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Abstract

In this paper we present FeatureBART, a
linguistically motivated sequence-to-sequence
monolingual pre-training strategy in which syn-
tactic features such as lemma, part-of-speech
and dependency labels are incorporated into
the span prediction based pre-training frame-
work (BART). These automatically extracted
features are incorporated via approaches such
as concatenation and relevance mechanisms,
among which the latter is known to be better
than the former. When used for low-resource
NMT as a downstream task, we show that these
feature based models give large improvements
in bilingual settings and modest ones in multi-
lingual settings over their counterparts that do
not use features.

1 Introduction

Sequence-to-sequence (S2S) pre-training done via
denoising objectives on monolingual corpora is
known to improve generation quality in low-
resource settings (Lewis et al., 2020). This has been
extensively explored for neural machine translation,
however most works show that the improvements
for translation into English are more pronounced
than those for translation into a non-English lan-
guage (Liu et al., 2020; Tang et al., 2020). One
reason for this is that pre-training leads to a strong
decoder that learns to de-noise masked inputs,
whereas the knowledge retained in the encoder is
rather limited. Thus far, there has been no explicit
effort towards improving the contribution of the
encoder during pre-training.

Most pre-training methods rely on the power
of large models and large corpora, but ignore the
possibility of incorporating linguistic knowledge
into the pre-trained model. On the other hand,
there are several works which show that incorpo-
rating linguistic knowledge in the form of lemma,
part-of-speech tags and dependency labels, lead
∗ Equal contribution.

to a significant improvement in translation qual-
ity (Sennrich and Haddow, 2016; Hoang et al.,
2016; Li et al., 2018; Pan et al., 2020; Chakrabarty
et al., 2020) in both low- and high-resource set-
tings. Most recently, in an extremely low-resource
setting, Chakrabarty et al. (2020) show the effec-
tiveness of using the aforementioned linguistic fea-
tures, especially when their influence on the model
is controlled via relevance mechanisms that ap-
propriately scale feature embeddings before they
augment word embeddings. We hypothesize that
incorporating linguistic features, into the denoising
based pre-training framework, should improve the
quality of pre-training, which should then have a
positive impact on the translation quality via fine-
tuning. To this end, we propose FeatureBART, a
feature based sequence-to-sequence pre-training
method.

In FeatureBART, linguistic features are obtained
via automatic annotators and then converted into
embeddings, which are used to augment the word
embeddings of the encoder. Feature embeddings,
are incorporated by either naive concatenation with
the word embeddings or by first weighing them
with a relevance mechanism and then adding them
to word embeddings. The model itself is trained
using a monolingual corpus via either the text-
infilling or the mask prediction approaches, the
former used in BART and the latter used in BERT.
This FeatureBART model is then fine-tuned for
low-resource language pairs, where linguistic fea-
tures are also used during fine-tuning. Experiments
on English to 8 Asian languages from the Asian
Language Treebank (ALT) dataset (Riza et al.,
2016), using bilingual as well as multilingual fine-
tuning, show that our feature based pre-training
and fine-tuning leads to significant improvements
in translation quality indicating the complementary
nature of denoising pre-training and features. Anal-
yses of training curves show that when compared to
non-feature based pre-training, feature based pre-
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training leads to significantly lower perplexities
during the initial stages of fine-tuning.

2 Methodology

We first give some background knowledge about
feature based NMT modeling, followed by an ex-
planation of FeatureBART.

2.1 Background: Use of Source Side
Morphological Features into NMT

Sennrich and Haddow (2016) proposed the con-
catenation of embeddings of features of a token
(word or sub-word) to the token embedding. In
case a word is split into sub-words, the feature
is duplicated for each sub-word. For K features
of a source token denoted by si = (si1, . . . , siK),
let Vk, Ek, and dk denote the vocabulary, embed-
ding matrix and dimension of the kth feature. So,
Ek ∈ Rdk×|Vk|, si1 is the word or sub-word feature
and si2, . . . , siK are the linguistic features. The em-
bedding of si, say ei, is formulated as eik = Eksik,
and ei = ∥Kk=1eik. eik is the vector embedding of
sik where ∥ is the concatenation operation.

2.2 Relevance of Features
Chakrabarty et al. (2020) proved the effectiveness
of the following two feature weighting strategies to
be applied to features prior to concatenation:
Self-Relevance: The relevance of a feature embed-
ding is evaluated w.r.t itself. For k ∈ {1, . . . ,K},
the self relevance is calculated as maskik =
sigmoid(Wkeik), and then e′ik = maskik ⊙ eik.
Wk ∈ Rdk×dk is the learnable weight matrix for
the kth feature, and ⊙ is the element-wise multipli-
cation operation. The vector maskik signifies the
self relevance of eik and is multiplied element-wise
with eik to produce the modified feature embed-
ding e′ik. Finally, e′i1, . . . , e

′
iK are concatenated to

make the final embedding e′i for the source token
si. Thus, e′i = ∥Kk=1e

′
ik.

