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Abstract

This paper aims to improve the performance of
text-to-SQL parsing by exploring the intrinsic
uncertainties in the neural network based
approaches (called SUN). From the data
uncertainty perspective, it is indisputable that
a single SQL can be learned from multiple
semantically-equivalent questions. Different
from previous methods that are limited to
one-to-one mapping, we propose a data
uncertainty constraint to explore the under-
lying complementary semantic information
among multiple semantically-equivalent
questions (many-to-one) and learn the robust
feature representations with reduced spurious
associations. In this way, we can reduce the
sensitivity of the learned representations and
improve the robustness of the parser. From
the model uncertainty perspective, there is
often structural information (dependence)
among the weights of neural networks. To
improve the generalizability and stability
of neural text-to-SQL parsers, we propose
a model uncertainty constraint to refine the
query representations by enforcing the output
representations of different perturbed encoding
networks to be consistent with each other. Ex-
tensive experiments on five benchmark datasets
demonstrate that our method significantly
outperforms strong competitors and achieves
new state-of-the-art results. For reproducibility,
we release our code and data at https:
//github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/sunsql.

1 Introduction

Text-to-SQL parsing (Zettlemoyer and Collins,
2012; Liang et al., 2013; Zhong et al., 2017; Qin
et al., 2022) aims at converting a natural lan-
guage (NL) question to its corresponding structured
query language (SQL) in the context of a relational
database (Schema). Although relational databases

Equal contribution.
†Corresponding authors.

can be efficiently accessed by skilled professionals
via handcrafted SQLs, a natural language inter-
face, whose core component relies on text-to-SQL
parsing, would allow ubiquitous relational data to
be accessible to a broader range of non-technical
users. Therefore, text-to-SQL parsing has attracted
increasing attention from both academic and indus-
trial communities recently due to its broad applica-
tions in question answering, conversational search
interaction, and so on.

Although significant efforts have been devoted
to text-to-SQL parsing (Chen et al., 2021; Yu
et al., 2018a; Wang et al., 2020a; Cao et al., 2021;
Scholak et al., 2021) with advanced deep models
and architectures by learning black-box mappings
between input NL questions and output SQLs, there
are still several technical challenges for accurate
and robust text-to-SQL parsing. First, previous
models are generally learned to fit the simplified
one-to-one mapping relationship, where only one
NL question is used as the input, and the appro-
priate rest are ignored. However, there exists data
uncertainty (Ott et al., 2018; Wei et al., 2020) in
text-to-SQL parsing, i.e., one output SQL may cor-
respond to multiple semantically-equivalent NL
questions. At inference time, the semantic parser
trained on the one-to-one parallel data struggles
to deal with adequate variations of the training
queries. Second, there is often structural informa-
tion (dependence) (Xiao and Wang, 2019; Zhang
et al., 2022) among the weights of neural networks.
One challenge in training neural semantic parsers
is that such models may overfit the training data
since these models only seek a point estimate for
their weights, failing to quantify weight (model)
uncertainty. For text-to-SQL parsing, the model
uncertainty brings difficulty in obtaining the en-
coded representations that can best describe the
input data distribution and provide an robust map-
ping between NL questions and SQL queries.

To alleviate the aforementioned challenges, in

https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql
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this paper, we propose a generic training approach
SUN, which explores the data and model uncertain-
ties in text-to-SQL parsing. First, we propose a
data uncertainty constraint to explore the underly-
ing complementary semantic information among
multiple semantically-equivalent queries and learn
comprehensive feature representations with strong
expressive ability. In particular, we summarize
multiple semantically-equivalent source questions
into a closed semantic region which is then used
to complement the model to generate better SQL
queries with comprehensive semantics. Second, to
improve the generalizability and stability of neural
text-to-SQL parsers, we propose a model uncer-
tainty constraint to refine the query representations
by enforcing the output representations of different
perturbed encoding networks to be consistent with
each other. Concretely, we impose the consistency
on multiple networks perturbed with dropout for
the same input NL question.

