The Fragility of Multi-Treebank Parsing Evaluation

Iago Alonso-Alonso, David Vilares and Carlos Gomez-Rodriguez
Universidade da Coruna, CITIC
Departamento de Ciencias de la Computacion y Tecnologias de la Informacion
Campus de Elvifia s/n, 15071
A Coruna, Spain
{iago.alonso,david.vilares,carlos.gomez}@udc.es

Abstract

Treebank selection for parsing evaluation and
the spurious effects that might arise from a bi-
ased choice have not been explored in detail.
This paper studies how evaluating on a single
subset of treebanks can lead to weak conclu-
sions. First, we take a few contrasting parsers,
and run them on subsets of treebanks proposed
in previous work, whose use was justified (or
not) on criteria such as typology or data scarcity.
Second, we run a large-scale version of this ex-
periment, create vast amounts of random sub-
sets of treebanks, and compare on them many
parsers whose scores are available. The results
show substantial variability across subsets and
that although establishing guidelines for good
treebank selection is hard, it is possible to de-
tect potentially harmful strategies.

1 Introduction

A limitation in NLP evaluation lies in the asso-
ciation between solving a dataset versus solving
a task. Datasets are domain-specific, their sizes
differ and they are only available for a handful of
languages and cultures (Hershcovich et al., 2022).
Yet, we often ignore that the chances that these re-
sults generalize in the real world are scarce. In this
context, the conclusions extracted from a single
dataset should be taken with caution.

For dependency parsing, the Universal Depen-
dencies framework (UD; Zeman et al., 2020) mit-
igates some of these issues. For instance, version
2.8 of UD includes 202 treebanks and 114 lan-
guages covering diverse linguistic typologies, tree-
banks with different amounts of data, and domains.
Paradoxically, this also complicates decisions when
it comes to comparing dependency parsers in mul-
tilingual environments, which can be summarized
as: how to choose a small but representative set
of treebanks? Although there are shared tasks (Ze-
man et al., 2017, 2018) that do consider experi-
ments over a wide set of treebanks and help under-
stand parsing models, such setups do not usually

stick when the shared tasks end, and authors often
run their models only in a handful of treebanks
(de Lhoneux and Nivre, 2016; Ma et al., 2018;
Kulmizev et al., 2019, inter alia). This mostly hap-
pens for justified reasons: lack of computational re-
sources to train the models in a reasonable amount
of time, energy usage concerns, difficulties to sum-
marize large experiments, or interest in specific
phenomena (e.g. non-projectivity). Thus, a good
treebank selection strategy is crucial to reduce the
chances of selecting an unrepresentative subset of
treebanks, which could lead to weak conclusions.
Furthermore, even when using the whole UD col-
lection is viable, treebank selection can still be
relevant as UD is not a representative sample of
languages (e.g., 62 out of the 114 languages in v2.8
are Indo-European), so coarse-grained measures
like averages over all treebanks may be misleading.

Contribution We hypothesize that using a single
subset of treebanks can be a weak approach to ex-
tract conclusions about the performance of parsers
and their rankings. To test so, we design two ex-
periments. First, we choose representative models
of different paradigms: a graph-based (Dozat et al.,
2017), a transition-based (Fernandez-Gonzalez and
Goémez-Rodriguez, 2019), and a sequence tagging
(Strzyz et al., 2019) parser; and evaluate them on
a few subsets defined in the literature, looking for
different trends. Then, we redefine the previous
experiment on a large scale. We take the output
of dozens of parsers on the treebanks used at the
UD CoNLL 2018 shared task (Zeman et al., 2018)
to study the variability of parsing rankings over a
million of fixed-size, randomly generated subsets.

2 Related work

The appropriateness of experimental setups for
parsing evaluation has been studied in recent years
from different perspectives.

Some authors have focused on determining what

5345

Proceedings of the 29th International Conference on Computational Linguistics, pages 5345-5359
October 12-17, 2022.

are the treebank particularities that make some of
them easier to parse than others. For instance, the
size of the training set is widely known to be an
important factor to obtain accurate results in depen-
dency parsing (Dehouck and Denis, 2019; Vania
et al., 2019). Other aspects such as domain simi-
larity (Wisniewski and Yvon, 2019) or annotation
similarity (Dredze et al., 2007; Cohen et al., 2012)
between the training and test sets have also been
studied, showing that they can greatly affect the per-
formance of parsers. Other particularities that can
also affect the performance on a treebank are lin-
guistic variation (Nivre et al., 2007), annotation cri-
teria (Kiibler et al., 2008; Rosa, 2015), arc direction
(Rehbein et al., 2017), average dependency length
(Gulordava and Merlo, 2016), non-projectivity
(Kuhlmann and Nivre, 2010), morphological rich-
ness (Tsarfaty et al., 2013) or information-theoretic
metrics (Corazza et al., 2013), among other factors.

Although not specifically for parsing but NLP,
Gorman and Bedrick (2019) and Sggaard et al.
(2021) comment that the way data is split can play
a role on test results, and thus on conclusions. Ex-
trapolating this to parsing, it would suggest that
some parsers could obtain better results for certain
treebanks just due to data splitting decisions, and
not due to a linguistic motivation that would ex-
plain a given language being harder to parse than
other. Recently, Sggaard (2020) studied the influ-
ence of overlap between trees in training and test
sets in a given split, and concluded that (the amount
of) graph isomorphism between the training and
test set trees partially explains why some treebanks
are easier or harder to parse than others. However,
Anderson et al. (2021) replicated the study, control-
ling for covariants, and proved that much of this
observation is explained by relevant covariants like
treebank size and mean test sentence length.

Another line of research more related to our
work involves the studies that compare how dif-
ferent parsing algorithms behave on the same held-
out test sets. McDonald and Nivre (2007, 2011)
showed that non-neural transition-based and graph-
based parsers perform overall similarly, but pro-
duce different types of errors, with transition-based
parsers being weaker for long dependencies and
graph-based parsers weaker for shorter, more lo-
cal ones. Relatedly, de Lhoneux et al. (2017a)
compared a neural and non-neural transition based
parser, showing that the former is not only clearly
better at longer dependencies, but that it also needs

less training data to parse effectively. Kulmizev
et al. (2019) replicated the work by McDonald and
Nivre for neural versions of those parsers and, con-
trarily, demonstrated that the contextualization of
the input vectors with recurrent networks results
into both types of parsers showing a much more
homogeneous behavior. Also related to this, Ander-
son and Gémez-Rodriguez (2020b) showed how
different transition-based algorithms are prone to
outperform others on a specific treebank according
to their inherent dependency displacement biases.
To the best of our knowledge, there have been
only two papers in the literature that specifically
focus on presenting methodologies to choose a suit-
able set of treebanks for parsing evaluation, both
centered on UD and with the goal of obtaining a
small sample of treebanks that is representative
of the full UD collection (not necessarily of hu-
man languages as a whole). de Lhoneux and Nivre
(2016); de Lhoneux et al. (2017b) do so by manu-
ally selecting treebanks to enforce typological di-
versity as well as representativity in other relevant
aspects for parsing, like projectivity or treebank
size. In turn, Schluter and Agi¢ (2017) take an au-
tomatic, quantitative approach, obtaining a sample
by clustering using delexicalized parsing perfor-
mance. While many other papers have presented
and used subsets of UD treebanks for evaluation,
they either do not focus on representativity (e.g. Ma
et al. (2018)) or follow one of these methodologies
(e.g. Anderson and Gémez-Rodriguez (2020a)).

