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Abstract

Pre-training methods with contrastive learning
objectives have shown remarkable success
in dialog understanding tasks. = However,
current contrastive learning solely considers
the self-augmented dialog samples as positive
samples and treats all other dialog samples
as negative ones, which enforces dissimilar
representations even for dialogs that are
semantically related. In this paper, we propose
SPACE-2, a tree-structured pre-trained
conversation model, which learns dialog
representations from limited labeled dialogs
and large-scale unlabeled dialog corpora
via semi-supervised contrastive pre-training.
Concretely, we first define a general semantic
tree structure (STS) to unify the inconsistent
annotation schema across different dialog
datasets, so that the rich structural information
stored in all labeled data can be exploited.
Then we propose a novel multi-view score
function to increase the relevance of all possi-
ble dialogs that share similar STSs and only
push away other completely different dialogs
during supervised contrastive pre-training.
To fully exploit unlabeled dialogs, a basic
self-supervised contrastive loss is also added to
refine the learned representations. Experiments
show that our method can achieve new state-of-
the-art results on the DialoGLUE benchmark
consisting of seven datasets and four popular
dialog understanding tasks. For reproducibility,
we release the code and data at https:
//github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/space-2.

1 Introduction

Task-oriented dialog (TOD) systems aim to help
users to accomplish specific tasks through natural
language interactions, e.g., restaurant booking, ho-
tel reserving, and movie searching (Young et al.,
2013). In order to fulfill a user goal, the dialog
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systems must be capable of extracting structured
semantics from the dialog utterances, which is of-
ten referred to as dialog understanding. Common
tasks of dialog understanding include: 1) intent
prediction, where the system classifies the user in-
tention given the current utterance, 2) slot filling,
where the system extracts the value spans for pre-
defined slots from user utterances, and 3) dialog
state tracking, where slot-value pairs are predicted
and updated according to multi-turn dialog history.

Recent methods address the dialog understand-
ing problems mainly by task-adaptive training with
pre-trained language models (PLMs) (Henderson
et al., 2020; Mehri et al., 2020; Zhang et al., 2022).
By fine-tuning the entire parameters of PLMs on
dialog corpora, the versatile knowledge acquired
from large-scale corpora can be adapted to han-
dle various dialog understanding tasks. For ex-
ample, TOD-BERT (Wu et al., 2020) continually
pre-trained a BERT on large-scale task-oriented di-
alog corpora with similar objectives to grasp more
knowledge in conversations and achieved good re-
sults on a wide range of tasks. To further enhance
the representations of dialogs, contrastive learning
is widely used for dialog pre-training via pulling
semantically similar sentences together and push-
ing apart dis-similar ones, which has shown strong
ability in few-shot dialog understanding (Zhang
et al., 2020, 2021a).

Although contrastive learning (CL) is effective
in pre-training dialog models, it still suffers from
several problems. First, the current practice of CL
often neglects the semantic structures of dialog ex-
amples and only utilizes shallow self-supervised in-
formation. Figure 1 illustrates the semantic frames
of two dialog examples, which indicate the hierar-
chical structures with semantic meanings in terms
of intentions and slots. The semantic structure is
often summarized as the turn-level structural an-
notation and is prominent in multi-domain task-
oriented dialogs. Exploiting such structure during
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Figure 1: Two dialog examples that have similar se-
mantic contents from the MULTIWOZ dataset. The
difference is highlighted in red and green colors.

task-adaptive pre-training has been proved to be
effective in dialog understanding tasks (Yu et al.,
2020). However, In conventional CL, only the ex-
amples with the exact same annotations are deemed
as positive samples, while all other examples are
considered as negative ones (Gao et al., 2021), ig-
noring the fact that different examples may share
similar semantics to some extent as shown in Figure
1. Second, in previous dialog pre-training methods,
no annotations have been exploited to learn better
pre-trained representations. But in computer vision,
there have already been many works demonstrating
that labeled data can accelerate the pre-training pro-
cedure as well as improve the model performance
(Assran et al., 2020; Khosla et al., 2020; Dai et al.,
2021b). Therefore, we argue that it is crucial to
combine both the labeled and unlabeled dialog data
to learn more powerful pre-trained dialog models.

Built on these motivations, we propose a novel
tree-structured pre-trained conversation model
(SPACE-2), which fully exploits the structural in-
formation in labeled data to improve the dialog pre-
training on large-scale unlabeled corpora via semi-
supervised contrastive learning. To be specific, we
first define a general semantic tree structure (STS),
which is suitable for TOD and compatible with the
discrepancy of annotation schema in varied dia-
log datasets. Then we propose a novel multi-view
scoring function to measure the similarity among
different labeled dialogs. Given two dialogs with
STSs, the scoring function is able to calculate their
relations hierarchically and aggregate the output
multiple scores from either global or local aspects.
In this way, all labeled data are viewed as positive
samples with soft scores instead of hard scores (0
or 1) in traditional CL. Thus, more subtle semantic
structures in training samples can be taken into ac-

count, and dialog representations can be learned in
a semi-supervised manner.
Our contributions are summarized as follows:

* We explore tree-structured semi-supervised
contrastive pre-training for task-oriented dia-
log understanding. To the best of our knowl-
edge, this is the first study to inject struc-
tural information and exploit labeled semantic
frames in a pre-trained conversation model.