We summarize our main contributions as fol-
lows. (1) We propose a data uncertainty constraint,
which aims to explicitly capture comprehensive se-
mantic information among multiple semantically-
equivalent NL questions, and enhance the hidden
representations with this complementary informa-
tion for generating better SQL, thus improving the
robustness of neural text-to-SQL parsers. (2) We
employ a model uncertainty constraint to encour-
age high similarity between the output representa-
tions of two perturbed encoding networks for the
same input NL question, improving the generaliz-
ability and stability of neural text-to-SQL parsers.
(3) Experiments on five benchmark datasets demon-
strate that the proposed SUN method outperforms
the strong competitors by a substantial margin. It is
noteworthy that our method is model-agnostic and
potentially applicable for any text-to-SQL parsers
with deep network architectures.

2 Related Work

Text-to-SQL Parsing Text-to-SQL parsing, a
subtask of semantic parsing, aims at converting
a NL question to its corresponding SQL query in
the context of a relational database (schema). In-
spired by the success of deep learning, neural text-
to-SQL models based on the sequence-to-sequence
(Seq2Seq) framework have dominated the research
field of text-to-SQL parsing (Guo et al., 2019;
Wang et al., 2020b; Zhong et al., 2020; Hui et al.,
2021a,b, 2022; Cao et al., 2021; Wang et al., 2022).

The general idea behind these methods is to con-
struct an encoder to encode the input question to-
gether with related table schema and leverage a
decoder to generate the target SQL based on the out-
put of the encoder. For example, IRNet (Guo et al.,
2019) is a representative neural text-to-SQL parser,
which leveraged two separate BiLSTMs with self-
attention mechanism (Vaswani et al., 2017) to en-
code the NL question and table schema. Subse-
quently, the graph-based approaches have been pro-
posed, which use relational graph attention net-
works to deal with the schema entities and ques-
tion words with structured reasoning. For instance,
RATSQL (Wang et al., 2020a), SMBOP (Rubin
and Berant, 2021) and RaSaP (Huang et al., 2021)
defined a question-schema graph and employed
the relation-aware self-attention mechanism (Shaw
et al., 2018) in the encoding process to jointly learn
representations of question words, schema items
and edge relations. LGESQL (Cao et al., 2021)
further constructed an edge-centric graph to update
the edge features and designed graph pruning to
determine the golden schema items related to the
NL question.

Recently, some methods have leveraged the
powerful pre-training capabilities of T5 (Raffel
et al., 2019) to generate SQL queries. Different
from graph-based methods, T5-based approaches
(Scholak et al., 2021) adopt the transformer-based
architecture for both encoder and decoder and
do not need pre-defined graphs, schema link-
ing relations, and grammar-based decoder. PI-
CARD (Scholak et al., 2021) is a representative T5-
based method which constrained auto-regressive
decoders of language models through incremental
parsing. The impressive experimental results verify
the ability of the T5-based methods for text-to-SQL
parsing.

Uncertainty Modeling in NLP Uncertainty
quantification is an important approach to building
robust AI systems. In the field of natural language
processing, there are several works (Kendall et al.,
2015; Xiao and Wang, 2019; Zhang et al., 2019;
Shen et al., 2019; Wei et al., 2020; Zhang et al.,
2021; Hu and Khan, 2021) which investigate the
effects of quantifying uncertainties in various NLP
tasks. For example, Zhang et al. (2019) applied
a dropout-entropy method to measure uncertainty
learning for text classification. Xiao and Wang
(2019) showed that explicitly modeling uncertain-
ties via Monte-Carlo dropout (Gal and Ghahramani,
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2016) could enhance model performances of sev-
eral NLP tasks. Su et al. (2018) introduced a series
of continuous latent variables to model underlying
semantics of source sentences in neural machine
translation. Wang et al. (2019) proposed to quantify
the confidence of NMT model predictions based
on model uncertainty to better cope with noise in
synthetic corpora. Wei et al. (2020) considered
the intrinsic uncertainty by representing multiple
source sentences into a closed semantic region. To
our best knowledge, our proposed method is the
first attempt to explore uncertainty in text-to-SQL
parsing.