3 Hyphothesis and methodology

As suggested above, parsing conclusions on multi-
lingual environments are usually drawn from empir-
ical research, which are prone to be parser-specific,
experiment-specific, as well as treebank dependent.

Hypothesis We delve into this problem and hy-
pothesize that parser comparisons based on running
experiments and taking accuracy metrics on a given
(reasonably-sized) subset of treebanks may lead to
weak conclusions on rankings or differences in per-
formance; as the magnitude and/or sign of the dif-
ferences between parsers can change substantially
depending on the choice of said subset.

3.1 Methodology

To test our hypothesis, we design two experiments:

Experiment 1: few controlled parsers, few pre-
existing subsets In §4, we choose three con-

5346

trasting parsers belonging to different parsing
paradigms. Then, we train and evaluate them on a
number of pre-defined (multilingual) subsets that
were proposed in previous work (and later adopted
by other authors as well). These existing subsets
present different particularities, such as a high Indo-
European bias (Ma et al., 2018), rich and diverse ty-
pologies (de Lhoneux et al., 2017b), or data scarcity
issues (Dehouck et al., 2021), among others. Our
aim is to see whether considering only a few ro-
bust parsers (treated as black boxes) and only a few
already established subsets of treebanks, we can
obtain different conclusions about their behaviors.

Experiment 2: many parsers, many randomized
subsets In §5, we design a large-scale variant of
the previous experiment. Assuming access to many
parsers and treebanks, we ask: could we obtain
(reasonably-sized) subsets of treebanks that show
very different behaviors?, or to state it differently,
can parsing rankings be sensitive to the subset of
treebanks where they are evaluated? To do so, we
use as a proxy the results from the CoONLLU Shared
Task 2018 (Zeman et al., 2018), where 26 parsers
participated and presented their experiments for 82
treebanks. We then create a random sample of 1
million subsets out of the ~ 2.13 x 102 possible
(multilingual) subsets of size 10. If a parser is
cross-linguistically robust, then the variability of
its position in the ranking should be small across all
the studied subsets, while if their behavior is more
unstable it could change dramatically, indicating
that evaluating on a single subset of treebanks is
not desirable.

4 Experiment 1: few controlled parsers,
Jfew pre-existing subsets

We take a few representative parsers (§4.1) and
pre-defined subsets from the literature (§4.2) based,
sometimes, on a careful treebank selection strategy.

4.1 The parsing models

We choose a graph-based (Dozat et al., 2017), a
transition-based (Ferndndez-Gonzalez and Gémez-
Rodriguez, 2019), and a sequence labeling parser
(Strzyz et al., 2019). We review them briefly, but
we refer the reader to the papers for the details.

Bi-affine graph-based parser (gb-DM17;
Dozat et al., 2017) It first computes contextualized
vectors for each word using bidirectional LSTMs
(biLSTMs; Hochreiter and Schmidhuber, 1997).

After that, the model computes for each word a
head and a dependent representation, which are
sent through a bi-affine attention, determining for
each token which is the most likely head. Here,
we rely on the supar! package, which has been
widely adopted by the community. We detail its
hyperparameters in Appendix A (Table 7).

Left-to-right, transition-based, pointer net-
work parser (tb-FG19; Ferndndez-Gonzélez
and G6émez-Rodriguez, 2019) It is a transition-
based system, where at each time-step the pointer
network predicts the index of the head for the focus
token, and moves to the next one. The model uses
an encoder-decoder architecture that in the first
stage computes a hidden state representation for
each token using biLSTMs. After that, the decoder
predicts the tree left to right, computing a score
attention between the current focus word and the
encoder output sequence, excluding the own vec-
tor. We use the syntacticpointer? package.
Appendix A (Table 8) details the hyperparameters.

Sequence labeling parser (s1-S+19; Strzyz
et al., 2019) It outputs a dependency tree for each
sentence of size n, using exactly n predictions and
biLSTM tagging models. There are different ways
to encode the trees (Spoustova and Spousta, 2010;
Lacroix, 2019; Gémez-Rodriguez et al., 2020), but
we will rely on the 2-planar bracketing encoding
(Strzyz et al., 2020), which encodes 99.9% of non-
projective trees and offers a robust behavior, includ-
ing low-resource setups (Mufoz-Ortiz et al., 2021).
We use the dep2labels? package. The hyperpa-
rameters are indicated in Appendix A (Table 9).

Parser comparability Sequence labeling parsers
often underperform biaffine and pointer network
parsers (Anderson and Gémez-Rodriguez, 2021),
but we include them as a lower bound control
parser. We kept fundamental architectural de-
cisions of the parsers, e.g. how they compute
character-level vectors or the strategies for cycle
deletion, as it is not clear (or viable) that the same
setup is optimal for all models. Also, we value to
try these models as used by the community.

"https://github.com/yzhangcs/parser

https://github.com/danifg/
SyntacticPointer

*https://github.com/mstrise/dep2label

5347

https://github.com/yzhangcs/parser
https://github.com/danifg/SyntacticPointer
https://github.com/danifg/SyntacticPointer
https://github.com/mstrise/dep2label

4.1.1 Experiment setup

The parsers are trained 3 times for each treebank,
to then take the average as the final result.*>

Input For all parsers, the embedding for each
word is composed of a pre-trained word vector, a
character-based vector and a PoS tag vector. For
the word vectors, we use fastText (Bojanowski
et al., 2017).% For PoS tags, we considered ex-
periments both with gold and predicted PoS tags -
using UDpipe (Straka et al., 2016)’.

4.2 Datasets

Now, we review subsets that have been proposed,
and summarize the criteria used to create them.
While the subsets were defined on different ver-
sions of UD depending on the moment in which
they were proposed, we use UD v2.8 for compara-
bility. In case different treebanks are available for
a given language and the authors did not specify
which one they used for any reason (e.g. because in
previous UD versions there was only one treebank,
and therefore it was not necessary to name it), we
chose the largest freely-available one. For space
reasons, we include the specific treebanks for each
subset in Appendix B (Table 10).

1. Ma et al. (2018) subset (Mal8): It has
been widely adopted (Ferndndez-Gonzilez
and Gémez-Rodriguez, 2019; Li et al., 2020;
Yang and Tu, 2021, inter alia), but it presents
two weaknesses: (i) a high presence of Indo-
European treebanks, ignoring diverse typolo-
gies, and (ii) as reported in their paper, all
these treebanks are easy® treebanks.

2. de Lhoneux and Nivre (2016); de Lhoneux
et al. (2017b) subset (Lh16): They were the

4Some treebanks (Kazakhgrp, Galiciantyeeca and Old-East-
Slavicrne) do not have an official dev set, so we used 20% of
the training set as the development set. Also, due to hardware
limitations, the longest sentence (682 tokens) in the test file
for the Old East Slavic (RNC) language was removed, since
syntacticpointer ran out of memory during evaluation.

>The tools used for the experiments are described at this
repository: https://github.com/MinionAttack/
fragility_coling 2022

®We use fastText vectors except for some language
treebanks that lacked embeddings. Particularly, for Ancient
Greek we use UD embeddings, and for Wolof we used random
initialized embeddings according to a uniform distribution in
the range |55, 35505 (Goldberg, 2017).

"For Kazakh, Old East Slavic and Welsh there are no UD-
Pipe models, so we only include their results with gold tags.

8We use easy in an informal sense, referring to treebanks
where parsers obtain a higher performance. In no way we
relate this term with a language being easier than other.