* We propose a multi-view score function for
similarity measurement among different la-
beled dialogs, which could calculate relations
hierarchically and aggregate multiple judge-
ments from either global or local aspects.

* We conduct extensive experiments on the Di-
aloGLUE benchmark with seven different
datasets. Empirical results show that our
SPACE-2 consistently performs better than
strong competitors on four dialog understand-
ing tasks (i.e., intent prediction, slot filling,
semantic parsing, and dialog state tracking).

2 Related Work

2.1 Pre-trained Models for Dialog
Understanding

Recent advances in pre-trained language models
(PLMs) have spurred success in natural language
understanding in task-oriented dialog (TOD) sys-
tems. Since general-purpose PLMs such as BERT
(Devlin et al., 2019) are not able to capture dialog-
oriented knowledge in TOD, such as explicit user
intent, many studies proposed to perform pre-
training on dialog corpora. For example, ConvRT
(Henderson et al., 2020) explored the pre-trained
language transformers for TOD via learning a dia-
log response selection loss. ConvBERT (Mehri
et al., 2020) fine-tuned BERT on a large open-
domain dialog corpus using a masked language
modeling objective so that more semantically mean-
ingful representations of dialogs can be learned.
TOD-BERT (Wu et al., 2020) incorporated role
tokens in the input and employed a contrastive ob-
jective for response selection. Zhang et al. (2021b)
proposed to use masked utterance modeling and re-
sponse contrastive loss to produce DialogueBERT
and showed good performance on intent, emotion,
and entity recognition. Apart from training with
common objectives, some work (Yu et al., 2020; He
etal., 2020b; Hui et al., 2021; Dai et al., 2021a) also
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Statistics AnPreDial  UnPreDial
# Datasets 32 21
# Dialogs 459,465 3,217,058
# Turns 3,366,479 19,578,028
Avg. tokens per turn 13.9 14.5
Avg. tokens per dialog 101.8 88.2
Total unique tokens 46.8M 283.7M

Table 1: Statistics of our pre-trained dialog dataset.

proposed to learn relations between schema and
keywords of utterances during pre-training, which
benefits in certain downstream tasks that require
parsing semantics. The work of (Sun et al., 2019;
Liu et al., 2020a) tried to integrate structural infor-
mation of knowledge graphs to enhance language
representations. Unlike these methods, we are the
first to inject the semantic tree structure into pre-
training models for dialog understanding.

2.2 Contrastive Learning

Contrastive learning (CL) is one of the pre-training
methods that leverage large-scale unlabeled data
to learn meaningful sentence representations. The
key idea of CL is to narrow the distance between
two semantically similar sentence representations,
meanwhile, push away the representations of dis-
similar sentences (Gao et al., 2021; Wu et al., 2021;
Yan et al., 2021). There are also several studies
focused on applying CL to dialog understanding
tasks. For example, Zhang et al. (2021a) used CL
as self-supervised pre-training and adapted the pre-
trained models on few-shot intent prediction. The
studies (Mehri and Eric, 2021; Vuli¢ et al., 2021)
utilized supervised CL at the fine-tuning stages for
intent prediction, where the samples from the same
class are all regarded as positives. He et al. (2020a)
proposed to use adversarial samples as difficult neg-
ative instances in CL for zero-shot cross-domain
slot-filling. Different from previous work, we use
CL in both pre-training and fine-tuning stages. In
addition, we train dialog models with both labeled
and unlabeled data in a semi-supervised manner.

2.3 Semi-Supervised Contrastive Learning

Semi-supervised contrastive learning has proved
to be an effective pre-training method in many
research field, such as image recognition (Yuan
etal., 2021; Park et al., 2021; Li et al., 2021; Kim
et al., 2021a), image segmentation (Alonso et al.,
2021; Zhou et al., 2021) and speech recognition
(Xiao et al., 2021; Inoue and Goto, 2020). It can

combine both labeled and unlabeled data together
to train effective neural models for downstream
tasks. He et al. (2022b) proposed to use consis-
tency regularization loss to learn dialog policy from
labeled and unlabeled dialog corpora via a semi-
supervised manner. However, leveraging such a
semi-supervised contrastive learning paradigm in
task-oriented dialog understanding remains unex-
plored. In this paper, we explore semantic struc-
tures in TOD, and propose a new contrastive learn-
ing approach that calculates semantic tree-structure
similarity among all possible labeled dialog data.

3 Pre-training Data

In this section, we first describe the dialog datasets
(He et al., 2022a) used for pre-training, including
a labeled dialog dataset (AnPreDial) and a large-
scale unlabeled dialog corpus (UnPreDial). Then,
we elaborate on the semantic tree structure (STS)
for the task-oriented dialog data.

