arguments have
various roles to their predicates. Figure 1 repre-
sents an example of attached semantic role labels
for the partial sentence of “They can directly look
at the agreement with us because...”. In this exam-
ple, both arguments “They” and “at the agreement”
represent crucial semantic roles to their predicate
“look.” However, other arguments such as “with
us” and the phrase following “because” represent
additional information to their predicate.

As identified arguments become clues in later
processes, choosing suitable decoding orderings af-
fects the final performance of the proposed model
because many clues become available to identify
a new argument in later time steps. Here we ask
the following question: Are there certain labeling
orderings that can identify arguments more accu-
rately than heuristic orderings? Empirical experi-
ments revealed that the traditional left-to-right or-
dering although strong, is not the best ordering,
e.g., simple random ordering in imitation learning
outperform the left-to-right ordering. Based on the
results obtained, we explored models that follow
better decoding orders than the heuristic orders. We
assume optimal transition paths are not generated
with heuristics or hand-engineering, and rather ex-
pect the self-emergence of the optimal transition
paths that are different from the existing heuristic
transition paths through the model training. We ap-
plied simple policy-gradient-based reinforcement-
learning for the IAI model and found that reinforce-
ment learning slightly leverages the model perfor-
mance thereby allowing models to arrange order-
ings resulting in different argument orderings from
existing heuristics, which was confirmed through
several analyses. Furthermore, our model achieved
competitive or better performances than the exist-
ing models in the standard benchmark datasets.1

1The code is available at https://github.com/
shuheikurita/iss_srl

2 Related Work

The idea of optimizing the labeling orders in decod-
ing is a branch of the easy-first strategy (Tsuruoka
and Tsujii, 2005; Goldberg and Elhadad, 2010; Ma
et al., 2013; Martins and Kreutzer, 2017). In SRL,
Wolfe et al. (2016) proposed the SRL model with
the pseudo teacher approaches for the processing
orders in SRL. They exploit violation fixing per-
ceptron and their parser explores the states of the
highest scored path along with the word frequency
ordering baseline. Since their proposed model of
“easy-first dynamic” follows the highest scoring ac-
tion, their model explores limited transition spaces
during training. Refinement of existing SRL is also
examined in dependency-based SRL (Lyu et al.,
2019; Chen et al., 2019). Reinforcement learning
is also applied in broad syntactic and semantic pars-
ing studies (Lê and Fokkens, 2017; Fried and Klein,
2018; Naseem et al., 2019; Kurita and Søgaard,
2019). Multi-task neural network is often applied
to such structured syntactic analyses (Søgaard and
Goldberg, 2016; Kurita et al., 2017). It is notable
that adversarial training is also applied to extract
knowledge from unannotated corpora in Japanese
predicate-argument structure analysis (Kurita et al.,
2018).

Lattice-based approach is also a promising ap-
proach for SRL in traditional (Täckström et al.,
2015) and neural models (FitzGerald et al., 2015).
However, they rely on external dynamic program-
ming decoding. Choi and Palmer (2011) proposed
the transition-based model for dependency-based
SRL. They applied a set of transition actions that
are similar to the shift-reduce parser (Nivre, 2008)
in syntactic parsing. They also adapted the self-
learning clustering technique for predicates that are
unseen in training. Blloshmi et al. (2021) address
a sequence-to-sequence labeling model which per-
forms competitive with sequence-labeling models.
Indeed, most of the recent SRL resolving studies
address the global-decoding approach (Ouchi et al.,
2018; Li et al., 2018, 2019; Zhou et al., 2020; Conia
and Navigli, 2020) or the sequential labeling ap-
proach (Shi and Lin, 2019; Li et al., 2020; Marcheg-
giani and Titov, 2020; Zhang et al., 2021; Kasai
et al., 2019) in both span-based and dependency-
based SRL. In this paper, we introduce the iterative
approach for the global argument selection and en-
able models to determine the ordering of resolving
semantic arguments with modern neural networks
and reinforcement learning for span-based SRL.

https://github.com/shuheikurita/iss_srl
https://github.com/shuheikurita/iss_srl
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3 Model

3.1 Iterative argument identification

The span-based SRL model predicts multiple spans
of tokens as semantic arguments for each marked
semantic predicate and attaches semantic role la-
bels to the arguments. Some semantic arguments
have crucial roles in the grammatical or semantic
structures of a sentence, whereas other arguments
have rather auxiliary roles to their predicates. Such
arguments are, therefore, more difficult to resolve
than others. In iterative span selection, our model
repeatedly predicts one semantic argument for each
semantic predicate in a single iteration. The pre-
viously predicted semantic arguments are stored
in a partial semantic arguments buffer. In later
time steps, our model is able to use the information
from the previously extracted semantic arguments
to effectively predict the remaining arguments.