Word-Relevance: It uses the word/sub-word em-
bedding (ei1) to determine the relevance of the re-
maining feature embeddings. Formally, for k ∈
{2, 3, . . . ,K}, maskik = sigmoid(Wk(ei1∥eik)),
and then e′ik = maskik ⊙ eik. Wk ∈ Rdk×(d1+dk)

is the learnable weight matrix and the final embed-
ding e′i is obtained by concatenating e′i2, . . . , e

′
iK

with ei1.

2.3 FeatureBART
FeatureBART, is a feature based encoder-decoder
pre-trained model trained using linguistic features

which are used to augment the word embeddings of
the encoder. First, a large monolingual corpus is an-
notated via morphological and syntactic annotators
to obtain different types of features for each token
(word or sub-word). This feature annotated mono-
lingual corpus is used for self-supervised training
where during training, some tokens (token mask-
ing) or token spans (text infilling) in a sentence are
replaced with the “MASK” token just like in Lewis
et al. (2020). We use dummy mask features for
masked tokens or spans. The sentence containing
masked content is fed to the encoder and the model
is trained so that the decoder can predict the origi-
nal sentence. We hypothesize that features help in
better pre-training as they provide the model with
additional information for denoising.

3 Experiments

We describe the datasets for pre-training and fine-
tuning, features used and model training details.
Datasets: For pre-training of our BART and Fea-
tureBART models, we choose the English mono-
lingual News Crawl articles1 of 2007, 2010, and
2013 from WMT-2017 with varying sizes that con-
tain 3.8, 6.8, and 21.7 million sentences respec-
tively. For fine-tuning, we experiment with the mul-
tilingual, multi-parallel Asian language treebank
(ALT) (Riza et al., 2016)2 for English to Asian lan-
guage translation. Following (Chakrabarty et al.,
2020), eight Asian languages - Bengali (bg), Fil-
ipino (fi), Hindi (hi), Indonesian (id), Khmer (khm),
Malay (ms), Myanmar (my) and Vietnamese (vi)
are set as the targets. So, bilingual experiments
cover eight language pairs from en-bg to en-vi. For
our multilingual experiments, we explore one-to-
many multilingual translation setup keeping the
source side fixed to English (en) and the target
side to the eight Asian languages mentioned above.
The source side is fixed to English throughout be-
cause as the initial attempt on feature-based pre-
training, we can rely on high quality automatic mor-
phological analyzers available for English. Given
the potential of this work established by empirical
results, other languages with moderate quality mor-
phological annotation can also be tried in the future.
We use the official train/dev/test splits containing
18088, 1000, and 1018 sentences, respectively.

1 https://statmt.org/wmt17/
translation-task.html

2 http://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/

https://statmt.org/wmt17/translation-task.html
https://statmt.org/wmt17/translation-task.html
http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
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Bilingual Results
Pre-training Noise Config en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi Avg.
None - Base 7.5 26.98 23.62 30.88 26.24 35.78 16.48 29.05 24.57

- +Self-Rel 8.4† 28.22† 26.13† 32.65† 27.33† 37.22† 18.13† 29.91† 26
NC-07 I Base 9.77 31.28 25.63 33.86 29.0 38.59 18.83 32.76 27.46

I +Self-Rel 10 31.53 26.93† 34.47† 29.02 39.01 19.21 33.5† 27.96
NC-10 I Base 9.78 32.07 26.21 35.25 27.5 38.79 19.5 32.32 27.68

I +Word-Rel 9.7 32.57† 26.44 36.07† 29.4† 40.34† 18.98 34.78† 28.53
NC-13 I Base 10.09 32.62 26.3 35.56 29.5 40.09 19.72 33.95 28.48

I +Concat 9.75 33.12† 26.96† 35.32 30.21† 40.64† 20.01 35.26† 28.91
Multilingual Results

Pre-training Noise Config en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi Avg.
None - Base 11.55 31.04 27.29 34.78 30.27 39.37 20.93 34.58 28.73

- +Self-Rel 11.40 31.14 27.94† 34.42 30.09 39.84† 20.99 33.85 28.71
NC-07 M Base 11.78 31.90 27.03 35.77 30.47 40.39 20.65 34.94 29.12

M +Self-Rel 11.51 32.17 27.68† 36.11 30.94† 40.80 21.13† 35.28 29.45
NC-10 I Base 11.84 32.66 26.77 35.71 30.72 40.11 20.65 34.56 29.13