3.1 Dataset Description

To provide sufficient high-quality dialog corpora
to train our pre-trained conversation model, we use
a labeled dialog dataset called AnPreDial, which
contains 32 existing labeled TOD datasets, rang-
ing from single-turn question answering to multi-
turn dialogs. We also use a large-scale unlabeled
dialog corpus called UnPreDial with 21 dialog
datasets, ranging from open-domain online forums
to document-grounded dialogs. The statistics of
our pre-trained dialog corpora are shown in Table
1 and more details can be found in Appendix A.

3.2 Semantic Tree Structure

Task-oriented dialogs often contain several user
goals, and the system needs to help fulfill these
goals through interacting with users. To this end,
the user utterances and system responses are usu-
ally composed of rich semantics such as intents
and slots. In different datasets, the annotation
taxonomy used to describe the semantic scopes
varies. For example, in some intent recognition
datasets such as BANKING77 (Casanueva et al.,
2020) and CLINIC150 (Larson et al., 2019), they
only possess a pre-defined intent set and formu-
late the task as a classification problem. In other
datasets like Taskmaster (Byrne et al., 2019a), only
the slot labels are provided; for instance, given
a user utterance “I need a table for tonight at 7
pm for 8 people", the label is “time.reservation=7

555



Domain Layer NULL

Intent Layer card_arrival

NULL

I

NULL

Figure 2: Different semantic tree structures in AnPre-
Dial, where the blue, red, green and purple circles indi-
cate DISV, ISV, IS, SV sub-structures.

pm, num.guests=8" without any intent information.
Therefore, in order to utilize all possible data in An-
PreDial to pre-train our model, we adopt a unified
schema called semantic tree structure (STS) that is
suitable for every TOD sample.

Typically, the STS contains four layers: domain
layer, intent layer, slot layer, and value layer. Every
layer is composed of nodes, which are referred to
as respective elements of labeled semantic frames.
If no matched annotations are provided, the nodes
of the corresponding layer are set as empty (de-
noted as NULL). The first layer consists of domain
nodes as successors of the root node, preceded
by the intent nodes. As children of intent nodes,
slot nodes occupy the third layer of the semantic
tree. As leaf nodes, the value nodes take the slot
nodes as parents. Figure 2 shows three tree struc-
tures of different dialog samples from MULTIWOZ
(Eric et al., 2020), BANKING77 and Taskmaster.
In MULTIWOZ , the labels follow the dialog act
schema in Young (2007), and all layers contain cer-
tain semantic elements. But the other two datasets
do not follow the schema and lack respective ele-
ments in some layers.

4 Methods

In this section, we first introduce the model ar-
chitecture. Then we expound on the pre-training
procedure with the proposed tree-structured semi-
supervised contrastive learning (CL) paradigm.

4.1 Model Architecture

As illustrated in Figure 3, we build our SPACE-2
model based on the bidirectional Transformer archi-
tecture (Vaswani et al., 2017). Different from the
vanilla input representations as in BERT (Devlin
et al., 2019), we set our input embeddings con-
sisting of four elements: tokens, roles, turns, and
positions. Role embeddings are used to segment

Lself Lsup lem

v !

gl )
[ Transformer Block L+ 1 )
[ Transformer Block L )

@)

Figure 3: Model Framework. L. is the tree-structured
self-supervised contrastive loss for unlabeled data, and
Ly is the tree-structured supervised contrastive loss
for labeled data. Ly, is the span MLM loss for all data.
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Figure 4: Sub-spaces for the multi-view scoring objec-
tive. The dashed black line denotes the annotations of
different sub-structures, only used in our supervised CL.

which role the current token belongs to either user
or system. Turn embeddings are assigned to each
token according to its turn number in the dialog.
Position embeddings are assigned to each token ac-
cording to its relative position within its belonging
sentence. Appendix B shows more details.

4.2 Tree-Structured Semi-Supervised
Contrastive Learning Paradigm

We aim to leverage semi-supervised pre-training to
learn better pre-trained representations from both
the labeled and unlabeled data. Concretely, we
adopt a tree-structured supervised contrastive ob-
jective on the labeled dataset AnPreDial, while a
tree-structured self-supervised contrastive objec-
tive on the unlabeled dataset UnPreDial.

4.2.1 Tree-Structured Supervised CL

For labeled data, we treat every dialog sample as a
positive sample assigned with similarity scores to
each other. Between two semantic tree structures
(STSs), we define a score function to calculate sim-
ilarity scores from different views. Let D, I, S,
V denote the sets of node in domain, intent, slot
and value layer. For the sample from MULTIWOZ
dataset in Figure 2, its D={restaurant}, I={inform,
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request}, S={food, area, name} and V={indian,
south}. For the sample from BANKING77 dataset,
its D={}, I={card_arrival}, S={} and Vv={}. We
also build the sets of each possible path between
two nodes on the STS, which we denote as DI, IS,
SV, DIS, ISV, DISV. Thus for the MULTIWOZ
sample in Figure 2, I SV={inform— food—indian,
inform—area—south}, and for BANKING77 |,
Isv={}. The total super set of all above
node-sets and path-sets is denoted as Sy =
{p,1,8,V,DI,1S,SV,DIS,ISV,DISV}, where
the size K = 10. Given a pair of STSs (denoted
as T;,T}), then we calculate the Jaccard similarity
coefficient for each set s; in S,;; to get the score
fx respectively as follows:

Fu(T, Ty) = I(sk, s7) (1)
|AmB|

where we use i, j to discriminate s, and S,y for
two different STSs: s}; € 82”, s{c € Sfl”. J is
the function for the Jaccard similarity coefficient,
which takes the ratio of Intersection over Union.