For a given predicate p, the proposed model de-
termines the next argument boundary and its role
label in each iteration. Formally, let X is the input
sentence, p is a marked predicate and Yg

p be the set
of all annotated arguments of the marked predicate
p in the annotated data g. One semantic argument
yi,p ∈ Yg

p is represented by the span of tokens and
its semantic role label as yi,p = {ts, te, l}. Here,
ts is the beginning of the argument span, te is the
end of the span, and l is the attached semantic
role label. Then, we define a transition action ap
for each predicate p. The action ap includes the
decision of whether the predicate p has more un-
resolved arguments or not, and the detection of a
new single semantic argument yi,p = {ts, te, l}. In
each iteration, the model resolve a new semantic
role label of yi,p = {ts, te, l} by choosing ts, te

and l respectively, or decide that the predicate p
has no more semantic arguments. When the model
predicts semantic arguments for the marked pred-
icates, the resolved arguments are stored in the
partial SRL buffer of that predicate. The partial
SRL buffer contains the previously predicted argu-
ments Yτ

p for each predicate p in the iteration of
the time step τ . The partial SRL buffer is updated
after each transition and used as part of the model
input in the next step. Note that the transitions
are independently performed for each predicate.
Therefore, the model can stop transitions for some
predicates while the model continues transitions for
other predicates. The structure of the partial seman-
tic argument buffer is explained in Section 3.2.2.

3.2 Neural network
Our neural network model predicts the probabilities
of the transition action ap as p(ap|X, p,Yτ

p) for all
predicates in each iteration τ . Figure 2 represents
the neural network model. The network consists
of three parts: (i) the sentence encoder, (ii) the
partial SRL encoder, and (iii) the span selection
and labeling decoder.

3.2.1 Sentence encoder
For the sentence encoder, we use the self-attention
architecture of transformer (Vaswani et al., 2017),
which is compatible with the huge pretrained lan-
guage encoder models, such as BERT (Devlin et al.,
2019). Pretrained models often rely on sub-word
segmentations while SRL is a token-level task. For
a token with multiple sub-tokens, we use the be-
ginning sub-token for the entire representation of
the original token. We initially split the input
sentence into sub-tokens and add the special to-
kens of “[NULL]”, “[EOS]” and “[PAD]”. Here
“[NULL]” has the special meaning that the predi-
cate has no unresolved arguments. Following the
pretrained models, we apply wordpiece (Wu et al.,
2016) for the original tokens to obtain sub-words.
The phrase of “the amended filings”, for example,
becomes the sequence of sub-tokens as “[NULL]
the amended filing #s [EOS] [PAD] ... [PAD]”
where the token “filings” are split into two sub-
tokens “filing” and “#s”.

We apply transformer to encode a sequence of
sub-tokens in the sentence to obtain h(ti) ∈ Rd for
the representation of the i-th sub-token ti. d is the
output dimension of the transformer model. In con-
trast to the representations of the partial semantic
argument buffer, the obtained representations h(ti)
for the sentence are not altered during transitions.

3.2.2 Partial SRL encoder
We employ a special encoder that directly encodes
the partially-extracted semantic arguments of Yτ

p

that are resolved in the former transitions of the
iterative argument identification algorithm. We
present the partial SRL buffers Yτ

p which contain
the spans of previously extracted semantic argu-
ments in Figure 3. We prepare the same number
of the partial SRL buffers with the number of the
marked predicates in the sentence. During SRL re-
solving, partial SRL buffers are updated separately
for each predicate. Contents of the partial SRL
buffer for a predicate does not affect the arguments
identification for other predicates. This nature al-
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Figure 2: Overall network architecture: the sentence encoder, partial SRL encoder, and SRL decoder. The
sentence encoder takes inputs of the (sub)token representation of e(ti) and computes the time-independent sentence
representation of h(ti), for each sub-token t. The partial SRL encoder takes inputs of the label representation of
l(ti) and computes the time-dependent partial SRL buffer representation of m(ti). In the partial SRL buffer, (V)
represents the marked predicates and (N) represents the token does not have the attached labels yet. We depict the
time sequence τ = 0 and τ = 1 cases for the same example with Figure 1.

They  can   directly   look   at   the   agreementTime

τ = 0

τ = 1

τ = 2

τ = 3 AM-MNR(N) A1(V)A0 A1A1

(N)(N) A1(V)A0 A1A1

(N)(N) A1(V)(N) A1A1

(N)(N) (N)(V)(N) (N)(N)

Figure 3: Example of the partial SRL buffer updates for
the predicate “look” of the phrase “They can directly
look at the agreement”.

lows the parallelization of SRL resolving for each
predicate as discussed in the Appendix A.6.