3 Preliminaries

3.1 Problem Definition

Given a natural language question Q and the cor-
responding database schema S = ⟨T,C⟩, text-to-
SQL parsing aims to generate a SQL query Y based
on Q and S. More specifically, the question Q ={
q1, q2, · · · , q|Q|

}
is a sequence of tokens, and the

schema S consists of tables T =
{
t1, t2, · · · , t|T |

}
and columns C =

{
c1, c2, · · · , c|C|

}
. Each table ti

contains mt words (ti,1, ti,2, · · · , ti,mt) and each
column name ctij in table ti contains mc words
(ctij,1, c

ti
j,2, · · · , c

ti
j,mc

). We use I = ⟨Q,T,C⟩ to
denote an input for the text-to-SQL parser.

3.2 Text-to-SQL parser

Currently, advanced text-to-SQL parsers are cen-
tred around two types of approaches: the graph-
based approaches (Wang et al., 2020a; Huang
et al., 2021; Cao et al., 2021) and the T5-based
approaches (Scholak et al., 2021; Xie et al., 2022),
both of which adopt the encoder-decoder frame-
work for implementation.

Graph-based Methods Formally, the input ques-
tion and database schema are constructed as a
single direct graph in the pre-processing phase:
G = ⟨V,E⟩, where V = Q ∪ T ∪ C denotes
the node set that contains three different node types
(question, table, and column) and E is the edge
set depicting pre-existing relations for question
tokens and schema items. To obtain the initial
representation for every node in the graph, the re-
cent graph-based methods, e.g., LGESQL (Cao
et al., 2021), first flatten all question words and
schema items into a sequence and feed the se-
quence I = ⟨Q,T,C⟩ into large-scale pre-trained
language models (PLMs) to learn word vectors.

The learned word vectors are then passed into a sub-
word attentive pooling layer and three Bi-LSTMs
according to the node types to get the node repre-
sentations for the graph G.

After that, the graph-based approaches adopt an
encoder, which consists of a stack of relational
graph attention network (RGAT) (Wang et al.,
2020b) layers, to learn complex interaction over
schema items as well as question words and output
the final contextual representation XI for input I .

In the decoding process, the graph-based meth-
ods usually adopt the grammar-based syntactic
neural decoder to generate the abstract syntax
tree (AST) of the target query Y in the depth-
first traversal order. The output at each decoding
timestep is either (i) an APPLYRULE action that
expands the current non-terminal node in the par-
tially generated AST, or (ii) an SELECTTABLE
or SELECTCOLUMN action that chooses certain
schema item. The readers can refer to (Wang et al.,
2020a) for more implementation details.

T5-based Methods The T5-based approaches
leverage the powerful pre-training capabilities of
T5 to generate SQL queries, which directly fine-
tune the downstream corpora with the standard ob-
jective for text generation without any specifically
designed modules. Specifically, they take the se-
quential concatenation of the question words and
schema item names as input to the T5 encoder and
generate the corresponding SQL using the T5 de-
coder. Both encoder and decoder are composed of
multi-layer Transformer blocks.

To ensure that the output SQL is grammati-
cally correct, T5-based approaches such as PICARD

(Scholak et al., 2021) implement rule-based con-
strained decoding, achieving competitive perfor-
mance with less invasiveness and better compatibil-
ity. PICARD is an incremental parsing method for
constrained decoding and can be compatible with
any existing auto-regressive language model de-
coder and vocabulary—including, but not limited
to, those of large pre-trained transformers. Differ-
ent from the graph-based approaches that generally
restrict the auto-regressive decoding process to to-
kens that can correctly parse to abstract syntax trees
during training, constrained decoding used in T5-
based approaches operates directly on the output of
the language model and applies the characteristic
of target SQL to help reject inadmissible tokens at
each decoding step at inference time.
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Figure 1: Overview of the proposed SUN method. There are many-to-one and one-to-one cases in the text-to-SQL
training data. For many-to-one samples, they are modelled by data uncertainty, and for one-to-one samples, they are
modelled by model uncertainty. The E means the encoder and D means the decoder of the graph-based or T5-based
methods.