5348

first to address the problem of selecting a di-
verse sample of UD treebanks, establishing
the following requirements: (i) include only
one treebank from coarse-grained language
families, (ii) include treebanks with certain
morphological particularities, (iii) ensure dif-
ferent amounts of data, and (iv) include at
least a highly non-projective treebank.

. Schluter and Agi¢ (2017) subset (SA17):

Rather than manually choosing treebanks, this
subset was chosen by an empirical method
based on using delexicalized parsing perfor-
mance to construct a similarity network, clus-
ter it, and take one representative of each clus-
ter. They concluded that their subset overesti-
mates performance, while that of de Lhoneux
and Nivre (2016) underestimates it.

. Smith et al. (2018) subset (Sm18): The selec-

tion criteria for this subset were inspired in
the criteria of de Lhoneux and Nivre (2016),
but in this case aiming to be representative of
different writing systems, character set sizes,
and morphological complexity.

. Kulmizev et al. (2019) subset (Kul9): The

authors selected 13 treebanks, inspired in the
criteria by de Lhoneux and Nivre (2016) and
Smith et al. (2018). Apart from script, char-
acter set size and morphological complexity,
they also aimed to have a representation of dif-
ferent training sizes and domains, and selected
treebanks with good annotation quality.

. Anderson and Gémez-Rodriguez (2020a) sub-

set (AG20): Highly inspired by de Lhoneux
et al. (2017b), but with a few changes. First,
they exchanged Kazakhgtg for Uyghurypr,
as Kazakh lacked an official development set.
Second, they exchanged Ancient GreekproreL
for Ancient GreeKperseus, Since it’s more non-
projective. Third, Czechppr is swapped with
Russianggp, as the Czech treebank took too
long to train. Finally, they included Wolofwtp
since African languages were not present.
We included it to see if partial and justified
changes over a diverse treebank subset could
still lead to non-negligible changes.

. Dehouck et al. (2021) subset (D21): This sub-

set is dedicated to true data scarce treebanks.
In the case of treebanks without a dev file, the

https://github.com/MinionAttack/fragility_coling_2022
https://github.com/MinionAttack/fragility_coling_2022

LAS E-LAS UAS E-UAS

Set (tb-FG19, (s1-S+19, (s1-S+19 (tb-FG19, (s1-S+19, (s1-S+19,

go-DML7 tb-FG19 s1-5+19| 70 P o b a1y IPTDMLT tP-FGLO s1-S+19| 7o Tt) theFGL)
Mal8 87.74 87.77 83.96 -0.14 23.93 23.93 91.07 91.13 87.68 -0.33 27.98 28.16
Lhl6 80.33 79.68 74.20 1.83 24.04 22.49 85.03 84.45 79.90 2.21 26.33 24.51
SA17 84.85 84.97 80.30 -1.03 2297 23.48 89.11 89.25 85.22 -1.46 26.76 27.64
Sm18 83.78 83.61 78.55 1.11 2421 23.35 87.38 87.31 83.19 0.45 25.12 24.82
Kul9 83.36 83.08 77.98 -0.29 24.79 24.50 87.43 87.03 83.19 0.94 24.89 23.72
AG20 76.14 75.26 69.36 3.01 23.01 20.48 82.49 81.69 76.83 3.83 25.04 21.95
D21 59.00 57.04 51.38 4.57 17.00 12.97 68.60 67.38 62.96 3.94 16.18 12.92
Easy 89.59 89.65 85.88 -0.63 25.90 26.42 92.42 92.55 89.33 -1.58 28.61 29.85

Table 1: Average LAS and UAS scores for each subset in the predicted PoS tags setup. £(M 1, M 2) stands for error
reduction between two models, where M1 is the reference system.

LAS E-LAS UAS E-UAS

Set (tb-FG19, (s1-S+19, (s1-S+19 (tb—-FG19, (s1-S+19, (s1-S+19,

go-DMLT th-FGL9 s1-8+19 | 7 70 o b a1y IPPMLT tP-FGLO s1-S+19| 70 P o 17) theFGL)
Mal8 90.51 90.06 88.29 4.62 19.29 15.45 93.10 92.77 91.00 4.70 23.59 19.89
Lhl6 78.89 76.71 74.44 7.20 19.94 13.55 84.30 83.13 80.84 6.10 21.24 16.13
SA17 85.52 84.57 81.92 5.71 20.79 15.89 89.52 88.83 86.65 5.32 23.40 19.00
Sm18 87.42 86.74 83.01 4.89 25.63 21.86 89.89 89.36 86.07 4.82 26.93 23.32
Kul9 87.18 86.14 82.99 6.22 24.65 19.58 89.82 89.04 86.18 5.87 26.13 21.52
AG20 81.04 79.54 77.53 7.17 14.08 7.35 85.77 84.82 82.72 6.46 16.26 10.50
D21 67.99 63.74 67.30 11.71 4.14 8.82 75.26 72.61 75.52 9.92 2.14 8.73
Easy 92.62 92.10 89.50 6.71 29.81 24.84 94.75 94.41 92.19 6.13 3276 28.41

Table 2: Average LAS and UAS scores for each subset in the gold PoS tags setup.

training file was split in two, with a ratio of
80-20 for the training file and the dev file.

8. Easy subset: We propose an explicit easy
subset to compare against other easy ones
(e.g. Mal8). We used the results from the
CoNLL 2018 Shared Task’, and chose the
10 treebanks with the best LAS (no repeated
languages). We list them in Appendix B.

4.3 Results

Table 1 shows the macro-average LAS (Labeled
Attachment Score) and UAS (Unlabeled Attach-
ment Score) results, using predicted PoS tags, for
each subset, i.e. the subset, and not the treebank, is
considered as the atomic unit for evaluation. For
informative purposes, Table 2 shows the equivalent
evaluation with gold PoS tags, but we will focus on
the results with predicted PoS tags, unless stated
otherwise. We also show error reduction ratios on
LAS and UAS between parsers. This metric pro-
vides a better picture of differences between parsers
than absolute LAS/UAS differences would, as it
is less affected by treebank difficulty differences
(e.g., it is much harder to achieve a given absolute
LAS and UAS difference on easy treebanks than on
more difficult ones, due to less available room for
improvement and diminishing returns). The error
reduction shown for each subset is calculated by
first computing the error reduction for each tree-
bank in the subset, and then averaging these error

‘https://universaldependencies.org/
conlll8/results-las.html

reductions (rather than by averaging the LAS/UAS
for each treebank in the subset, and computing a
single error reduction on that average). While this
choice can cause some superficially counterintu-
itive phenomena like a parser having more average
LAS than another but negative LAS error reduction
(this happens with tb-FG19 and gb-DM17 on
Kul9 on Table 1), it provides the desired seman-
tics: for example, if a parser improves LAS from
98% to 99% in one treebank and from 50% to 90%
in another, on average it is removing 65% of errors
(50% of the errors in the first corpus, 80% in the
second) and not 78.8% which we would obtain if
we computed error reduction on average LAS.

Next, we discuss factors that seem to play a role
in the subset performance.