At the initial transition of τ = 0, a partial SRL
buffer is filled with “(N)” labels for all sub-tokens
except the marked semantic predicate with a la-
bel of “(V)”. Here “(N)” label represents that
the token has no predicted role labels yet for the
predicate marked “(V)”. At the end of τ -th transi-
tion, the model updates the SRL buffers with new
predicted semantic arguments that are used for the
next transition of τ + 1.

We use a transformer-based encoder for the se-
quence of extracted SRL spans to obtain the partial
semantic argument representations of mτ (ti) ∈ Rd

of the i-th sub-token ti. This transformer is differ-
ent from the sentence encoder transformer and it
is not pretrained. As the partial SRL buffers are
updated in transitions, the representations for them
are altered. Therefore the partial SRL representa-
tions contribute to changes in the SRL resolving
actions.

3.2.3 SRL decoder
We employ a decoder network for incrementally
predicting the beginning and end of the new ar-
gument span for each predicate in the sentence.

Name Sent. Enc. SRL Enc. SRL Dec.

Hidden size 1024 256 2560
Transformer layers 12 3 3 (Total)

Table 1: Hyper-parameters for transformers of sentence
encoder, SRL encoder and the SRL decoder. The other
hyperparameters are the same with those of BERT.

Argument prediction is performed by predicting
the beginning token ts, the span end token te and
the argument label l. To do so, the decoder net-
work predicts the probabilities of the next action
ap for each predicate p with the inputs of the sen-
tence, the predicate and partial semantic role label
buffer: p(ap|X, p,Yτ

p). The action ap consists of
three decisions: (i) choosing the beginning of the
span ts or deciding this predicate does not have
further semantic arguments e.g., the model selects
the “[NULL]” token as ts, (ii) choosing the end of
the span te and (iii) attaching a semantic role label
l for the predicted span [ts, te] of the argument.

The decoder network works as follows. First,
the model concatenates the representations of sub-
tokens h and the partial SRL buffer mτ for τ -th
transition and input it into transformer layers for
the scoring tokens as the beginning of the span ss(·)
with a softmax function over sub-tokens

p(ts = ti) =
exp

(
ss([h(ti),m

τ (ti)])
)∑

t′ exp
(
ss([h(t′),mτ (t′)])

) (1)

to obtain the probability p(ts) for a sub-token ti
to become the beginning of the span ts. Sub-
tokens that are not the beginning of the original
tokens don’t become ts. Therefore the probabil-
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ity p(ts) is re-normalized for these beginning sub-
tokens while the probabilities of other sub-tokens
for ts are adjusted to 0. In the evaluation, we
choose the beginning of the next argument span
with argmaxt p(t

s). In imitation learning, we
choose the teacher label of the beginning of the
span tsg from the annotated arguments. In reinforce-
ment learning, we choose the teacher labels with
Gumbel-Softmax here. In the sampling and evalu-
ation, models are required to consider sub-tokens
that are the beginning of some original tokens as
the candidates of the next argument beginning ts.

Similarly, the model predicts the end of the span
te given the sub-token of the span beginning ts.
Similar to the beginning of the span, We prepare
transformer layers for se(·) with a softmax function
over sub-tokens

p(te = ti) =
exp

(
se([h(ti),m

τ (ti), h(t
s)])

)∑
t′ exp

(
se([h(t′),mτ (t′), h(ts)])

)
to obtain the probability p(te) for a sub-token ti as
the end of the argument span te. Here the model
uses representations of the sub-tokens of the ar-
gument beginning ts that are resolved first. To
reduce the size of the concatenated vectors of the
three representations, we extract the first half val-
ues of the three vectors and concatenate them. The
model does the sampling from p(te) with Gumbel-
Softmax to obtain te similar to ts during reinforce-
ment learning. Finally, the model computes the
label distribution of the argument from the sen-
tence and the SRL representation h(t) and m(t) as
the beginning and end tokens representation of the
argument span, [h(ts),m(ts)] and [h(te),m(te)]
with a scoring function sl(·) of another transformer
layer:

p(l) =
exp

(
sl([h(t

s),mτ (ts), h(te),mτ (te)])
)∑

l exp
(
sl([h(ts),mτ (ts), h(te),mτ (te)])

)
for the label l prediction.