4 Proposed Method

Intrinsic Uncertainty Previous works have fo-
cused on the inductive bias through model design,
while the intrinsic data uncertainty and model un-
certainty are underexplored. As shown in Figure 1,
many-to-one cases (multiple NL questions can cor-
respond to one SQL query) exist in the text-to-SQL
training data, which are caused by the inherent un-
certainty of natural language (Ott et al., 2018; Wei
et al., 2020). In such many-to-one scenario, each
input sample I has a semantically-equivalent sam-
ple I in the training set, where these two input in-
stances correspond to the same SQL query. In addi-
tion, there are also some instances in the training set
that do not have semantically-equivalent samples
(referred to one-to-one cases), where the model un-
certainty becomes critical (Xiao and Wang, 2019;
Zhang et al., 2019). In this work, we propose SUN,
a generic training approach for text-to-SQL parsing,
to mitigate the data uncertainty and model uncer-
tainty simultaneously. SUN consists of two primary
components: (i) a data uncertainty constraint that
summarizes multiple semantically-equivalent NL
questions into an abstract semantic region and (ii) a
model uncertainty constraint that encourages high
similarity between the output representations of
two perturbed encoding networks for the same NL
question.

Global Semantic Representation Learning
Without the loss of generality, we use the encoder
of the text-to-SQL parser to transform each input
I into a contextual representation XI . Then, we
pass the contextual representation XI to a convo-
lutional layer with a pooling operation to obtain
the final global semantic representation HI of the
input I . For Simplicity, we represent the whole
process of learning global semantic representations
as HI = Encode(I).

4.1 Data Uncertainty Constraint

For the many-to-one scenario, we expect to encour-
age high similarity between the representations of
two semantically-equivalent NL questions. To this
end, we propose a data uncertainty constraint to
summarize the semantically-equivalent input I and
I into a closed semantic region. We first obtain
global semantic representations HI = Encode(I)
and HI = Encode(I) for two semantically-
equivalent input samples I and I . To learn com-
pact and abstract representation without spurious
association, we assume that there are two latent
semantic variables z and z associated with HI and
HI respectively, which are sufficient for generat-
ing the target SQL query and eliminate the redun-
dant details, so as to reduce the sensitivity of the
learned representations. That is, both z and z main-
tains all information which is shared by HI and
HI , inspired by the intuition that two semantically-
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equivalent samples provide the same predictive in-
formation. Formally, we assume that P(z|HI) and
P(z|HI) are the distributions of the latent semantic
variables z and z, which are modeled by Normal
distributions parametrized with (µ,µ̄) and (σ, σ̄).
Formally, we define the two semantic distributions
as follows:

P(z | HI) ∼ N (µ(HI), σ
2(HI)I) (1)

P(z | HI) ∼ N
(
µ̄(HI), σ̄

2(HI)I
)

(2)

where I denotes the all-ones vector. µ (or µ̄) and σ
(or σ̄) are computed via fully-connected neural net-
works based on the global semantic representations
HI (or HI ) as:

µ(HI) = HI ·Wµ + bµ (3)

log σ2(HI) = HI ·Wσ + bσ (4)

µ̄(HI) = HI ·Wµ + bµ (5)

log σ̄2(HI) = HI ·Wσ + bσ (6)

where Wµ, Wσ denote the projection parameters
and bµ, bσ denote the bias terms.

Inspired by the reparameterization techniques
used in (Kingma et al., 2014; Zhang et al., 2016),
the sampled latent representations z and z for z and
z are then obtained as follows for efficient gradient
computation :

z = µ(HI) + σ(HI)⊙ ϵ (7)

z = µ̄(HI) + σ̄(HI)⊙ ϵ (8)

where ϵ ∼ N (0, I) is a parameter to introduce
noise and ⊙ denotes an element-wise product.

