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Abstract

Loanwords are words incorporated from one
language into another without translation. Sup-
pose two words from distantly-related or unre-
lated languages sound similar and have a sim-
ilar meaning. In that case, this is evidence of
likely borrowing. This paper presents a method
to automatically detect loanwords across vari-
ous language pairs, accounting for differences
in script, pronunciation and phonetic transfor-
mation by the borrowing language. We incorpo-
rate edit distance, semantic similarity measures,
and phonetic alignment. We evaluate on 12 lan-
guage pairs and achieve performance compara-
ble to or exceeding state of the art methods on
single-pair loanword detection tasks. We also
demonstrate that multilingual models perform
the same or often better than models trained on
single language pairs and can potentially gen-
eralize to unseen language pairs with sufficient
data, and that our method can exceed human
performance on loanword detection.

1 Introduction
Throughout history, words and phrases have been
exchanged between languages around the world
(Weinreich, 1954). This can obscure genetic re-
lations between languages (e.g., many people er-
roneously believe English and French are more
closely related than they are) but may also increase
comprehension of foreign languages by monoglots
(e.g., written French is often partially comprehensi-
ble by English speakers).

As Zhang et al. (2021) observe, detecting that a
word is loanword is conceptually straightforward:
both similar sound and meaning suggests too great
a coincidence for different words to have converged
by chance1. Detecting loanwords computationally

*These authors contributed equally to this work.
†This work performed at Colorado State University.
1There are exceptions, e.g., Persian bad vs. English “bad”

and Mbabaram dog/dúg vs. English “dog”. These are beyond
the scope of this paper.

has therefore relied on pairwise similarity mea-
sures based on transliteration detection and edit
distance. However, foundational work in linguistic
borrowing, e.g., by Haugen (1950) and Betz (1959),
established that when borrowing words into a recip-
ient language, speakers of that language will repro-
duce existing linguistic patterns when using new
words, and the patterns that recipient speakers im-
pose upon a borrowed word vary across time (Köll-
ner and Dellert, 2016), and language pairs. Some
languages may adopt a word without much pho-
netic change due to already-similar phonotactics.
Others may fit imported words into a rigid sound
pattern, with sometimes significant transformation.
Still others may change the meaning. Changes are
particular to the language pair, so automatically de-
tecting loanwords between arbitrary languages is
challenging. However, if successful, such capabili-
ties would also provide benefits to many other NLP
tasks such as machine translation, coreference, and
named-entity recognition (NER), because common
vocabulary, coreferents, or named entities across
languages may often be loanwords.

Here, we present a novel method for auto-
mated loanword detection between arbitrary lan-
guage pairs. We build upon existing edit distance-
based approaches, incorporate semantic similar-
ity metrics from multilingual language models
MBERT (Devlin et al., 2019) and XLM (Conneau
et al., 2020), and a method of assessing alignment
of phonemes between donor words and loans to ac-
count for differences in phonotactics between the
relevant languages. We also present and evaluate on
the WikLoW (Wiktionary LoanWord) Dataset, cur-
rently consisting of 13 language pairs with a high
density of loanwords and 3 further language pairs
with a lower density of loanwords. We also provide
a methodology for expanding the dataset to new
language pairs. We demonstrate that our method
to detect loanwords across all language pairs in
the dataset performs comparably to or better than
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existing methods on language-specific loanword de-
tection tasks, that multilingual models can perform
better than models trained on individual language
pairs, even on data from that pair itself, and that
our model can also exceed human performance.2

Our method supports both loanword detection
and construction of parallel corpora of loanwords
for other tasks. Our conclusions suggest that there
are some general principles of loanword detection
that can be picked up by machine learning models
independent of specific languages, and we propose
follow-up challenges for NLP research in this area.

2 Related Work
Prior approaches to detecting loanwords compu-
tationally follow the intuition mentioned above:
that if two words in otherwise not closely related
languages have similar meaning and sound simi-
lar, then this is likely evidence of borrowing. Van
Der Ark et al. (2007) use a Levenshtein-distance
based approach to identify language groups and
loanwords among languages of Central Asia.

Delz (2013)/Köllner (2021) proposes theoreti-
cal approaches to loanword identification based on
phylogenetic methods. Zhang et al. (2021) also
point out an issue we address herein: loanwords
may be transformed to fit the borrowing language’s
phonology and phonotactics, so pronunciation sim-
ilarity may be a weaker than ideal method.

Existing data resources relevant to loanwords
include the the Automated Similarity Judgment
Project (ASJP) database (Brown et al., 2008) and
the World Loanword Database (WOLD) (Haspel-
math and Tadmor, 2009). Our data source is Wik-
tionary, which has previously been used in related
etymological tasks by De Melo (2014) and Sagot
(2017).