Influence of parsing difficulty From the results,
easier subsets tend to correspond to larger error
reductions when comparing the (state-of-the-art)
parsers gb—DM17 and tb-FG19 with respect to
s1-S+19 (the control parser). This is most evi-
dent for the Easy subset: all parsers obtain their
best performance across all subsets, and the error
reductions with respect to the control parser are
also the largest, for all setups. The opposite hap-
pens with the D21 subset, the hardest one. In this
context, when optimizing for other dimensions than
performance, such as speed, training efficiency or
architectural simplicity, relying (exclusively) on
easy treebanks could thus be a sub-optimal strategy.
The sense of the decrease in performance could

5349

https://universaldependencies.org/conll18/results-las.html
https://universaldependencies.org/conll18/results-las.html

be larger on these easy datasets than when eval-
uating on random treebanks, or on more difficult
cases as suggested by the results on the subsets of
Lh16, D21, or AG20 to a lesser extent. On the
contrary, dimensions such as the ones mentioned
above are often not expected to benefit more from
the particularities of easy treebanks. Also, there
are trends related to parsing difficulty between the
state-of-the-art parsers gb-DM17 and tb-FG19:
gb-DM17 seems to be superior to tb-FG19 when
the subset becomes harder to parse, and vice versa.

Differences on representative subsets While
both the Lh16 and the SA17 subsets were designed
to enforce representativity, the ranking of the tested
parsers changes: tb-FG19 performs better (in
LAS error reduction terms) than gb—-DM17 on
SA17 (automatically picked) and Kul9 (manu-
ally constructed), but worse on the (manually con-
structed) subsets of Lh16, Sm18 and AG20. This
highlights that even when treebanks are sampled
with attention to representativity, results can still
show instability - be it due to different possible
notions of representativity, or statistical variation.

Developing and testing on the same treebanks
While there is no clear performance difference be-
tween gb—DM17 and tb—-FG19, as each of them
surpasses the other in some subsets; one of the
subsets where tb—FG19 takes the lead is Mal8,
where that parser was developed and reported its re-
sults. This leads to the question whether developing
and evaluating on a given subset of treebanks could
induce bias in favor of those treebanks. While the
available data is not enough to give an answer in
this specific instance, we can draw similar conclu-
sions either way. If this were the case, it would
mean that in the context of multilingual, language-
agnostic parsers, and when data for a wide range
of languages is available, it would be advisable to
go beyond separating development and test sets for
each language or treebank, and instead use differ-
ent languages for development than for evaluation
to avoid this kind of bias. Conversely, if this were
not the case, it would mean that we could choose
one of the human-defined subsets and obtain state-
of-the-art results for one parser or the other, purely
by chance. This makes us reflect about using a
single subset of treebanks to justify the superior
performance of a model, and might again make
advisable to develop and test on different subsets -
to reduce the element of chance.

Experimentation with data scarcity For the
D21 subset, centered exclusively on extremely low-
resource treebanks, the error reduction computed
between the best performing parser (gb—-DM17)
and the control parser (s1-S+19) is the lowest
among all tested treebanks. As mentioned above,
the opposite happens for the easiest subsets. Yet,
we feel these type of subsets would not be optimal
either for evaluating parsers in a general sense, as
they might not capture how a given parser can fully
exploit its learning capabilities. Overall, the eval-
uation on this setup seems more volatile. We see
a few differences between the predicted and gold
PoS tags setups, causing even changes in the pars-
ing ranking. For instance, s1-S+19 outperforms
tb-FG19 in the gold setup by a clear margin, an
issue that does not arise in any other subset.

S Experiment 2: many parsers, many
randomized subsets

This experiment can be seen as a re-definition of
Experiment 1 at a large scale. Above, we compared
a few competitive parsers only on a handful of sub-
sets of treebanks that were human-defined, and ob-
served different trends. Yet, this is a limited view
of the problem. If we take as reference the CoN-
LLU 2018 Shared Task (Zeman et al., 2018) and
the 82 treebanks that were evaluated, considering
subsets of size 10 (meaning that each is composed
of 10 different treebanks), we would obtain up to
~ 2.13 x 10'2 possible combinations. Many of
those subsets will not be a representative sample of
languages, but we already saw that there are sub-
sets that are used in parsing as a benchmark that are
not either, and that even when they are considered
representative, the criteria varies, and the parsing
performance, differences among parsers and error
reductions vary too. Here, we generate subsets,
similar in size to typical human-defined ones, and
see how subset differences affect parsing rankings.

Similarly to Experiment 1, we do not analyze
here algorithms and parsing architectures, or their
correctness, but the appropriateness of evaluation
procedures. In this context, some shared-task sys-
tems have reported bugs in their pipeline: this was
mostly evident for some systems that consistently
ranked in the last positions (see Table 3), but not so
noticeable for high-scoring ones, such as the Stan-
ford system (Qi et al., 2018), which later reported
a preprocessing bug that affected the low-resource
treebanks more. Thus, multi-treebank evaluation

5350

Parser Best rank Worst rank |73 I o Parser Best rank Worst rank I I o

HIT-SCIR 1 6 1.14 1.00 0.54 TurkuNLP 1 7 1.51 1.00 0.78
UDPipe Future 1 12 438 4.00 1.65 HIT-SCIR 1 6 237 200 1.13
TurkuNLP 1 12 397 400 153 ICS PAS 1 13 383 400 1.37
LATTICE 1 13 499 500 227 UDPipe Future 1 8 3.62 4.00 098
ICS PAS 2 13 4.71 5.00 2.01 Stanford 1 15 4.21 4.00 175
CEA LIST 1 13 6.12 600 228 LATTICE 1 11 623 6.00 1.02
Stanford 1 21 630 6.00 3.47 CEA LIST 2 12 6.58 6.00 0.99
Uppsala 1 13 6.62 7.00 236 ParisNLP 5 16 887 9.00 091
NLP-Cube 2 20 10.02 10.00 1.79 AntNLP 3 14 859 9.00 0.95
AntNLP 3 18 9.94 10.00 1.82 SLT-Interactions 2 20 10.09 10.00 2.25
ParisNLP 4 20 1039 11.00 1.62 LeisureX 7 18 11.54 11.00 1.21
SLT-Interactions 2 23 11.28 11.00 391 UniMelb 7 16 11.27 11.00 0.82
IBM NY 2 20 13.05 13.00 1.64 BASELINE UDPipe 10 20 14.53 14.00 1.09
LeisureX 8 20 1436 14.00 1.81 NLP-Cube 6 22 15.07 14.00 2.81
UniMelb 8 19 13.80 14.00 1.13 Phoenix 10 20 1489 15.00 1.15
KParse 9 22 16.78 17.00 1.35 KParse 9 21 1554 16.00 1.95
Fudan 10 22 17.16 17.00 1.60 CUNI x-ling 4 21 17.43 18.00 1.60
BASELINE UDPipe 13 22 18.08 18.00 1.11 BOUN 12 22 18.22 18.00 1.33
Phoenix 13 22 18.69 19.00 1.07 Fudan 9 22 17.34 18.00 1.94
CUNI x-ling 2 22 19.24 20.00 2.21 iParse 9 25 19.12 20.00 3.19
BOUN 16 23 20.81 21.00 0.79 HUJI 15 25 2045 21.00 1.02
ONLP lab 20 25 22.57 23.00 0.62 ArmParser 19 25 22.10 22.00 095
iParse 9 25 2236 23.00 2.76 Uppsala 19 25 2329 23.00 0.66
HUJI 21 25 23.63 24.00 0.89 IBM NY 16 25 23.44 24.00 0.82
ArmParser 22 25 24.62 25.00 0.59 ONLP lab 22 25 24.88 2500 0.37
SParse 26 26 26.00 26.00 0.00 SParse 26 26 26.00 26.00 0.00

Table 3: Ranking stats for LAS and the parsers of the
Zeman et al. (2018) Shared task, over the 1 million
random subsets. Table sorted by f (the median).

cee
sss s

e
ceee
PP
-
.
.
s

Ranking
cees
.o
.
|—D—q cesse

\
e
.
B DO

HIT
SCIR
ANENLP
Fudan
BOUN
ONLP
HU)I
SParse

ParisNLP
LeisureX
UniMelb

KParse

ArmParser

5
o}

Figure 1: Corresponding box plot for Table 3. For an
easy correspondence with the table, the x-axis (from left
to right) is sorted as the Table is (i.e. by f).

procedures should also be robust for systems suf-
fering bugs that affect treebanks differently.