The goal of the data uncertainty constraint is
to summarize multiple source questions that share
the same meaning into a closed semantic region.
In order to enforce the distribution P(z|HI) to
be close to P(z|HI), we formulate the data un-
certainty constraint loss LDU by minimizing KL
divergence between P(z|HI) and P(z|HI) as:

LDU = KL
(
P(z | HI)||P(z | HI)

)
(9)

4.2 Model Uncertainty Constraint
To improve the robustness of text-to-SQL parsers,
we consider the model uncertainty for the one-
to-one questions which do not have semantically-
equivalent questions in training set by taking advan-
tage of the data augmentation technique. Specif-
ically, the input data I goes through the forward
pass of the encoding network twice with dropout

to produce two-view representations of the input
I . Since the dropout (Hinton et al., 2012) operator
randomly drops units from the model, the two for-
ward passes indeed produce two distinct semantic
representations of input I . Inspired by the model
uncertainty learning in text feature space (Zhang
et al., 2019), we then use contrastive learning (Gao
et al., 2021; Yan et al., 2021) to pull together the
two-view representations of the same input ques-
tion produced by dropout and push apart the se-
mantic representations of different questions in the
same batch. Formally, we formulate the model un-
certainty constraint loss LMU as:

LMU = − 1

N

N∑
i=1

log
es(z

1
i ,z

2
i )

es(z
1
i ,z

2
i ) +

∑N
j=1,j ̸=i e

s(z1i ,z
1
j )

(10)
where s denotes a cosine similarity function
s(z1i , z

2
i ) = z1i · z2i /∥z1i ∥∥z2i ∥, the superscript in

z1i and z2i indicates the view index, N indicates
the number of training samples in a mini-batch.
The model uncertainty constraint encourages the
consistency between different views of semantic
representation from the same input while enforcing
the discrepancy between unrelated question pairs.
By reducing the gap between the sub-models that
contain different weight correspondences due to
the randomness of the dropout mechanism, the ro-
bustness of the representation of the text-to-SQL
parsers can be further enhanced.

4.3 Uncertainty-aware Semantic
Representation

We further augment the contextual representation
XI of the input sample I obtained by the encoder
with the corresponding uncertainty-aware latent
representation z through the learnable gate g as:

g = sigmoid (z ·Wz +XI ·Wx) (11)

where Wz , Wx denote the projection parameters.
Then, we formulate the overall semantic represen-
tation U ∈ R|V n|×d by combining the contextual
representation XI and the uncertainty-aware latent
representation z with the corresponding gate g as:

U = LayerNorm (g · z + (1− g) ·XI) (12)

where U is used as the input to the decoder
(grammar-based decoder or T5 decoder) of the
text-to-SQL parser to output the target SQL as
Y = Decode(U). We define the standard train-
ing objective of the encoder-decoder framework as
LT2S.



5303

Model EM EX

IRNet + BERT 61.9 -
RAT-SQL + BERT 69.7 -
RAT-SQL + Grappa 73.4 -
GAZP + BERT 59.1 53.5
BRIDGE + BERT 65.5 59.9
BRIDGE v2 + BERT 70.0 68.3
SMBOP + GRAPPA 69.5 71.1
RAT-SQL+GAP+NatSQL 68.7 73.3

LGESQL + ELECTRA 75.1 -
w/ SUN 76.8 -

PICARD + T5-Large 69.1 72.9
w/ SUN 71.6 75.4

Table 1: Exact match (EM) and execution (EX) accuracy
(%) on SPIDER benchmark.

Model Dev. Test
EM EX EX

ETA + BERT 50.10 68.30 54.10

ALIGN 43.70 62.10 50.10
w/ BERT 48.40 67.70 54.30
w/ RoBERTa 50.93 70.92 58.37

w/ SUN 52.93 71.95 59.34

Table 2: Exact match (EM) and execution (EX) accuracy
(%) on SQUALL dataset.