Given the dialog context, our model output a
pooled representation at the [CLS] position as the
sentence embedding z of the whole context. Thus
for any sample pair 7, j, the output sentence embed-
dings are denoted as z;, z;. We use f % to denote
the k-th similarity score fi(7;,T}) for simplicity.
Suppose the size of the current batch is IV, we fol-
low the common practice in Gao et al. (2021) to
duplicate the data via dropout-based data augmen-
tation. Then we acquire a 2N-length new batch.
Let I = {1...2N} be the index set of the new
batch, and C(i) = I/{i}. Since we compute multi-
ple scores fi'fj for each STS pair, different types of
scoring functions can be used to construct the CL
loss. In this paper, We propose both single-view
and multi-view scoring functions to build the tree-
structured supervised CL objectives as follows and
find that the multi-view method performs better.
Single-View Scoring Objective. Similar to the
common practice in the current CL, we simply
average the K scores into a single value to weigh
the semantic similarity among samples:

Lyt == Z( wa) 3)

icl jeC(
exp (0(z1) - 0(2;)/7)
tog exp (0(z1) - 0z

Zle()(

D)/7)

o(z) = Norm(Wz + b) @

where o (+) is a normalized linear mapping to trans-
form z to a unit vector. W is a learnable square
weight matrix and b is a bias vector. Norm(-) is
the normalization operation and 7 € [0, 1] is a tem-
perature hyper-parameter.

Multi-View Scoring Objective. Figure 4 demon-
strates our multi-view scoring objective. Instead of
summing up as one score, we can separately uti-
lize multiple scores to better exploit sub-structures
from different semantic spaces (Zhu et al., 2019)
as the following loss:

LZ’LJIL’HZ: Z Z Z( mGC()fsz

i€l jeC(7)
)

log exp (ok(2) - ok(25)/7)
> i) P (ok(2i) - ok(20)/7)

or(z) = Norm(Wyz + by) 6)

where oy(+) denotes linear mappings with different
parameters. As illustrated in Figure 5, our meth-
ods are quite distinct from vanilla supervised CL
(Vuli¢ et al., 2021), where only augmented data or
data from the same label are considered as positive
samples ( Z-’fj = 1), and all other data are consid-
ered as negative samples ( ffj = 0). Therefore, our
method can be viewed as a generalized case where
all labeled data are regarded as positive samples
assigned with soft scores.

4.2.2 Tree-Structured Semi-Supervised CL

For unlabeled data, since there are no available
labels, we adopt a tree-structured self-supervised
contrastive objective in a similar way in Gao et al.
(2021), where only the augmented data by dropout
is deemed as a positive sample. In particular, under
the multi-view setting, the objective L;’Zf;ﬁ still

shares the same K sub-spaces as L% as follows:

sup
Lo ==3%" 5 G =it )
€l jeC(i)
log exp (0(zi) - 0(z)/7)
> i) exp (0(zi) - o(z)/7)

Laf == >, Zl ®

1€l jeC(i) k=1
exp (0 () -0 (Zj)/T)
ZZeC(i) exp (0%(z;) - 0% (21) /)

log

557



« Anchor instance — Positive instance -

label: restaurant-inform(price=cheap, area=east) < m
U1 [l am hungry. want a cheap restaurant in the east area I

label: hotel-inform(price=cheap, area=west)
U2 | Hi, i am tired and | want a cheap hotel in the west area
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Figure 5: (a) Self-supervised CL only predicts augmented itself from in-batch negatives, with different dropout
masks applied. (b) Supervised CL considers samples of the exact same label as positives. (c) Tree-structured
supervised CL considers all in-batch samples as positives with soft scores. Only scores of ISV set are depicted here.

where 1(j = i) means it only takes 1 when the
data sample j is the augmented data i+ of data
sample ¢, otherwise 0.

In order to maintain the language modeling abil-
ity and extract the slot values better, we also apply
the spanMLM loss L, (Joshi et al., 2020) to the
output representations on top of the dialog context.
Therefore, our final loss is computed as:

*
L total

where * can be either single or multi.

S Experimental Setup

5.1 Task Formulation

DialoGLUE benchmark consists of seven different
datasets, including four tasks as follows:

Intent Prediction. This is a classification task for
models to predict which intent class the user con-
veys in the utterance. There are three datasets ac-
cordingly: 1) BANKING77 (Casanueva et al., 2020),
a single turn dataset in the banking domain with
77 intent labels and 13k utterances; 2) CLINIC150
(Larson et al., 2019), a multi-domain dataset that
contains 23.7k utterances, 150 intents, 10 domains;
and 3) HWU64 (Liu et al., 2021) includes 25.7k ut-
terances for 64 intents spanning 21 domains. To
conduct the downstream task, a linear layer neural
network is added to the pooled output z to classify.
The evaluation metric is accuracy.