3.3 Learning
The problem in training IAI is that there are no an-
notated orders for determining SRLs. In Figure 3,
we present an example of transitions for IAI. How-
ever, such teacher orders are not always available
during training models. For training models, there
are two possible approaches: imitation learning as
the teacher path is given by an oracle and reinforce-
ment learning as the model explores the transition
paths during training.

3.3.1 Imitation learning
We first define teacher transition paths. Given
all annotated arguments Yg

p for each predicate,
the transition path is the sequence of the anno-
tated arguments {y0, · · · , yT }. We prepare simple
heuristic transition paths: right-to-left, left-to-right,
close-to-distant, distant-to-close and random or-
ders. For each semantic predicate, the left-to-right
order teacher selects the annotated semantic argu-
ments from left to right. This is similar behaviour to
the transition-based models. The right-to-left order
teacher is the inverse of the left-to-right. The close-
to-distant and distant-to-close order teachers select
arguments based on the distance of sub-tokens from
the predicate.2 These four teacher transition paths
always yield the same transition paths, whereas the
random transition teacher yields different transition
paths in each epoch. Therefore, the random transi-
tion benefits from this de-facto data augmentation.3

We compare the results of those heuristic teachers
in imitation learning in Appendix A.4.

3.3.2 Reinforcement learning
In reinforcement learning, the model determines
the transition path during training. In particular,
we apply a policy gradient to explore the transi-
tion space that is uncommon during the imitation
training. A Gumbel-Softmax distribution (Jang
et al., 2017) has the essential property that it can be
smoothly annealed into a categorical distribution.
Thus we use Gumbel-Softmax for the sampling
from the next possible transitions.

3.3.3 Rewards for reinforcement learning
We exploit simple immediate rewards for reinforce-
ment learning. We apply the positive reward of
r = 1 for all transitions of the correct arguments
and the negative reward of r = −1 for all incorrect
transitions. In each transition, the model deter-
mines the beginning of the next span ts, the ending
of the span te and the label l incrementally. If the
model identifies one of the correct arguments from
the remaining unresolved arguments, it gets the
r = 3 positive rewards in total in a single transi-
tion. When the model makes a wrong prediction,
it receives the r = −1 negative reward at this time

2If two arguments are at the same distance in the number
of sub-tokens from the predicate, we regard the left argument
as close to the predicate for the convenience.

3The reinforcement learning can also benefits from this de-
facto data augmentation. However, it would be less effective
than those for random because of the limited transition paths.
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CoNLL-2005 CoNLL-2012
Model Dev WSJ Brown Dev Test

P R F1 P R F1 P R F1 P R F1 P R F1

Ouchi+2018 ELMo 87.4 86.3 86.9 88.2 87.0 87.6 79.9 77.5 78.7 87.2 85.5 86.3 87.1 85.3 86.2
Ouchi+2018 ELMo (E) 88.0 86.9 87.4 89.2 87.9 88.5 81.0 78.4 79.6 88.6 85.7 87.1 88.5 85.5 87.0
Li+ 2019 ELMo - - - 85.2 87.5 86.3 74.7 78.1 76.4 - - - 84.9 81.4 83.1
Shi+2019 BERT - - - 88.6 89.0 88.8 81.9 82.1 82.0 - - - 85.9 87.0 86.5
Zhou+2020 BERT - - - 89.04 88.79 88.91 81.89 80.98 81.43 - - - - - -
Li+2020 BERT∗ - - - - - - - - - 85.97 86.38 86.18 85.82 86.36 86.09
Li+2020 RoBERTa 87.24 87.26 87.25 88.05 88.00 88.03 80.04 79.56 79.80 86.60 86.89 86.74 86.40 86.83 86.61
Zhang+2021 BERT - - - 87.54 88.32 87.93 81.91 82.37 82.14 - - - 85.93 87.32 86.62

Left-to-right 87.70 88.16 87.93 88.76 88.94 88.85 82.40 82.59 82.50 87.28 87.83 87.55 87.35 87.89 87.62
Random 87.86 88.30 88.08 88.73 89.07 88.90 82.69 83.33 83.01 87.57 87.68 87.62 87.59 87.76 87.67
Random+RL 88.32 88.23 88.28 89.18 89.11 89.15† 83.63 83.13 83.37† 87.94 87.39 87.67 88.04 87.50 87.77

Table 2: The empirical results in CoNLL-2005 and CoNLL-2012 datasets in labeled attachment score (LAS).
Li+2020 uses the original BERT finetuned twice, marked as ∗. (E) denotes the result of the model ensemble. Bold
fonts for the best results. We present the averaged result of the three runs with different seeds for Random+RL. We
confirmed the statistical significance of the test set results in bootstrapped paired t-test in p < 0.05 denoted as †.