Joint Training Finally, we combine the standard
negative likelihood loss LT2S for SQL generation
and the two uncertainty constraint loss functions
(LDU and LMU) to form the joint loss function
Ltotal as follows:

Ltotal = LT2S + LDU + LMU (13)

5 Experimental Setup

5.1 Datasets
We conduct extensive experiments on five bench-
mark datasets for text-to-SQL parsing. (1) SPIDER
(Yu et al., 2018b) is a large-scale cross-domain
zero-shot text-to-SQL benchmark. It originally con-
tains 8659 training examples across 146 databases
in total. We follow the common practice to re-
port the exact match accuracy and execution accu-
racy. (2) SYN (Gan et al., 2021a) is a challenging
variant of SPIDER, which consists of 1034 evalu-
ation examples. SYN is constructed by manually
modifying NL questions in SPIDER using synonym
substitution. (3) DK (Gan et al., 2021b) is con-
structed by selecting 535 samples from SPIDER

Model SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3

LGESQL + ELECTRA 64.6 48.4 69.2
w/ SUN 66.9 52.7 70.9

Table 3: Exact match accuracy (%) on SYN, DK and
REALISTIC benchmark.

dev set, where 270 pairs are the original SPIDER

samples while the rest 265 pairs are modified by
incorporating the domain knowledge. (4) REAL-
ISTIC (Deng et al., 2020) is a more realistic and
challenging evaluation setting with explicit men-
tions of column names being manually removed.
(5) SQUALL (Shi et al., 2020) is constructed by
generating SQL queries of the English-language
questions in WIKITABLEQUESTIONS (Pasupat
and Liang, 2015) and manually align questions
with corresponding SQLs. It consists of 15,622 ex-
amples which are split into training (9,032), devel-
opment (2,246) and test (4,344) sets. All datasets
employed in this paper are in English.

5.2 Baseline Methods

We compare SUN with several strong baseline
methods, including IRNet (Guo et al., 2019), RAT-
SQL (Wang et al., 2020a), GAZP (Zhong et al.,
2020), BRIDGE (Lin et al., 2020), SMBOP (Ru-
bin and Berant, 2021), LGESQL (Cao et al., 2021)
and PICARD (Scholak et al., 2021). Since SUN

is model-agnostic and potentially applicable for
any neural text-to-SQL parsers, we adopt LGESQL
and PICARD, which are the state-of-the-art graph-
based and T5-based methods respectively, as our
base models to verify the universality of SUN. In
addition, for SQUALL, we adopt the previous SOTA
model ALIGN (Shi et al., 2020) with RoBERTa
(Devlin et al., 2018) and ETA (Liu et al., 2021) as
our base model.

5.3 Implementation Details

For the LGESQL, following (Cao et al., 2021), the
hidden size of the graph attention network is set to
512 and the number of layers is set to 8. The num-
ber of heads in multi-head attention is 8 and the
dropout rate is set to 0.2 for both the encoder and
decoder. In the decoder, the dimension of hidden
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Model
SPIDER SYN

easy medium hard extra all easy medium hard extra all

LGESQL+ELECTRA 91.9 78.3 64.9 52.4 75.1 79.4 67.9 62.1 36.1 64.6
w/ SUN 92.3 80.3 70.7 50.6 76.8 79.8 72.3 59.9 41.4 66.9

Model
DK REALISTIC

easy medium hard extra all easy medium hard extra all

LGESQL+ELECTRA 74.5 46.7 41.9 29.5 48.4 86.2 77.8 60.6 41.2 69.2
w/ SUN 75.5 53.7 47.3 30.5 52.7 89.9 77.3 61.6 45.4 70.9

Table 4: Exact matching accuracy by varying the levels of difficulty of the inference data on the of SPIDER, SYN,
DK and REALISTIC.