5.1 Experimental setup

We compare the available results of the 26 parsers!”

that participated in the CoNLLU Shared Task (Ze-
man et al., 2018), sampling random subsets over
the 82 evaluated treebanks. We generate 1 mil-
lion random subsets made of size 10,'! and we do
not control the subsets’ content (e.g. subsets with
higher presence of a language or family).

!0The parsers are not necessarily a diverse sample of parsing
models (many are based on gb—DM1 7) but they are a realistic
sample of a ranking of parsers made in a real shared task. For
model representativity, we refer the reader to Experiment 1.

"'The subset size is in the range of those of Experiment 1.

Table 4: Ranking statistics for BLEX and the parsers
of the Zeman et al. (2018) Shared task, over 1 million
randomly generated subsets. Table sorted by /i.

—
.

..
cee
....|—l—4.’..
’_l_'”’
cen
ceesssseee o
PPN

Rank

sessee

ceee
.
. e
eee]
[ooe

CEA
usT
ParisNLP
xling
BOUN
Fudan
iParse
HU)I
SParse

KParse
cuni

Phoenix

LATTICE

TurkuNLP
LeisureX
UniMelb
ArmParser

Figure 2: Corresponding box plot for Table 4. For an
easy correspondence with the table, the x-axis (from left
to right) is sorted as the table is (i.e. by f).

5.2 Results

The pair Table 3 - Figure 1 shows statistics about
the 26 parsers that participated in the shared task
and the 1 million randomly generated subsets.
Some (top) parsers show a stable performance. For
instance, the HIT-SCIR parser (Che et al., 2018)
mostly ranks at the first position, except for a
few outliers that show that the parser potentially
could go down as far as the 6th position. This ten-
dency is also observed in a few other - and worse-
performing - systems, such as Kparse (Kirnap et al.,
2018) or Phoenix (Wu et al., 2018).

However, for many other parsers the variability
is larger. The interquartile range of the UDpipe-
Future system (2nd place) (Straka, 2018) is small
(from 3rd to 6th), but its fourth quartile (excluding
outliers) ranges between the 6th and the 10th posi-

5351

Parser Ave. rank Best subset outliers Worst subset outliers
8 Rank Treebanks Rank Treebanks
. lsz, 8aidt, fTOsremf, STset, KMy, bXrpdt, i, hSbugal, PCMige, thpud,
UDPipe Future (Straka, 2018) 4384165 1 Plsz, gaid sremfs STset ‘mg 12 bdt, 13itth ufal> P , nsc , pud
elgar, eNewt, frgsd, thpud, hyarmup TOrrt, bIkeb» NObokmaal> Slssj» SVpud
Stanford (Qi et al., 2018) 6304347 degsc!: CScac» €lgdt, Nenb, €Sancoras 21 hsbufal, Pthosque» Zidt» Vivibs KOkaist
’ - SViiness jdmoderns DZbtb, NObokmaal, CSpud sV > 8lirecgal, SMegictta, NYarmap, thpud
. SKenk, hsbygar, UKiy, CSfictrees SVpuds hrger, fageraji> plite, KMryg, degsd,
SLT-Interactions (Bhat et al., 2018) | 11.28 139; . sk ufal, B 8u, ESfictree, S¥pud 23 set> 1aseraji> Plifg mg; CCgsd
Jjagsds Ptbosque Nrsets faseraji, Slss hYarmtdp Dlaipinos thpuds SMegielta, frOsreme

Table 5: Qualitative results of subsets that cause anomalous rankings of parsers in Experiment 2.

tion. The situation is almost identical for the next
4 averaged best performing systems. Across the
board, there are even more severe examples, such
as Stanford (Qi et al., 2018) (7th place), whose
interquartile range spans from the 3rd to the 9th
position; or the SLT-Interactions parser (Bhat et al.,
2018) whose first quartile ranges from 2nd to 9th,
while its fourth quartile ranges from 14th to 21th.
Exemplifying it with the Stanford system, we will
also discuss below how randomized multi-treebank
evaluation would have been useful to detect the
anomalous performance on low-resource treebanks,
that later on turned out to be a bug, or on the other
hand how a weak subset selection could cause po-
tential anomalous performances or bugs to go un-
noticed.

Parser #Outliers Avg. size R(r) ‘R (Slavic)
UDPipe 10 best 168.87 0.30 0.17
Future 10 worst 157.51 0.39 0.21
Stanford 10 best 221.03 0.19 0.23

10 worst 124.44 0.61 0.18
SLT- 10 best 203.92 0.30 0.36
Interactions 10 worst 146.72 0.39 0.14

Table 6: Quantitative study expanding Table 5. R refers
to the average ratio across subsets of the presence of
low-resource (Ir) and Slavic treebanks.

Subsets that cause anomalous results Table 5
shows a few examples of parsers and subsets that
caused atypical results. For each parser, we show
an advantageous and a disadvantageous subset, ran-
domly picked among those for which a parser ob-
tained its best and worst rankings.

A qualitative analysis of these results yields sev-
eral insights. For the first two parsers, the advan-
tageous and disadvantageous outliers are linguis-
tically diverse, but there is a clear trend that the
disadvantageous subsets are heavily biased towards
small treebanks: for both of the parsers, the favor-
able subset contains only 2 treebanks that are low-
resource according to the shared task criteria, while
the disfavorable one contains 6 and 5, respectively.
This is very unlikely to happen by chance: the prob-
ability of randomly drawing a subset with 6 or more
low-resource treebanks is 0.00214, and with 5 or

more, 0.01538 (this is calculated from a hyperge-
ometric distribution with parameters N = 82, the
total number of treebanks, K = 21, the number of
low-resource treebanks, and n = 10, the number of
treebanks per subset). Thus, this variability seems
to owe to the fact that the UDPipe Future (Straka,
2018) and Stanford (Qi et al., 2018) parsers strug-
gle (relatively to competitors) when training data is
scarce. The situation is different for the third parser
considered. In this case, there are no substantial dif-
ferences in treebank size (2 vs. 3 low-resource tree-
banks) but instead there is a clear linguistic pattern:
the advantageous subset has a heavy bias towards
Slavic languages (6 out of the 10 languages are
Slavic, compared to 2 in the disadvantageous sub-
set - and the probability of choosing a subset with
6 or more Slavic languages by chance is 0.00043,
from a hypergeometric distribution with parame-
ters N = 82, K = 17,n = 10). This seems to
reflect that the SLT-Interactions parser (Bhat et al.,
2018) is especially adequate for Slavic languages.
It is worth noting that the authors did not imple-
ment any language-specific adaptation or report
anything in the paper that suggests that they specif-
ically addressed these languages, so this serves as
an example that a parser can show linguistic bi-
ases towards certain language families even if it
has been developed in a language-agnostic way.