Slot Filling. This is a sequential labeling task in
which a model tries to predict the IOB tags upon the
sequence of dialog context. There are two datasets:
1) REST8K (Coope et al., 2020), which contains
8.2k utterances and 5 slots (date, time, people, first
name, last name) from a restaurant domain; 2) a
transformed DSTCS (Rastogi et al., 2020) dataset
comprising of 5.5k utterances and slot annotations

in 4 domains (buses, events, homes, rental cars).
Both datasets are single-turn formed and every to-
ken in the utterance is predicted as either being the
beginning of a slot value (B-), inside a slot value
(I-) or not belonging to a slot value (O). A linear
layer neural network is added to the representation
of the final output layer to predict correct tags (e.g.,
“B-time”, “I-people”). The evaluation metric is the
macro-averaged F1 score.

Semantic Parsing. The original TOP (Gupta et al.,
2018) dataset targeting at hierarchical parsing is
transformed into a joint task of intent prediction
and slot-filling, which contains 44k utterances. The
metric is the exact-match as in Mehri et al. (2020).
Dialog State Tracking. This task is multi-turn slot-
filling, where the model interprets the user mean-
ings during the course of a dialog to maintain a di-
alog state in terms of slot-value pairs. MULTIWOZ
2.1 (Eric et al., 2020) is the chosen dataset version
with 10k dialogs. Following Mehri et al. (2020),
we report joint goal accuracy and use TripPy (Heck
et al., 2020) as the downstream model.

5.2 Baselines

Our compared baselines can be divided into two
categories. The first type is the pre-trained model
adapted for general dialog understanding tasks
in DialoGLUE. We choose BERT (Devlin et al.,
2019), ConvBERT (Mehri et al., 2020) and its vari-
ants, and TOD-BERT (Wu et al., 2020) as our base-
lines. The second type is the pre-trained model
designed only for specific dialog tasks. In this pa-
per, we choose Example+Observer (Mehri and Eric,
2021), DNNC (Zhang et al., 2020), CPFT (Zhang
et al., 2021a); and ConvFit (Vuli¢ et al., 2021) for
the intent prediction task. We also choose Span-
ConveRT (Coope et al., 2020), ConVEx (Hender-
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Full data training

Model average BANKING77 HWU64 CLINICI5S0 RESTSK DSTC8 TOP MULTIWOZ
BERTT 86.08 93.02 89.87 95.93 95.53 90.05 81.90 56.30
ConvBERT' 86.01 92.95 90.43 97.07 95.90 87.58 82.13 56.00
ConvBERT+MLMT 86.89 93.44 92.38 97.11 95.44 91.20 82.08 56.56
ConvBERT-DG 82.90 93.21 91.64 96.96 93.44 7454 7222 58.57
ConvBERT-DG+MLM'  85.34 92.99 91.82 97.11 94.34 86.49  76.36 58.29
TOD-BERT y4apt 86.95 93.61 92.95 97.34 94.23 90.61 82.33 57.63
ConvBERT+MLM,4qpt ~ 87.42 94.01 93.24 97.40 95.55 91.12 82.64 58.01
SPACE-25"gte 87.83 94.68 94.05 97.56 95.58 91.20 82.66 59.08
SPACE-2multi 88.10 94.77 94.33 97.80 96.20 91.38 82.74 59.51
w/o tree 87.57 94.19 93.49 97.44 96.08 91.04 82.23 58.52
w/o annotation 87.33 93.93 93.23 97.33 95.99 90.93  82.02 57.87
w/o UnPreDial 87.77 94.35 93.77 97.64 96.14 91.18 8230 58.99
10-shot data training
Model average BANKING77 HWU64 CLINICI50 RESTSK DSTC8 TOP MULTIWOZ
BERTT 66.07 79.87 81.69 89.52 87.28 45.05 7438 4.69
ConvBERT' 68.03 83.63 83.77 92.10 86.90 49.08 74.86 5.90
ConvBERT+MLM' 68.22 83.99 84.52 92.75 86.17 48.40 78.84 6.87
ConvBERT-DG 73.75 84.42 85.17 92.87 87.65 41.94  75.27 48.94
ConvBERT-DG+MLM'  73.80 85.06 85.69 93.06 87.58 4436  72.01 48.89
TOD-BERT y4qpt 75.70 85.99 86.74 93.07 87.62 50.19  77.77 48.54
ConvBERT+MLM,4qp:  76.51 86.73 87.29 93.65 87.72 5248  78.88 48.85
SPACE-25"ngte 77.43 88.08 88.29 94.80 88.52 5327  79.01 50.07
SPACE-2"uiti 77.98 88.31 88.85 95.22 88.85 5441 79.55 50.70
w/o tree 77.31 87.41 87.55 94.76 88.30 5426  78.95 49.97
w/o annotation 77.20 87.60 87.64 94.51 87.93 54.01  79.00 49.73
w/o UnPreDial 77.65 88.15 88.38 94.71 88.61 54.12  79.33 50.28

Table 2: Total results of seven datasets from the DialoGLUE benchmark. T denotes original results from DialoGLUE.
adapt denotes re-implementation via adaptively pre-training on our corpora. ‘w/o’ denotes ablation study in Sec 6.4

son and Vuli¢, 2021) and GenSF (Mehri and Eske-
nazi, 2021) for the slot-filling task. More details
about baselines can be found in Appendix C.