and it cannot obtain further rewards in this transi-
tion. Even if the model made wrong predictions for
some arguments in the past transitions, the model
is still allowed to obtain positive rewards when the
model identifies other correct arguments in later
transitions. For example, if a model makes a cor-
rect prediction of ts and an incorrect prediction of
te for an argument, the model obtains the r = 1
reward for the ts prediction and the r = −1 reward
for the te prediction. This model cannot obtain any
rewards regardless of the label l prediction for this
argument. However, this model is still allowed to
obtain further rewards when it predicts other argu-
ments in later transitions. When the model selects
the special token NULL which represents the stop
iteration, the model obtains the reward of r = 1 if
the model has resolved all the correct arguments;
otherwise, r = 0.

We summarize further reinforcement learning de-
tails and implementation details in Appendix A.1.

4 Experiments

We conducted experiments with the datasets pro-
vided from CoNLL-2005 and 2012 shared tasks
(Carreras and Màrquez, 2005; Pradhan et al., 2012).
We followed the standard splits of the datasets pro-
vided from CoNLL and used the official and stan-
dard evaluation script.4 In CoNLL-2005, sections
2nd-21st of the Wall Street Journal (WSJ) corpus
are for the training set and section 24th for the de-
velopment set. The WSJ section 23rd is for the

4This script is available at: https://www.cs.upc.
edu/~srlconll/soft.html

Figure 4: The transition step-wise F1 score in LAS
for the first to sixth transition on the development set
of CoNLL-2005. Navy (left) for Random model and
orange (right) for Random+RL model.

in-domain test set while Brown corpus 3rd sections
is for the out-of-domain test set. CoNLL-2012
dataset is from the OntoNotes v5.0 corpus. See
Pradhan et al. (2013) for more details of CoNLL-
2012. In the evaluation, the SRL labels of “V” are
omitted following the official evaluation script be-
cause they are obvious from the marked predicates.

4.1 Comparison with previous results

First, we compared our models of the iterative argu-
ment identification algorithm to the previous state-
of-the-art models, including the global decoding
model (Zhou et al., 2020) and the variants of se-
quence labeling-based model (Shi and Lin, 2019;
Li et al., 2020; Zhang et al., 2021). These mod-
els use the pretrained models of BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). We
additionally included the two graph-based model
of Ouchi et al. (2018) and Li et al. (2019) with
ELMo (Peters et al., 2018) for reference. Note that

https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html
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Label A0 A1 A2 A3 AM-ADV AM-DIS AM-LOC AM-MNR AM-MOD AM-NEG AM-TMP R-A0 R-A1

F1
Random 93.93 90.25 82.96 81.40 67.90 80.11 70.69 70.74 98.07 94.14 88.38 96.10 92.26
Random+RL 94.03 90.46 82.79 83.16 69.12 79.39 72.22 70.88 98.27 93.66 88.28 96.83 93.07
∆ 0.10 0.21 -0.17 1.76 1.22 -0.72 1.53 0.14 0.20 -0.48 -0.10 0.73 0.81

Avg. Steps
Random 1.96 1.63 2.19 2.52 2.73 2.67 2.26 2.25 2.36 2.66 2.65 2.01 1.42
Random+RL 2.70 1.31 1.59 1.90 2.37 2.58 2.60 1.86 2.57 2.03 2.70 2.50 1.62
∆ 0.74 -0.32 -0.60 -0.62 -0.36 -0.09 0.34 -0.39 0.21 -0.63 0.05 0.49 0.20

Table 3: Top: label-wise performance by F1 score. Bottom: average step times when argument labels are accurately
attached. Results in the development set of CoNLL-2005. ∆ is the difference between Random and Random+RL
models. Here, we present 13 label types that appear most frequently in the dataset.

Zhou et al. (2020) also uses syntactic information
in the multi-task training and hence the results are
not directly comparable.5

Table 2 shows the performance of the two
heuristic order models of Left-to-right and
Random and the proposed Random+RL model
that determines the optimal parsing path during
training. We also compared results of these mod-
els with the performance of previous models. Our
model achieves better results than the model of
Zhou et al. (2020) that relies on the pretrained
model of BERT-large and syntactic information. Li
et al. (2020) also use the special BERT-large model
that is finetuned twice by the authors. Among
all models, the proposed Random+RL model
achieves the best performance in the F1 scores in
both the development set and test set of the CoNLL-
05 and CoNLL-12 datasets. We also confirm
that our Random+RL outperforms other heuristics
such as the model trained in Left-to-right
manner in F1 score as discussed in Appendix A.4.