We propose a complementary quantitative anal-
ysis in Table 6. We randomly take 10 of the best
and worst performing subsets for the above studied
parsers and compute, across subsets, the average
size of treebanks, the presence of low-resource tree-
banks, and the presence of Slavic languages. The
analysis confirms the bias towards rich-resource
treebanks for the Stanford parser, and towards
Slavic languages for SLT-Interactions (while not be-
ing biased towards rich- or low-resouce treebanks).
On the other hand, the hypothesis of UDpipe Fu-
ture being biased towards rich-resource languages
is not clearly confirmed by this analysis.

To sum up, this reinforces the idea (hypothesized
in papers like de Lhoneux and Nivre (2016)) that

5352

both treebank sizes and linguistic factors are impor-
tant for a treebank subset to be representative; and
highlight that the latter can have a huge influence
even in parsers that have been developed without
specific language families in mind.

More robust metrics? LAS and UAS are the
most popular metrics to report dependency parsing
performance. Yet, there are other metrics, such as
CLAS'2, MLAS"? or BLEX'*, but they have not
been widely adopted (maybe because they have a
not so straightforward interpretation). Yet, from
Experiment 2 we observed that some of these met-
rics, especially BLEX, produced narrower standard
deviations and more stable rankings. We leave in-
terpretations of this phenomenon as an open ques-
tion for future work, but refer the reader to (Table
4, Figure 2) and (Table 3, Figure 1), which show
a summary of the ranking statistics for the BLEX
and LAS metrics, respectively, on the 26 parsers
that participated in the ConLLU Shared task 2018
(Zeman et al., 2018). Overall, but especially for
the top parsers, BLEX results produce more stable
rankings and narrower interquartile ranges.

6 Discussion

We have designed two experiments that revealed
issues of relying on a single subset of treebanks
for parsing evaluation. More particularly, we have
shown that: (i) existing human-defined subsets
show high variability in terms of rankings and per-
formance across parsers, (ii) parsers that have been
developed on a concrete subset might be biased
towards performing better on that subset, (iii) it is
relatively easy to come up with subsets that gen-
erate different parsing rankings, (iv) this can even
happen across subsets that have been purposefully
defined to be representative, (v) both linguistic ty-
pology and resource size have a large influence in
the variability of results between parsers, and (vi)
linguistic factors can be crucial even when parsers
are designed in a language-agnostic way.

Overall, some advice can be given: (a) claims
that “parser X is more accurate than parser Y’ can
be weak even on carefully selected samples of UD
treebanks (and perhaps it is recommendable to con-
sider metrics that take into account dimensions

2CLAS: It ignores selected relations which attach function
words to content words.

MLAS: It is inspired by the CLAS metric, and extended
with evaluation of POS tags and morphological features.

“BLEX (bi-lexical dependency score): it combines content-
word relations with lemmatization.

such as speed and efficiency), (b) for language-
agnostic parsers, it is worth noting that there can
still be biases towards certain linguistic families,
and (c) for such parsers, it can be advisable to
develop on one set of treebanks and evaluate on
another, to avoid bias in favor of the languages used
for development.

Finally, there are aspects that we did not study in
this piece of work, but that could affect the robust-
ness of parsing evaluation as well, e.g., automat-
ically versus manually annotated treebanks, and
interactions between language and treebank prop-
erties (e.g. morphological complexity, dependency
distance, . ..) and parsing models.

7 Conclusion

Different subsets of treebanks have been proposed
to try to capture the essence of the whole set of
UD treebanks, so that the performance of parsers
in such subsets would be representative of that ob-
tained in the full set. We have empirically shown
limitations of this approach, and also how establish-
ing guidelines for good treebank selection can be
hard, although some bad practices can be avoided.

Acknowledgments

This work was supported by a 2020 Leonardo
Grant for Researchers and Cultural Creators from
the FBBVA,! as well as by the European Re-
search Council (ERC), under the European Union’s
Horizon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150). The
work is also supported by ERDF/MICINN-AEI
(SCANNER-UDC, PID2020-113230RB-C21), by
Xunta de Galicia (ED431C 2020/11), and by Cen-
tro de Investigacién de Galicia “CITIC” which is
funded by Xunta de Galicia, Spain and the Euro-
pean Union (ERDF - Galicia 2014-2020 Program),
by grant ED431G 2019/01.

References

Mark Anderson and Carlos Gémez-Rodriguez. 2020a.
Distilling neural networks for greener and faster de-
pendency parsing. In Proceedings of the 16th Inter-
national Conference on Parsing Technologies and the
IWPT 2020 Shared Task on Parsing into Enhanced
Universal Dependencies, pages 2—13, Online. Asso-
ciation for Computational Linguistics.

ISEBBVA accepts no responsibility for the opinions, state-
ments and contents included in the project and/or the results
thereof, which are entirely the responsibility of the authors.

5353

https://doi.org/10.18653/v1/2020.iwpt-1.2
https://doi.org/10.18653/v1/2020.iwpt-1.2

Mark Anderson and Carlos Gémez-Rodriguez. 2020b.
Inherent dependency displacement bias of transition-
based algorithms. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5147-5155, Marseille, France. European Language
Resources Association.

Mark Anderson and Carlos G6mez-Rodriguez. 2021. A
modest Pareto optimisation analysis of dependency
parsers in 2021. In Proceedings of the 17th Interna-
tional Conference on Parsing Technologies and the
IWPT 2021 Shared Task on Parsing into Enhanced
Universal Dependencies (IWPT 2021), pages 119—
130, Online. Association for Computational Linguis-
tics.

Mark Anderson, Anders Sggaard, and Carlos Gémez-
Rodriguez. 2021. Replicating and extending “Be-
cause their treebanks leak”: Graph isomorphism, co-
variants, and parser performance. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 1090-1098, Online.
Association for Computational Linguistics.

Riyaz A. Bhat, Irshad Bhat, and Srinivas Bangalore.
2018. The SLT-interactions parsing system at the
CoNLL 2018 shared task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 153-159,
Brussels, Belgium. Association for Computational
Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 5564,
Brussels, Belgium. Association for Computational
Linguistics.

Raphael Cohen, Yoav Goldberg, and Michael Elhadad.
2012. Domain adaptation of a dependency parser
with a class-class selectional preference model. In
Proceedings of ACL 2012 Student Research Work-
shop, pages 43—48, Jeju Island, Korea. Association
for Computational Linguistics.

Anna Corazza, Alberto Lavelli, and Giorgio Satta. 2013.
An information-theoretic measure to evaluate parsing
difficulty across treebanks. ACM Trans. Speech Lang.
Process., 9(4).

Miryam de Lhoneux and Joakim Nivre. 2016. Ud tree-
bank sampling for comparative parser evaluation. In
Proc. of the Sixth Swedish Language Technology Con-
ference (SLTC).

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017a. Old school vs. new school: Comparing
transition-based parsers with and without neural net-
work enhancement. In TLT, pages 99-110.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017b. Old school vs. new school: Comparing
transition-based parsers with and without neural net-
work enhancement. In 7LT.

Mathieu Dehouck, Mark Anderson, and Carlos Gomez-
Rodriguez. 2021. A falta de pan, buenas son tortas:
The efficacy of predicted upos tags for low resource
ud parsing. arXiv preprint arXiv:2106.04222.

Mathieu Dehouck and Pascal Denis. 2019. Phylogenic
multi-lingual dependency parsing. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 192-203, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Mark Dredze, John Blitzer, Partha Pratim Talukdar, Kuz-
man Ganchev, Jodo Graca, and Fernando Pereira.
2007. Frustratingly hard domain adaptation for
dependency parsing. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 1051—
1055, Prague, Czech Republic. Association for Com-
putational Linguistics.