5.3 Settings

In our experiment, we initialize SPACE-2 with Con-
vBERT. The input length is bound to 256 and the
batch size is 128. AdamW is used for optimization
with an initial learning rate of le-5. The dropout
rate is 0.2. For semi-supervised pre-training, we
combine the labeled and unlabeled data to form a
batch in a 1:1 ratio. For each few-shot experiment,
we exclude the training data in the AnPreDial ac-
cordingly to avoid unfair data use. For instance,
if the target few-shot task is HWU64 , we only use
the few-shot training data of HWU64 and all other
datasets as pre-training resources, sO no extra train-
ing data (dev&test) in HWU64 is used. For all down-
stream tasks, we average 5 seeds for final results.

6 Experimental Results

6.1 Overall Performance on DialoGLUE

We follow the original settings in Mehri et al.
(2020) and obtain complete results for our model
with single-view scoring objectives, denoted as
SPACE-2%"9'¢  and with multi-view scoring ob-
jectives, denoted as SPACE-2"4 on all seven
datasets of DialoGLUE. As shown in Table 2,
our SPACE-2%"* model achieves state-of-the-art
performance across all tasks, improving the av-
erage score of previous best results by 1.39%
(86.89%—88.10%) and 5.66 % (73.80%—77.98%)
on full-data training and 10-shot training set-
tings, respectively. This indicates that our semi-
supervised contrastive learning can acquire bet-
ter pre-trained representations to adapt efficiently
to downstream dialog tasks by utilizing both la-
beled and unlabeled data. Although the superior
results of SPACE-25"9!¢ over other baselines, it is
worse than SPACE-2m*  suggesting that multi-
view scoring is crucial to improve the overall per-
formance. To eliminate the discrepancy brought by
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Model BANKING77 CLINIC150 HWU64
Few Full Few Full Few Full
Example+Observer 85.95 93.83 9397 97.31 86.28 93.03
DNNC 86.71 - 93.76 - 84.72 -
CPFT 87.20 - 94.18 - 87.13 -
ConvFiT 87.38 94.16 92.89 97.34 85.32 9242
SPACE-2multi 88.31 94.77 9522 97.80 88.85 94.33

Table 3: Results on intent prediction tasks, including 10-
shot training (Few) and full-set training (Full) settings.

the pre-training dialog corpora, we choose two sim-
ilar models, TOD-BERT and ConvBERT+MLM,
to continually pre-train on AnPreDial and UnPre-
Dial for fairness, but they are still not comparable
to SPACE-2.

6.2 More Comparison on Intent Prediction

The experimental results of three intent predic-
tion datasets are shown in Table 3. As we can
see, SPACE-2"! achieves SOTA results on all
datasets under all settings. Specifically, it outper-
forms the previous best model ConvFiT by 0.93%,
2.33% 3.53% on BANKING77 , CLINIC150 , HWU64
under the few-data training setting, respectively.
It also improves ConvFiT by 0.61%, 0.46%, and
1.91% on the above three datasets under the full-
shot training setting. The improvements indicate
that our method has a better ability to discrimi-
nate similar intents via tree-structure enhanced con-
trastive learning than vanilla pre-training on Con-
vFiT.

6.3 More Comparison on Slot-Filling

We also conduct slot-filling experiments, partic-
ularly in the few-shot setting, to probe whether
our model is also suitable for slot extraction. We
follow the same data split and settings in GenSF
(Mehri and Eskenazi, 2021) for a fair comparison.
As shown in Table 4, SPACE-2""4!t achieves state-
of-the-art results across all experimental settings
on DSTCS8 and REST8K . Note that in Mehri and
Eskenazi (2021), DSTCS is evaluated in every sin-
gle domain (Bus, Event, Home, RentalCar) and
RESTSK is evaluated with varied proportions (1/8,
1/16, 1/32) of the training set. It shows that our
SPACE-2 model can achieve superior results with-
out any specific designs only for slot-filling tasks.