Model SPIDER SYN DK REALISTIC

LGESQL+SUN 76.8 66.9 52.7 70.9
w/o LDU 75.8 65.8 51.2 69.5
w/o LMU 76.2 66.4 52.1 70.1

Table 5: Ablation results in terms of exact match accuracy on SPIDER, SYN, DK and REALISTIC.

state, action embedding and node type embedding
are set to 512, 128 and 128, respectively. We use
AdamW optimizer (Loshchilov and Hutter, 2017)
with linear warmup scheduler and the warmup ratio
of total training steps is 0.1. The learning rate is
1e-4 and the weight decay rate is 0.1. The batch
size is set to be 20 and the maximum gradient norm
is 5. The number of training epochs is 200. For the
PICARD (Scholak et al., 2021), we follow the offi-
cial implementation to fine-tune T5-large for 400
epochs. We use Adafactor optimizer (Shazeer and
Stern, 2018) with a learning rate of 1e-4. For the
ALIGN model, we employ SUN on the RoBERTa
setting. The representation size is 1024. The de-
coder is implemented with 2-layer LSTM and the
hidden size is set to 128. We adopt the Adam
optimizer (Kingma and Ba, 2014) with learning
rate of 0.001 and the dropout rate is set to be 0.3.
Specifically, we employ kernels with window sizes
ranging from 3 to 5 to obtain the global semantic
representations used in the uncertainty measure-
ment process in SUN.

6 Experimental Results

6.1 Main Results

Results on SPIDER Table 1 shows the exact
match accuracy (EM) and execution accuracy (EX)
scores of our method and compared baselines on
the SPIDER dataset. We observe that SUN can
bring substantial improvements, which achieves a

notable gain of 1.7% on the exact match accuracy
scores over the strongest baseline LGESQL. In ad-
dition, PICARD+SUN obtains significantly better
results than the compared baseline methods on SPI-
DER dataset in terms of exact match accuracy and
execution accuracy, which both achieve superior
results of 2.5% improvement.

Results on more challenging and realistic set-
tings To evaluate the effectiveness of SUN in
more challenging and realistic settings, Table 3 il-
lustrates the experimental results on SYN, DK and
REALISTIC datasets. We can observe that SUN con-
sistently and substantially surpasses the compared
models by a noticeable margin on three datasets in
terms of exact match accuracy. In particular, SUN

achieves considerable improvement over LGESQL
on all three datasets. For SYN, LGESQL with SUN

outperforms LGESQL by 2.3% EM score, demon-
strating that SUN can improve the robustness of
text-to-SQL parsers to synonym substitution. An
improvement of 4.3% EM score is observed on DK

benchmark, verifying that SUN contributes to the
generalization ability of text-to-SQL parsers to un-
seen domains. Furthermore, under the challenging
REALISTIC setting where all explicit mentions of
column names are removed, LGESQL+SUN also
achieves a strong performance (70.9%) which is
1.7% higher than LGESQL.

Results on SQUALL Table 2 shows the experi-
mental results on SQUALL. Since SQUALL does
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Case 1. (SPIDER)

Gold SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓
= T2.template_id GROUP BY T1.template_type_code

Question Show all template type codes and the number of documents using each type.
LGESQL SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓

= T2.template_id GROUP BY T1.template_type_code
w/ SUN SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓

= T2.template_id GROUP BY T1.template_type_code
SE_Question What are the different template type codes, and how many documents use each type?
LGESQL SELECT Templates.Template_Type_Code , COUNT(*) FROM Templates GROUP BY Templates.Template_Type_Code ✗

w/ SUN SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓
= T2.template_id GROUP BY T1.template_type_code

Case 2. (DK)

Gold SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid
WHERE T1.sex = ’F’ AND T3.pettype = ’dog’

Question How many puppy pets are raised by female students?
LGESQL SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓

WHERE T1.sex = ’F’ AND T3.pettype = ’dog’
w/ SUN SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓

WHERE T1.sex = ’F’ AND T3.pettype = ’dog’
SE_Question Find the number of puppy pets that are raised by female students (with sex F).
LGESQL SELECT COUNT(*) FROM Pets JOIN Has_Pet JOIN Student WHERE Student.Sex = ’F’ ✗

w/ SUN SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓
WHERE T1.sex = ’F’ AND T3.pettype = ’dog’

Table 6: Case study: cases are sampled from SPIDER, and DK. SE indicates semantically-equivalent.

not contain target SQL queries in the test set, we
merely present the execution accuracy score on test
set. Overall, SUN significantly improves the per-
formance on both the dev and test sets of SQUALL,
achieving the gains of 2.0% EM score and 1.03%
EX score on dev set, and 1.97% EX score on test
set over the strongest baseline ALIGN+RoBERTa
on SQUALL.