Daniel Fernandez-Gonzdlez and Carlos Goémez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710-716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yoav Goldberg. 2017. Neural network methods for
natural language processing. Synthesis lectures on
human language technologies, 10(1):1-309.

Carlos Gomez-Rodriguez, Michalina Strzyz, and David
Vilares. 2020. A unifying theory of transition-based
and sequence labeling parsing. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 37763793, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the 57th
Annual Meeting of the Association for Computational

5354

https://aclanthology.org/2020.lrec-1.633
https://aclanthology.org/2020.lrec-1.633
https://doi.org/10.18653/v1/2021.iwpt-1.12
https://doi.org/10.18653/v1/2021.iwpt-1.12
https://doi.org/10.18653/v1/2021.iwpt-1.12
https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/K18-2015
https://doi.org/10.18653/v1/K18-2015
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://aclanthology.org/W12-3308
https://aclanthology.org/W12-3308
https://doi.org/10.1145/2407736.2407737
https://doi.org/10.1145/2407736.2407737
https://arxiv.org/abs/2106.04222
https://arxiv.org/abs/2106.04222
https://arxiv.org/abs/2106.04222
https://doi.org/10.18653/v1/N19-1017
https://doi.org/10.18653/v1/N19-1017
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://aclanthology.org/D07-1112
https://aclanthology.org/D07-1112
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1267

Linguistics, pages 2786-2791, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: a large-scale
analysis of word order properties using artificial data.

Transactions of the Association for Computational
Linguistics, 4:343-356.

Daniel Hershcovich, Stella Frank, Heather Lent,
Miryam de Lhoneux, Mostafa Abdou, Stephanie
Brandl, Emanuele Bugliarello, Laura Cabello Pi-
queras, Ilias Chalkidis, Ruixiang Cui, Constanza
Fierro, Katerina Margatina, Phillip Rust, and Anders
S@gaard. 2022. Challenges and strategies in cross-
cultural NLP. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6997-7013,
Dublin, Ireland. Association for Computational Lin-
guistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Omer Kirnap, Erenay Dayanik, and Deniz Yuret. 2018.
Tree-stack LSTM in transition based dependency
parsing. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 124—132, Brussels, Belgium.
Association for Computational Linguistics.

Sandra Kiibler, Wolfgang Maier, Ines Rehbein, and Yan-
nick Versley. 2008. How to compare treebanks. In
Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Marco Kuhlmann and Joakim Nivre. 2010. Transition-
based techniques for non-projective dependency pars-
ing. Northern European Journal of Language Tech-
nology, 2(1):1-19.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019. Deep
contextualized word embeddings in transition-based
and graph-based dependency parsing - a tale of two
parsers revisited. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 2755-2768, Hong Kong, China. Association
for Computational Linguistics.

Ophélie Lacroix. 2019. Dependency parsing as se-
quence labeling with head-based encoding and multi-
task learning. In Proceedings of the Fifth Inter-
national Conference on Dependency Linguistics
(Depling, SyntaxFest 2019), pages 136—143, Paris,
France. Association for Computational Linguistics.

Zuchao Li, Hai Zhao, and Kevin Parnow. 2020. Global
greedy dependency parsing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8319-8326.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403—1414, Melbourne, Australia. As-
sociation for Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 122—-131, Prague, Czech
Republic. Association for Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, 37(1):197-230.

Alberto Muifioz-Ortiz, Michalina Strzyz, and David Vi-
lares. 2021. Not all linearizations are equally data-
hungry in sequence labeling parsing. In Proceed-
ings of the International Conference on Recent Ad-
vances in Natural Language Processing (RANLP
2021), pages 978-988, Held Online. INCOMA Ltd.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 915-932, Prague, Czech
Republic. Association for Computational Linguistics.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160—170, Brussels,
Belgium. Association for Computational Linguistics.

Ines Rehbein, Julius Steen, Bich-Ngoc Do, and Anette
Frank. 2017. Universal Dependencies are hard to
parse — or are they? In Proceedings of the Fourth
International Conference on Dependency Linguistics
(Depling 2017), pages 218-228, Pisa,lItaly. Linkoping
University Electronic Press.

Rudolf Rosa. 2015. Multi-source cross-lingual delex-
icalized parser transfer: Prague or Stanford? In
Proceedings of the Third International Conference
on Dependency Linguistics (Depling 2015), pages
281-290, Uppsala, Sweden. Uppsala University, Up-
psala, Sweden.

Natalie Schluter and Zeljko Agi¢. 2017. Empirically
sampling Universal Dependencies. In Proceedings of
the NoDaLiDa 2017 Workshop on Universal Depen-
dencies (UDW 2017), pages 117-122, Gothenburg,
Sweden. Association for Computational Linguistics.

5355

https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.18653/v1/2022.acl-long.482
https://doi.org/10.18653/v1/2022.acl-long.482
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://doi.org/10.18653/v1/K18-2012
https://doi.org/10.18653/v1/K18-2012
http://www.lrec-conf.org/proceedings/lrec2008/pdf/583_paper.pdf
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/W19-7716
https://doi.org/10.18653/v1/W19-7716
https://doi.org/10.18653/v1/W19-7716
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/D07-1013
https://aclanthology.org/D07-1013
https://aclanthology.org/D07-1013
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://aclanthology.org/2021.ranlp-1.111
https://aclanthology.org/2021.ranlp-1.111
https://aclanthology.org/D07-1096
https://aclanthology.org/D07-1096
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://aclanthology.org/W17-6525
https://aclanthology.org/W17-6525
https://aclanthology.org/W15-2131
https://aclanthology.org/W15-2131
https://aclanthology.org/W17-0415
https://aclanthology.org/W17-0415

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018. An investigation of the inter-
actions between pre-trained word embeddings, char-
acter models and POS tags in dependency parsing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2711-2720, Brussels, Belgium. Association for Com-
putational Linguistics.

Anders Sggaard. 2020. Some languages seem easier
to parse because their treebanks leak. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2765-2770, Online. Association for Computational
Linguistics.

Anders Sggaard, Sebastian Ebert, Jasmijn Bastings, and
Katja Filippova. 2021. We need to talk about random
splits. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 1823—-1832,
Online. Association for Computational Linguistics.

Drahomira Spoustova and Miroslav Spousta. 2010. De-
pendency parsing as a sequence labeling task. The
Prague Bulletin of Mathematical Linguistics, 94:7.

Milan Straka. 2018. UDPipe 2.0 prototype at CoONLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197-207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4290—
4297, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717-723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2020. Bracketing encodings for 2-planar
dependency parsing. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2472-2484, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Reut Tsarfaty, Djamé Seddah, Sandra Kiibler, and
Joakim Nivre. 2013. Parsing morphologically rich
languages: Introduction to the special issue. Compu-
tational Linguistics, 39(1):15-22.

Clara Vania, Yova Kementchedjhieva, Anders Sggaard,
and Adam Lopez. 2019. A systematic comparison
of methods for low-resource dependency parsing on
genuinely low-resource languages. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 1105-1116, Hong Kong,
China. Association for Computational Linguistics.

Guillaume Wisniewski and Frangois Yvon. 2019. How
Bad are PoS Tagger in Cross-Corpora Settings? Eval-
uating Annotation Divergence in the UD Project. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 218-227,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yingting Wu, Hai Zhao, and Jia-Jun Tong. 2018. Multi-
lingual Universal Dependency parsing from raw text
with low-resource language enhancement. In Pro-
ceedings of the CoNLL 2018 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependen-
cies, pages 74-80, Brussels, Belgium. Association
for Computational Linguistics.