6.4 Ablation Study

To figure out which factor contributes mainly to
our semi-supervised pre-training paradigm, we con-
duct ablation studies on DialoGLUE as shown in

Dataset Span-ConveRT ConVEx GenSF SPACE-2"/t

DSTC8-Bus 84.0 86.7 90.5 91.6
DSTC8-Event 82.2 87.2 91.2 92.4
DSTC8-Home 95.4 94.5 93.7 96.2
DSTC8-RentalCar 83.0 87.4 86.7 88.3
REST8K -1/8 88.5 90.6 91.8 93.9
RESTSK -1/16 81.1 86.4 89.7 92.6
RESTSK -1/32 63.8 81.8 82.1 84.7

Table 4: F1 scores across all slots for evaluation on the
DSTCS single-domain datasets in the few-shot setting.

the bottom part of each setting in Table 2. We first
investigate the effect of the tree-structured super-
vised contrastive learning by replacing it with the
traditional supervised contrastive learning (denote
as ‘w/o tree’). As we can see, vanilla supervised
contrastive learning only considers self-augmented
data or data with the exact same labels as positive
samples, so it can not capture a more detailed se-
mantic structure than our tree-structured method
and degrade from 88.10% to 87.57% in an average
score. We also try to remove the label informa-
tion from AnPreDial and treat all pre-training data
as unlabeled data (denote as ‘w/o annotation’), or
remove the unlabeled data (denote as ‘w/o UnPre-
Dial’) to see the impact. It shows that both the
labeled data and unlabeled data are crucial in our
semi-supervised pre-training scheme but labeled
data contributes more to the overall performance.

6.5 Visualization Analysis

In this part, we investigate why explicitly decom-
posing the semantic structure into sub-structures
for different views can benefit dialog understand-
ing. Figure 6 illustrates the 2D t-SNE visualiza-
tion of the output unit vectors oy (z) for test dia-
log samples from the MULTIWOZ dataset. Due
to the limited space, we only show the sub-spaces
of D, I,S,V here. As we can see, The hidden
representations of SPACE-2"""* are able to differ-
entiate the similar and dissimilar parts in different
semantic sub-spaces. The learned latent sub-space
is highly correlated with the dialog annotations of
domain, intent, slot or value, which confirms our
assumption.

7 Conclusion

In this work, we propose a new pre-trained conver-
sation model named SPACE-2, which learns dialog
representations from both labeled and unlabeled
corpora via tree-structured semi-supervised con-
trastive learning (CL). To be specific, we utilize a
semantic tree structure (STS) to unify the incon-
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Figure 6: T-SNE visualization of the oy (z) in multi-view scoring function for MULTIWOZ test dialog samples.
Four sub-spaces, including Domain-, Intent-, Slot- and Value- Subspace, are shown here.

sistent annotation schema for all datasets. Then,
we propose a novel multi-view scoring function to
compute the semantic similarity based on STS’s
sub-structures for labeled dialogs. Different from
traditional CL, our method increases the relevance
of representations for all similarly labeled dialogs
and only pushes away completely different dialogs.
A self-supervised CL loss is also integrated to ex-
ploit unlabeled dialogs. Extensive experiments on
the DialoGLUE benchmark with seven datasets
demonstrate that our model achieves the best re-
sults on all dialog understanding tasks, under the
full-data and the few-shot settings.
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A Details for Pre-training Dialog Corpora

All dialog corpora we used in our experiments are
given in Table 5 and Table 6. There are totally 32
labeled datasets and 21 unlabeled datasets. For the
labeled data, each dialog sample is unified into the
same data format with tree-structured labels. For
the unlabeled data, each sample is performed care-
ful cleaning due to the high noise. The processing
methods include: (1) removing the instances where
there is a URL in utterances. (2) removing the in-
stances containing word repetitions of at least three
words. (3) removing non-English sentences. (4) re-
moving sentences containing special markers such
as “[” or 17, as this could be markup. (5) removing
offensive language. (6) replacing the non-unicode
characters like emojis.

B Input Representations

The input embeddings consist of four elements: to-
kens, roles, turns, and positions. Role embeddings,
E,, Es, are like segmentation embeddings in BERT
and are used to differentiate which role the current
token belongs to either user or system. Turn em-
beddings are assigned to each token according to
its adverse turn number in the input dialog data.
Position embeddings are assigned to each token ac-
cording to its relative position within its belonging
sentence. For the tokens, we use special tokens
[BOU], [EOU] to bound the user utterance, and
[BOS], [EOS] to bound the system response.

C Details for Compared Baselines

C.1 Baselines for Dialog Understanding

We choose the following baselines: 1) BERT, a
BERT},s model adapted to all downstream tasks;
2) ConvBERT, a BERT continually pre-trained on
a large open-domain dialogue corpus with MLM
(Mehri et al., 2020); 3) ConvBERT-DG, a Con-
vBERT continually pre-trained on all DialoGLUE
data before conducting specific downstream tasks
with MLM. 4) ConvBERT+MLM, a ConvBERT
continually trained on training data of specific
downstream tasks; 5) ConvBERT-DG+MLM, a
ConvBERT+MLM pre-trained on all DialoGLUE
data before conducting downstream tasks; and 6)
TOD-BERT, a BERT pre-trained on nine exist-
ing task-oriented dialogue corpora using MLM and
response selection loss (Wu et al., 2020).