I +Self-Rel 11.54 32.57 27.76† 36.25† 31.16† 40.48 21.26† 35.44† 29.58
NC-13 I Base 11.98 32.67 26.69 36.11 30.41 40.20 20.60 35.24 29.24

I +Self-Rel 11.65 32.38 27.77† 36.39 30.98† 41.35† 20.95† 35.75† 29.65

Table 1: BLEU scores of the bilingual and multilingual models. For a given pre-training corpus size, we only show
the results of the best feature and pre-training configuration due to lack of space. Highest scores are BOLD. † marks
scores significantly better (p < 0.05) than the corresponding non-feature (base) counterparts. The “Noise” column
indicates the pre-training approach, “I” and “M” for text-infilling and token masking. Self-Rel, Word-Rel, and
Concat denote self-relevance, word-relevance, and concatenation of feature embedding configurations respectively.

Pre-Processing: The monolingual corpora for pre-
training and the source side of fine-tuning cor-
pora are tokenized and true-cased by Moses to-
kenizer (Papineni et al., 2002) and the target lan-
guages are tokenized to separate the delimiters and
the punctuation symbols. Following Johnson et al.
(2017), each source language sentence in multi-
lingual translation setup is appended with a token
like <tgt-id> which indicates the target language.
Byte-pair-encoding (BPE) (Sennrich et al., 2016)
is performed to obtain subword vocabularies. We
train a single BPE model of vocabulary size 32K
on the combined training corpora of all 9 languages
and use it during pre-training as well as fine-tuning.

Features Used: Morphological annotation of the
English datasets is done using Stanford CoreNLP
toolkit (Manning et al., 2014). There are three
word-level linguistic features - lemma, part-of-
speech (POS), and dependency labels. All sub-
words of a word take the features of that word. We
use subword tags (Sennrich et al., 2016) to denote
beginning, middle and ending of a subword unit.

Hyperparameters and Training Details: We use
variations of the Transformer-base model (Vaswani
et al., 2017) for our experiments available from
OpenNMT PyTorch (Klein et al., 2017), which
we modify for feature based experiments. Wher-
ever possible, we perform hyperparameter tuning
of layers, hidden sizes, number of attention heads,

dropouts, number of training epochs etc. (See A
for details). All training is done on a single 32
GB V-100 GPU. Pre-training is done for 3 epochs
for each monolingual corpora. During fine-tuning,
validation is done after every 10000 steps and train-
ing stops if validation accuracy does not improve
for consecutive 5 evaluations. Test set decoding is
done using beam search with a beam size of 5 and
length penalty of 1.0. Translation performance is
measured by BLEU score calculated using multi-
bleu.perl.

4 Results

Table 1 contains our results for bilingual and mul-
tilingual fine-tuning of FeatureBART along with
their non-feature counterparts. Bilingual and mul-
tilingual results are divided into 4 groups: no pre-
training, pre-training using News Crawl articles
of 2007 (NC-07), 2010 (NC-10), and 2013 (NC-
13) from WMT-2017. We analyze the results as
follows:
Bilingual vs. Multilingual Translation with-
out and with Pre-Training: Comparing corre-
sponding rows between the bilingual and mul-
tilingual blocks, shows that multilingual mod-
els are significantly better than bilingual ones,
observations which are in accordance with Ari-
vazhagan et al. (2019); Johnson et al. (2017);
Dabre et al. (2020); Zhang et al. (2020). Without



5017

Figure 1: Perplexity plots for English–Bengali models.

Figure 2: Perplexity plots for multilingual models.

pre-training, improvements in maximum BLEU
points comparing bilingual vs. multilingual setups
are (3.15, 2.92, 1.81, 2.13, 2.94, 2.62, 2.86, 4.67)
for (en → bg, fil, hi, id, khm, ms, my, vi) re-
spectively. Pre-training, although it improves
performance in both cases, naturally reduces the
gap between bilingual and multilingual models.
Nevertheless, we get maximum improvements
of (1.89, 0.98, 0.95, 0.71, 1.25, 0.49) BLEU points
for (en → bg, hi, khm, ms, my, vi) when comparing
bilingual and multilingual models.
Impact of Features: From Table 1 the follow-
ing observations can be made: (1) In case of no
pre-training, features are very useful in bilingual
settings but not in multilingual settings as multi-
lingual systems can utilize a multi-parallel corpora
efficiently by acquiring supplementary knowledge
from other languages, thus making linguistic infor-
mation redundant. (2) However, when pre-training
is used, multilingual models tend to benefit more
from features. As an example, consider en-khm
and en-vi multilingual scores in Table 1. Under no