Songlin Yang and Kewei Tu. 2021. Headed span-
based projective dependency parsing. arXiv preprint
arXiv:2108.04750.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. CoNLL 2018 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-21, Brussels, Belgium. Association
for Computational Linguistics.

Daniel Zeman, Joakim Nivre, et al. 2020. Universal
dependencies 2.7. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (IjFAL), Faculty of Mathematics and Physics,
Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
ji¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis
Tyers, Elena Badmaeva, Memduh Gokirmak, Anna
Nedoluzhko, Silvie Cinkov4, Jan Haji¢ jr., Jaroslava
Hlavacova, Vaclava Kettnerova, Zdenka UreSova,
Jenna Kanerva, Stina Ojala, Anna Missild, Christo-
pher D. Manning, Sebastian Schuster, Siva Reddy,
Dima Taji, Nizar Habash, Herman Leung, Marie-
Catherine de Marneffe, Manuela Sanguinetti, Maria
Simi, Hiroshi Kanayama, Valeria de Paiva, Kira
Droganova, Héctor Martinez Alonso, Cagr1 Coltekin,
Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz,
Aljoscha Burchardt, Kim Harris, Katrin Marheinecke,
Georg Rehm, Tolga Kayadelen, Mohammed Attia,
Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpra-
dit, Michael Mandl, Jesse Kirchner, Hector Fernan-
dez Alcalde, Jana Strnadova, Esha Banerjee, Ruli Ma-

5356

https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/2020.emnlp-main.220
https://doi.org/10.18653/v1/2020.emnlp-main.220
https://doi.org/10.18653/v1/2021.eacl-main.156
https://doi.org/10.18653/v1/2021.eacl-main.156
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/2020.coling-main.223
https://doi.org/10.18653/v1/2020.coling-main.223
https://doi.org/10.1162/COLI_a_00133
https://doi.org/10.1162/COLI_a_00133
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/N19-1019
https://doi.org/10.18653/v1/N19-1019
https://doi.org/10.18653/v1/N19-1019
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424

nurung, Antonio Stella, Atsuko Shimada, Sookyoung
Kwak, Gustavo Mendonga, Tatiana Lando, Rattima
Nitisaroj, and Josie Li. 2017. CoNLL 2017 shared
task: Multilingual parsing from raw text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 1-19, Vancouver,
Canada. Association for Computational Linguistics.

5357

https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/K17-3001

A Experiment 1: models, resources, and
hyperparameters

To train the models, we used 2 NVIDIA GeForce
RTX 2080 Ti@11GB and an Intel® Core™ i7-
9700K @3.60GHzx8. Training times usually took
from 1 to 7 hours, depending on the parsing model
and the treebank training size. The three used
parsers and the UD treebanks have free software
licenses that allow free use and distribution.

Tables 7, 8 and 9 show the hyperparameters used
for the gb—-DM17 (Dozat et al., 2017) (using the
supar software package), tb-FG19 (Ferndndez-
Gonzalez and Goémez-Rodriguez, 2019) (us-
ing the syntacticpointer package) and
s1-S+19 parsers (Strzyz et al., 2019) (using the
dep2labels package), respectively.

Hyperparameter Value Hyperparameter Value
n_char_hidden 100 v 9
n_feat_embed 100 € 1712
embed_dropout .33 weight_decay 0
n_lstm_hidden 400 clip 5.0
n_lstm_layers 3 min_freq 2
encoder_dropout .33 fix_len 20
n_arc_mlp 500 decay .75
n_rel_mlp 100 decay_steps 5000
mlp_dropout .33 update_steps 1
encoder Istm feats [tag’, char’]

Table 7: Hyperparameters used to train the supar mod-
els. In the case of Ancient Greek the hyperparameter

n_embed is 100.

Hyperparameter ~ Value Hyperparameter Value
model L2RPtr —learning_rate 0.001
word_dim 300 —Ir_decay 0.999997
char_dim 100 —betal 0.9
pos true —beta2 0.9
rnn_mode FastLSTM —grad_clip 5.0
encoder_layers 3 —loss_type token
decoder_layers 1 —warmup_steps 40
hidden_size 512 -reset 20
arc_space 512 —weight_decay 0.0
type_space 128 —unk_replace 0.5
_in 0.33 —beam 5
p_out 0.33 —char_embedding random
p_rnn [0.33, 0.33] —opt adam
prior_order inside_out —batch_size 32
grandPar false =~ —num_epochs 600
sibling false
activation elu
Table 8: Hyperparameters used to train the
syntacticpointer models. Parameters specified

from the configuration file on the left, and from the com-

mand line on the right.

Hyperparameter Value

cnn_layer 4
char_hidden_dim 100
hidden_dim 800
dropout 0.5
Istm_layer 3
bilstm True
learning_rate 0.02
Ir_decay 0.05
momentum 0.9
12 0
gpu True
Table 9: Hyperparameters used to train the

dep2labels models.

B Treebanks in each subset

In §4.2, we reviewed the related work and briefly
discussed several human-defined subsets that were
proposed in the past, according to a number of cri-
teria, and that we used to report the results from our
Experiment 1. Due to space reasons, we detail here
in this appendix (Table 10) the specific treebanks
that are part of each subset, and their sizes, for a
better understanding of the particularities of each
of them.

5358

Size Mal8 Lhl6 AG20 D21 SA17 Sml8 Kul9 Easy

Ancient Greek (PROIEL) 213K v v
Ancient Greek (Perseus) 202K v
Arabic (PADT) 282k v v
Basque (BDT) 121K v
Belarusian (HSE) 305K v
Bulgarian (BTB) 156K v v
Catalan (AnCora) 546K v v
Chinese (GSD) 123K v v v v
Coptic (Scriptorium) 48K v
Czetch (FicTree) 167K N
Czetch (PDT) 1509K v v
Dutch (Alpino) 208K v v
English (EWT) 254K v v v v v
Finnish (TDT) 202K v v v v
French (GSD) 400K v
Galician (TreeGal) 25K v
German (GSD) 292K v
Hebrew (HTB) 161K v v v v v
Hindi (HDTB) 351K v v
Indonesian (GSD) 120K v
Italian (ISDT) 298K v v v v
Japanese (GSD) 193K v
Kazakh (KTB) 10K v
Korean (GSD) 80K v
Korean (Kaist) 350K v
Lithuanian (HSE) 5K v
Marathi (UFAL) 3K v
Norwegian (Bokmaal) 310K v v v
Old Church Slavonic (PROIEL) 57K v
Old East Slavic (RNC) 30K v
Polish (LFG) 130K v
Polish (PDB) 350K v
Romanian (RRT) 218K v
Russian (GSD) 98K v
Russian (SynTagRus) 1107K v v v v
Sanskrit (Vedic) 27K v
Slovenian (SSJ) 140K v
Spanish (AnCora) 560K v v
Swedish (Talbanken) 96K v v
Tamil (TTB) 9K v v v
Turkish (IMST) 57K v
Uyghur (UDT) 40K v
Welsh (CCG) 36K v
Wolof (WTB) 44K v

Table 10: Treebanks per set

5359

	Introduction
	Related work
	Hyphothesis and methodology
	Methodology

	Experiment 1: few controlled parsers, few pre-existing subsets
	The parsing models
	Experiment setup

	Datasets
	Results

	Experiment 2: many parsers, many randomized subsets
	Experimental setup
	Results

	Discussion
	Conclusion
	Experiment 1: models, resources, and hyperparameters
	Treebanks in each subset