C.2 Baselines for Specific Tasks

In this paper, we focus on intent prediction and
slot-filling in particular since there are adequate
pre-trained baselines specifically. For the intent pre-
diction task, we choose: 1) Example+Observer, a
ConvBERT+MLM that uses example-driven train-
ing based on similarity matching and observers
for transformer attentions (Mehri and Eric, 2021);
2) USE+ConveRT, a dual sentence encoder pre-
trained on 654M Reddit dialogs (Casanueva et al.,
2020); 3) DNNC, a discriminative nearest-neighbor
model which finds the best-matched sample via
similarity matching (Zhang et al., 2020); 4) CPFT,
which uses self-supervised contrastive learning to
perform pre-training and fine-tuning (Zhang et al.,
2021a); and 5) ConvFit, which uses regular super-
vised contrastive learning on labeled data after pre-
training on chatting data (Vuli¢ et al., 2021). For
the slot-filling task, we choose: 1) Span-ConveRT,
a slot-filling model pre-trained on collected data
(Coope et al., 2020); 2) ConVEX, a span-ConveRT
pre-trained with the pairwise cloze task on Reddit
for few-shot slot labeling (Henderson and Vulié,
2021); and 3) GenSF, a generative pre-trained slot-
filling model (Mehri and Eskenazi, 2021).
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Dataset # Dialog # Utterance

BANKING77 (Casanueva et al., 2020) 13,083 13,083
CLINIC150 (Larson et al., 2019) 23,700 23,700
HWU64 (Liu et al., 2021) 25,716 25,716
REST8K (Coope et al., 2020) 11,115 11,975
TOP(Gupta et al., 2018) 44,783 44,783
ATIS(Hemphill et al., 1990) 5,817 5,817
SNIPS(Coucke et al., 2018) 14,484 14,484
CrossNER(Liu et al., 2020b) 27,458 27,458
FB_TOD_SF(Schuster et al., 2019) 43,323 43,323
MIT-restaurant(Liu et al., 2013) 9,181 9,181
MIT-movies-eng(Liu et al., 2013) 12,218 12,218
MIT-movies-trival10k13(Liu et al., 2013) 9,769 9,769
MULTIWOZ _coco(Li et al., 2020) 32,062 64,124
MULTIWOZ (Eric et al., 2020) 10,433 142,968
STAR(Mosig et al., 2020) 5,820 98,962
DailyDialog(Li et al., 2017) 13,118 102,979
SGD(Rastogi et al., 2020) 22,825 463,284
Frames(El Asri et al., 2017) 1,369 19,986
MSRe2e(Li et al., 2018) 10,087 74,686
DSTC2(Williams et al., 2016) 4,953 73,228
DSTC3(Williams et al., 2016) 1,980 30,456
SimJoint(Shah et al., 2018) 3,008 27,120
MulDoGo(Peskov et al., 2019) 11,668 194,097
WOZ(Mrksié et al., 2017) 1,200 8,824
TaskMaster1(Byrne et al., 2019b) 13,210 279,287
TaskMaster2(Byrne et al., 2019b) 17,289 292,830
TaskMaster3(Byrne et al., 2019b) 23,757 477,026
InCar(Eric et al., 2017) 3,031 15,928
MULTIWOZ _synthesis(Campagna et al., 2020) 37,605 401,075
SwDA(Stolcke et al., 2000) 1,434 274,786
BiTOD(Lin et al., 2021) 3,689 72,462
PersuaGOOD(Wang et al., 2019) 300 10,864
Total 459,465 3,366,479

Table 5: Statistics for each labeled dataset in AnPreDial.
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Name # Dialog # Utterance
MulDoGo_un(Peskov et al., 2019) 63,404 1,013,985
ABCD(Chen et al., 2021) 10,042 143,855
AirDialog(Wei et al., 2018) 361,822 4,645,475
CCPE(Radlinski et al., 2019) 502 11,971
Metal WOZ(Shalyminov et al., 2020) 40,203 458,237
CMU_DoG(Zhou et al., 2018) 4,221 134,197
ConvQuestions(Kacupaj et al., 2021) 11,200 112,000
CoQA(Reddy et al., 2019) 7,699 233,260
CoSQL(Yu et al., 2019) 2,458 25,433
doc2dial(Feng et al., 2020) 688 52,688
DSTC10-track2(Kim et al., 2021b) 2,919 55,377
DSTC10-track3(Kottur et al., 2021) 11,244 110,767
MedicalDialog(Zeng et al., 2020) 482 981
Self-Dialog(Fainberg et al., 2018) 24,165 372,720
WOW (Dinan et al., 2018) 22,311 201,999
TopicChat(Gopalakrishnan et al., 2019) 8,628 188,378
Persona-Chat(Zhang et al., 2018) 11,087 81,032
MMD(Saha et al., 2018a) 1,506,129 5,477,066
CSQA(Saha et al., 2018b) 197,001 4,153,092
AmazonQA(Gupta et al., 2019) 923,685 1,847,370
ChitChat(Will et al., 2020) 7,168 258,145
Total 3,217,058 19,578,028

Table 6: Statistics for each unlabeled dataset in UnPreDial.
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