Paolini et al. (2021) proposed a pre-trained T5-
base model (Raffel et al., 2020) for multiple tasks.
We noticed that TANL with a single dataset is com-
parable with our experimental setting even though
the pretrained model is quite different. Although
they achieved 89.3 in F1 score of WSJ of CoNLL-
05, our model out-performs their model perfor-
mance of 82.0 in F1 in Brown of CoNLL-05. Our
Random+RL model achieves competitive perfor-
mance with their 87.7 in F1 of CoNLL-12.

5In Zhou et al. (2020), they also reported scores with XL-
Net. However, we cannot reproduce their XLNet results in
any efforts. They didn’t release their codes for XLNet and
even didn’t reply our emails for asking training details. We
therefore decide not to include their XLNet results in Table 2.

4.2 Does Reinforcement learning help?

We apply reinforcement learning (RL) for the
model trained with the random ordering. In Table 2,
we confirm that reinforcement learning slightly im-
proves the performance in both CoNLL-05 and
CoNLL-12. We further investigate the reasons of
this performance gain and notice that reinforcement
learning surely changes the argument identifica-
tions in the later time steps of transitions. Figure 4
presents the comparisons of LAS scores for the
predicted arguments in each transition step. In first
to third transitions, there are no large differences
between the Random and Random+RL models.
However, the Random+RL model retains the per-
formance in the later transitions. Although this
result is contrary to the intuition of the existing
“easy-first” strategy, we assume this is one of the
reasons why reinforcement learning enhances the
final model performance.

We take a close look at the effect of reinforce-
ment learning on the label prediction accuracy. Ta-
ble 3 presents the two detailed results: the per-
formance comparison and the average transition
steps required to identify arguments for each label
type. We firstly notice that the Random+RL model
achieve better or competitive accuracy except of
A2, AM-DIS and AM-NEG. We also assume that
the Random+RL model follows some specific or-
ders in identifying arguments. For some labels such
as A3 and AM-ADV, the model chooses to label
them first. For some arguments, such as A0 and
AM-LOC, the model chooses to label them later.

4.3 How does RL affect SRL ordering?

Here we provide further analyses for the relation of
the semantic roles and the identification ordering of
labels. The semantic roles of arguments come from
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Figure 5: The ratio (%) of the label types identified
in from 1st to 5th transitions on the development set
of CoNLL-2005. Top: imitation learning (Random).
Bottom: reinforcement learning (Random+RL).

PropBank frames annnotation guidelines.6 A0 and
A1 labels correspond to external and internal argu-
ments in the government and binding theory. They
are either subject or object roles depending on the
transitive and intransitive verbs. AM-* arguments
are modifiers and other labels include referential
expressions. We analyze how the resolving orders
are affected by these label roles as a result of re-
inforcement learning. In Figure 5, we present the
ratio of the resolved transition steps for each label
class. For example, the sharp peak of 1st transition
for A1 with Random+RL at the bottom of Figure 5
means nearly 80% of A1 labels in the development
set are identified in the first transition.

Here we notice the Random+RL model has a
clear tendency of resolving A1 or A2 first if they
exist. It also seems that the Random+RL model
prefers to identify A0, A3, or AM-* arguments
in 2nd or 3rd transitions. We assume this corre-
sponds to the importance of such role labels for
predicates. Although the Random model has a
similar tendency in some labels, it is less obvious.

Figure 6 presents the details of modifier labels.
We present the seventh most frequent modifier ar-
gument roles in SRL here. TMP, LOC, DIS, NEG,
MOD, ADV and MNR labels correspond to tempo-
ral, locative, discourse markers, negation, modals,
adverbials, and manner markers respectively. We
cannot read strong preferences of resolving orders
for the Random model. There are several inconsis-

6https://verbs.colorado.edu/~mpalmer/
projects/ace/PBguidelines.pdf

Figure 6: The ratio (%) of the label types of the modi-
fiers (AM-*) identified in from 1st to 5th transitions on
the development set of CoNLL-2005. Top: imitation
learning (Random). Bottom: reinforcement learning
(Random+RL).

tent orders: AM-LOC in Random has a weak peak
at the 1st transition, while AM-TMP has a weak
peak at the 3rd transition. The Random+RL model
consistently identifies these arguments mostly in
the 2nd transition if they exist. It is also interest-
ing that manner markers have the preference to
be identified first and the negation has a strong
peak at 2nd transition. Other AM-* modifiers are
mostly processed in the 2nd or 3rd transitions by
the Random+RL model.