pre-training setup, adding features deteriorates the
scores, whereas feature based pre-training gives
consistent improvements, indicating that feature
based modeling and pre-training are complemen-
tary.
Optimal Pre-Training and Feature Configura-
tions: From Table 1, looking at the “Noise” col-
umn, it is clear that text infilling is the best pre-
training objective in most cases. With regard to fea-
ture incorporation mechanism, self-relevance pre-
dominantly gives the best results. We therefore rec-
ommend the use of self-relevance and text-infilling
based FeatureBART in low-resource settings.
Studying Model Perplexities: Figure 1 shows the
perplexities3 of en-bg bilingual models. The per-
plexities with pre-training and features are lower
compared to when features are not used, during
initial stages of training, but this changes towards
convergence. This explains why en-bg does not
show performance improvements from features.
Figure 2 contains plots of cumulative perplexity
of all language pairs for multilingual models. Here,
features seem to have larger impact than in bilin-
gual settings, both at the beginning and later stages
of training. However, BLEU gains are not always
observed, indicating that it may not always be re-
liable motivating future multi-metric and human
evaluation (Marie et al., 2021).

5 Related Work

Pre-Training: Pre-trained models reduce the need
for large fine-tuning data for a given downstream
task, and in this paper we focus on extremely low-
resource settings. In this context, T5 (Raffel et al.,
2020), mT5 (Xue et al., 2021), BART (Lewis et al.,
2020), mBART-25 (Liu et al., 2020), mBART-50
(Tang et al., 2020) and, most recently, IndicBART
(Dabre et al., 2021) are most commonly used for
fine-tuning. None of these works focus on linguis-
tic features, which is the key focus of our paper.
Feature Based NMT: Most works focusing on
linguistic features, experiment on low-resource
settings, and a majority of them focus on how
to exploit syntactic/dependency structures of the
source language (Eriguchi et al., 2016; Shi et al.,
2016; Chen et al., 2017; Li et al., 2017; Wu et al.,
2018; Zhang et al., 2019; Bugliarello and Okazaki,
2020). These works rely on various sophisticated

3 Note that, adding features tends to make the training curves
smoother, especially in bilingual settings which are compar-
atively lower resource than multilingual settings.
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approaches but, Sennrich and Haddow (2016) show
that enriching encoder word embeddings with mor-
phological features is a simple but nice technique
to exploit the features. Chakrabarty et al. (2020)
improve upon this further by relevance mechanisms
on top of morphological and syntactic feature em-
beddings, to enable effective use of features, an
insight we adopt in this paper for feature based
pre-training.
Multilingual NMT: Where feature based NMT
focuses on utilizing linguistic information, multi-
lingual NMT (Johnson et al., 2017; Dabre et al.,
2020) focuses on leveraging training data for other
languages to improve translation quality. Incorpo-
rating linguistic features into multilingual models
has been neglected to the best of our knowledge,
and our work aims to fill in this gap.

6 Conclusion

We have presented FeatureBART, an encoder-
decoder pre-trained model that augments the en-
coder’s embeddings with linguistic feature embed-
dings. Our experiments on English to Asian lan-
guage translation in an extremely low-resource set-
ting show that FeatureBART leads to better transla-
tion quality compares to its counterpart that does
not use features. Analyses of training curves reveal
that compared to pre-training without features, fea-
ture based pre-training leads to significantly lower
perplexities during the initial stages of fine-tuning,
which we think is responsible for improvement in
translation quality. Future work will focus on: (1)
exploring the impact of individual feature category
on feature based pre-training and (2) multilingual
version of FeatureBART which uses features in the
encoder for languages other than English.
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fine-tuning. We use 6 encoder and decoder lay-
ers, 8 multi-attention heads, 2, 048 dimension size
of fully-connected network. For models without
features, the token embedding and model hidden
dimension is set to 512. For feature based models,
following Sennrich et al. (2016) the embedding
and hidden dimensions are 536 (250, 250, 15, 15, 6
corresponding to subword, lemma, POS, depen-
dency label, and subword-tag), in order to make
the number of parameters comparable. We use
batch-sizes of 4, 096 tokens. The dropout rate is
set to 0.3 for fine tuning experiments.

We pre-train models using token masking as well
as text infilling, where span lengths are drawn from
a Poisson distribution (λ = 3). We investigate the
effect of different noise percentage from 10% to
80% and find that 50%− 60% noising is the opti-
mum to get the best performance in downstream
translation task. Pre-training is done for 3 epochs
for each monolingual corpora of 2007, 2010, and
2013, covering 43200, 75600, and 237600 training
steps respectively. During fine-tuning, maximum
training steps are set as 200000 with validation
accuracy performed after every 10000 steps.