6.2 Results on Complex Queries

We investigate the performance of SUN on differ-
ent queries. The SQL queries in the SPIDER, SYN,
DK and REALISTIC benchmarks are divided into
four levels (i.e., easy, medium, hard, extra hard)
based on their difficulty, where the difficulty is de-
fined based on the number of SQL components.
Table 4 summarizes the results of the four bench-
marks with four levels of difficulty. From the re-
sults, we can observe that SUN can boost the per-
formance of LGESQL across almost all different
difficulty levels on the four datasets. In particular,
LGESQL+SUN obtains much better performance
on the extremely hard samples than LGESQL by
a large margin. For example, LGESQL with SUN

shows 4.7%, 1.0% and 4.2% improvements on the
extra hard samples in SYN, DK and REALISTIC

respectively.

6.3 Ablation Study

To analyze the impact of two kinds of uncertain-
ties in SUN, we also conduct an ablation test by
discarding the data uncertainty constraint (denoted

as w/o LDU) and the model uncertainty constraint
(denoted as w/o LMU), respectively. The ablation
results are summarized in Table 5. As expected,
both uncertainty constraints contribute great im-
provements to SUN. For example, the performance
of SUN w/o LDU decreases by 1.1/1.0/1.5 points
on the SYN/SPIDER/DK dev sets, verifying that
the data uncertainty constraint is essential for im-
proving the model performance. In addition, the
performance of SUN decreases by 0.8/0.5 points on
REALISTIC/SYN evaluation sets when removing
the model uncertainty constraint.

6.4 Case Study

In this section, we present two cases sampled
from SPIDER and DK to demonstrate the effec-
tiveness of SUN qualitatively. As illustrated in
Table 6, we report the original questions, the
semantically-equivalent variant of the original
questions (SE-question), the gold SQL queries,
and the SQL queries generated by LGESQL and
LGESQL+SUN. From the results, we can ob-
serve that LGESQL+SUN can generate more accu-
rate SQL queries than LGESQL. Taking the first
case as an example, although both LGESQL and
LGESQL+SUN can generate accurate SQL queries
given the question, LGESQL fails to correctly un-
derstand its semantically-equivalent question and
thus generates inappropriate SQL where the neces-
sary mention of database schema “Document” is
ignored. In contrast, LGESQL+SUN generates the
same correct SQL for both the original question
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and its semantically-equivalent question by improv-
ing the robustness of the text-to-SQL parsers with
data and model uncertainty constraints. We ob-
serve similar trends on the DK dataset. Concretely,
LGESQL+SUN can generate consistent SQL for
two semantically-equivalent questions that have
very different expressions, while LGESQL cannot
handle such cases.

The effectiveness of SUN according to the ob-
served results illustrated in Table 6 demonstrates
that the exploration of underlying complementary
semantic information in SUN helps text-to-SQL
parsers understand the different variants of expres-
sions and generate better SQL queries with com-
prehensive semantics.

7 Conclusion

In this paper, we proposed a novel SUN method to
explore intrinsic uncertainties in text-to-SQL pars-
ing. First, we devised a data uncertainty constraint
to capture complementary semantic information
among multiple semantically-equivalent questions
and thus improve the robustness of the text-to-SQL
parsers. Second, a model uncertainty constraint
was leveraged to refine the representations by en-
couraging high similarity between the output repre-
sentations of two perturbed encoding networks for
the same input question. Experimental results on
five benchmark datasets showed that SUN signifi-
cantly outperformed the compared methods.
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