As seen in Figure 4, reinforcement learning
improves the labeling accuracy, especially in the
later transition steps. For later transition steps,
the model uses previously resolved arguments as
“clues” to identify the remaining arguments. There-
fore the model tunes which argument to identify
first and later via reinforcement learning as the
Random+RL model introduce specific orders in
labeling in Figure 5 and Figure 6. As a result,
the model retains the labeling performance in later
transitions and hence it outperforms the existing
heuristic approaches such as the left-to-right order
and random ordering in SRL.

5 Conclusion

We develop the iterative argument identification
(IAI) algorithm for the global decoding and iter-
ative resolving for span-based SRL. Our model
with IAI is capable of identifying semantic argu-
ments one by one in arbitrary orders. In empirical
experiments, we enhance our model with policy-

https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf
https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf
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gradient-based transition exploration. Our model
out-performs the existing models with the same pre-
trained model in both CoNLL-05 and CoNLL-12
datasets. In the analyses, we confirm that reinforce-
ment learning enable models to learn a different
resolving orders from existing heuristic orders and
slightly enhance the performance, which suggest
the emergence of the transition path through the
training.
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A Appendix

A.1 Details for reinforcement learning
We apply the cross-entropy loss for imitation learn-
ing and the policy gradient (Williams, 1992) for
reinforcement learning. For reinforcement learning,
we firstly train models with imitation learning until
the learning converges, and then finetune it with the
policy gradient. We select the best performance of
the models at the development set in both imitation
learning and reinforcement learning. The reinforce-
ment learning for the argument span is conducted
as follows. First, we compute a probability of each
(sub-)token becoming the beginning of the next
argument. We apply sampling over this probabil-
ity and determine the beginning (sub-)token of the
next argument span. With this sampled beginning
(sub-)token, our model similarly compute another
probability of each (sub-)token becoming the end
of the next argument span. Again we apply sam-
pling over the probability and determine the end
(sub-)token of the next argument span. Finally, the
model attaches the label to the sampled span.

We apply Gumbel-softmax for sampling of the
next argument to resolve from possible transition
paths during the training. For Gumbel-softmax, the
inverse temperature parameter β becomes a hyper-
parameter. If β is too large, the model samples
from very limited transition paths that are close
to the narrow path of argmax(πi). Thus it gets
stuck in the local optima. If β is too small, the
model samples from various transition paths that
include unrealistic arguments and hence hinder con-
vergence of the training. We perform experiments
of training SRL models with β ∈ {0.1, 0.5, 1, 2, 3}
and report the best performance result of β = 0.5
for CoNLL-05 and β = 0.1 for CoNLL-12.

A.2 Training Details
In terms of the batch size, we notice that the larger
batch size helps the training. We conducted exper-
iments with the batch size of [16, 32, 64, 128] and
obtained the best result at 128. We use the trans-
former implementation of Hugging Face (Wolf
et al., 2020). We apply the pretrained BERT-Large
model of Bert-large-cased-whole-word-masking
for the sentence encoder, and therefore the hyper-
parameters of the sentence encoder are the same
as those of the pretrained BERT-Large model with
capitalized tokens and whole-word masking. For
the partial SRL encoder and the SRL decoder mod-
els, we use the hyper-parameters in Table 1. We

train our model on machines with four NVIDIA
V100 GPU cards. We obtained similar results only
with a single NVIDIA V100 GPU card combined
with the gradient accumulation.

A.3 What order does the reinforcement
learning model prefer to follow?

We further investigate in what orders the models
prefer to identify arguments. Here, we analyze
which role label the model tends to identify first for
a pair of arguments that have the same predicate.
Figure 7 represents the heat-map for visualizing
the ratio for pairs of semantic role labels before
and after each transition. Given the number NX,Y

of pairs of arguments for the role label X (in the
horizontal axis) and Y (in the vertical axis), we
count the cases that role label X is processed after
the role label Y as nX,Y , and we plot nX,Y /NX,Y .

In the Random+RL, we easily notice that there
is a consistent tendency that the model identifies
the A0 labels later than any other labels. We check
the transition paths of the model processing outputs
and confirm that the model frequently identifies A0
labels at last. We also notice that, in Figure 5, A0
has the higher ratio for 3rd, 4th, and 5th transitions
than others in Random+RL. This might be related
to the position of A0 in syntactic trees. We also
confirm that the model chooses the A1, A2, and
A3 labels first and the AM-* labels later. Among
the AM-* labels, AM-NEG and AM-NEG are fre-
quently processed first, although they are mostly
processed later than A1 and A2. Overall, the pro-
posed Random+RL model identifies semantic role
labels and spans as follows: A1 and A2 first, AM-*
and other labels later, and A0 label at last. The
Random model doesn’t have such obvious tenden-
cies at a glance.

A.4 Is the traditional left-to-right resolving
good for the IAI algorithm?

Contrary to the intuition, we notice that the tra-
ditional left-to-right ordering doesn’t achieve the
best performance for the IAI algorithm among the
heuristic orderings. We train our models with five
different teacher orders: right-to-left, left-to-right,
close-to-distant, distant-to-close, and random as
Sec. 3.3.1. The results are shown in Table 4. We
notice that the model with the random order teacher
performs best in both the in-domain test set of WSJ
and the out-of-domain test set of Brown Corpus in
CoNLL-05. Similar tendency has observed in the
CoNLL-12 dataset. These experiments remind us
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CoNLL-2005 CoNLL-2012
Model Dev WSJ Brown Dev Test

P R F1 P R F1 P R F1 P R F1 P R F1

Left-to-right 87.70 88.16 87.93 88.76 88.94 88.85 82.40 82.59 82.50 87.28 87.83 87.55 87.35 87.89 87.62
Right-to-left 87.98 88.39 88.18 88.76 88.91 88.83 82.31 82.19 82.25 87.34 88.00 87.66 87.27 87.94 87.60
Close-to-dist. 87.69 88.44 88.06 88.50 88.92 88.71 81.95 82.78 82.36 87.25 87.90 87.57 87.18 87.90 87.53
Dist.-to-close 87.76 88.07 87.91 88.68 89.03 88.85 82.33 82.50 82.41 87.10 87.73 87.41 87.04 87.70 87.37
Random 87.86 88.30 88.08 88.73 89.07 88.90 82.69 83.33 83.01 87.57 87.68 87.62 87.59 87.76 87.67

Random+RL 88.32 88.23 88.28 89.18 89.11 89.15 83.63 83.13 83.37 87.94 87.39 87.67 88.04 87.50 87.77

Table 4: The empirical results in CoNLL-2005 and CoNLL-2012 datasets in LAS. We compare five model
with different teacher orders in the training: Left-to-right, Right-to-left, Close-to-dist.,
Dist.-to-close and Random and with reinforcement learning (Random+RL). “Dev” is the result in the
development set. Bold fonts for the best results. We present the averaged scores of the three runs with different
seeds.

Figure 7: The ratio for the role labels, on the horizontal axis, that are identified after the role labels on the vertical
axis. The bright color represents the labels on the horizontal axis is likely to be identified after the labels on the
vertical axis. Left: imitation learning (Random). Right: reinforcement learning (Random+RL). Analysis on the
development set of CoNLL-2005.

that adapting traditional heuristic ordering is not
the best way to train the IAI models. We explore
orderings that are better than these heuristics.

A.5 How reinforcement learning affects the
argument distance from the predicates?

Figure 8 presents the distribution of the distance
from predicates to their argument. We draw four
distribution lines that correspond to the 1st, 2nd,
3rd and 4th transitions. Here we count the num-
ber of sub-tokens between the predicates and their
arguments as the distance. Arguments at the right
of their predicates have the positive distance and
other arguments have the negative distance. In both
Random and Random+RL, models tend to choose
the arguments that are placed right after the pred-
icates. However, this tendency becomes clear in
Random+RL: the model firstly chooses the argu-
ments right after the predicates and later this model
chooses arguments that are placed before the predi-
cates. This suggests that the model learns the new
ordering of the argument identification during rein-

forcement learning.

A.6 Computation times and speed analysis

Iterative argument identifications requires O(PA)-
times transitions for a sentence that has P predi-
cates and the maximum number of arguments A in
theory. However, iterative argument identification
has two properties that make it possible to speed
up and parallelize the computation. First, the pre-
trained transformer-based sentence representations
are unchanged during the parsing. This reduce the
computation cost. Second, the transitions in iter-
ative argument identifications are independently
performed for each predicate. Therefore we can
paralleize the transitions for each predicate on the
same minibatch of the neural network. Thanks
to this predicate-parallelization, the computation
times for the overall neural network become the
number of argument A if they are on the same
minibatch. The average processing speed is 7.5
sentences per second when the minibatch size for
evaluation is 48 on a single GPU of NVIDIA V100.
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Figure 8: The relation of the argument resolving or-
ders and the distance of predicates and arguments. We
represent the first four transitions. Top: imitation learn-
ing (Random). Bottom: reinforcement learning (Ran-
dom+RL).

A.7 Limitations and potential risks
This work addresses the tools that are developed
with the dataset and pretrained models that are
widely shared in our community. If the origi-
nal datasets or pretrained models contain poten-
tial risks, our tool might be affected by them. We
will take careful looks to prevent our tools from
potential abuses.