One thing we should note is that much work
in computational loanword detection and similar
tasks is targeted at a specific language or group
of languages, e.g., Romance (Cristea et al., 2021;
Tsvetkov and Dyer, 2015), Japanese (Takamura
et al., 2017), Uyghur (Mi et al., 2014, 2018,
2020, 2021), Spanish (Álvarez-Mellado and Lig-
nos, 2022), Central Asian languages (Van Der Ark
et al., 2007), or Turkic and Indo-Iranian (Zhang
et al., 2021). Our approach attempts to address the
problem at a multilingual level. We use and extend
existing work in phonological processing by the
NLP community, including the Epitran (Mortensen

2The codebase is provided at https://github.com/
csu-signal/loan-word-detection.

et al., 2018) and PanPhon (Mortensen et al., 2016)
packages for representing phonetic and articula-
tory features. We incorporate semantic similar-
ity measures from multilingual language models
MBERT and XLM, and develop a method of scor-
ing the level of alignment of phonemes between a
donor and a loanword to account for differences
in language-specific phonology and phonotactics.
Our approach in principle supports loanword de-
tection on any pair of languages supported by the
upstream packages/models Epitran, MBERT, and
XLM, but we discuss how we have (Sec. 3) and
can (Sec. 8) also extend our approach to languages
that are not at present covered by all of these.

A work at a similar scale, albeit on the slightly
different task of cognate classification, is Jäger
(2018), which evaluates PMI and SVM-based
methods over the ASJP database. Cognate de-
tection work generally uses similar methods to
those we use here, e.g., semantic and phonetic
similarity (Kondrak, 2001), orthographic distance
(Mulloni and Pekar, 2006) combined with seman-
tic information (Labat and Lefever, 2019; Lefever
et al., 2020), or global constraints (Bloodgood
and Strauss, 2017). Work in translation lexicons
(e.g., Schafer and Yarowsky (2002)) is also rele-
vant, for the hybrid approach to similarity metrics.

Loanword detection may be useful for phyloge-
netic reconstruction, like cognate detection (Rama
and List, 2019). However, cognates are valid for
reconstructing common ancestry; loanwords are
not. For historical reconstruction, the two must be
separated. Many in the NLP community adopt a
definition of “cognate” that subsumes loanwords
(e.g., Kondrak (2001)). We do not adopt this defi-
nition, and use the linguistic definition that treats
loanwords and cognates as distinct.

3 Data Collection
The WikLoW dataset is collected using the pro-
cess outlined in this section, which can be run
for any pair of languages that have loans between
them catalogued in Wiktionary, making it easy
to expand to new data. We begin by collect-
ing data from Wiktionary categories of the form
[Recipient]_terms_borrowed_from_
[Donor]3. Each link in the category is scraped
for a loanword in the recipient language and the
original form of that word in the donor language.

3e.g., https://en.wiktionary.org/wiki/
Category:Polish_terms_borrowed_from_
French

https://github.com/csu-signal/loan-word-detection
https://github.com/csu-signal/loan-word-detection
https://en.wiktionary.org/wiki/Category:Polish_terms_borrowed_from_French
https://en.wiktionary.org/wiki/Category:Polish_terms_borrowed_from_French
https://en.wiktionary.org/wiki/Category:Polish_terms_borrowed_from_French
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Table 1 shows the language pairs currently con-
tained in the WikLoW dataset, and the number
of loans for that pair. There is no global defini-
tion of a “low-resourced” language, as this is task-
dependent, but we have intentionally tried to repre-
sent languages that are not well-represented in large
corpora like CC-100 (Conneau et al., 2020). We
hereafter refer to language pairs using the format
“borrower-donor,” e.g., “Hindi-Persian” to refer to
Hindi words borrowed from Persian. The direction-
ality between the two languages is important to the
pair definition, as only words loaned from the donor
language to the borrower are properly considered
loanwords. If the direction of the languages were
flipped, not only would the class labels be different
(the donor word loaned into borrower would not
be considered a loanword in the donor language),
but while the phonetic and semantic similarities
(Secs. 4.2 and 4.3) would probably be the same,
the alignment score (Sec. 4.4) would not be, since
the output label when training that network is the
loanword status, which would be likewise flipped.

Borrower Donor # loans

English French 5074
English German 2942
Indonesian Dutch 2665
Polish French 2055
Romanian French 2000†

Kazakh∗ Russian 1809
Persian Arabic 1526
Romanian Hungarian 1460
German French 1365
Hindi∗ Persian 1249
Finnish Swedish∗ 1242
Azerbaijani∗ Arabic 1116
Mandarin English 960
Hungarian German 532
German Italian 249
Catalan∗ Arabic 94

Table 1: Loanword counts per language pair.
∗Languages with < 2 billion tokens in the CC-100 corpus.
†Subset of total available loans used.

We also scrape the Wikipedia page listing lan-
guages by writing system4, to include the script
name for each language in our datasets. This al-
lows us to filter out words not written in the typical
script of the recipient language. For example, some
Chinese “loanwords” from English are incorpo-

4https://en.wikipedia.org/wiki/List_
of_languages_by_writing_system

rated keeping the Latin script intact; we don’t need
machine learning to tell us that these are borrowed
terms. Having script information also proves bene-
ficial in later experiments (see Sec. 5).

We also collect all the available lemmas in the
donor language, which we use later to calculate the
closest phonetic neighbors for each loanword. We
also collect homonyms for each loanword where
available; homonyms are considered those words
that have more than one etymology, where one is a
loan from the relevant donor language5.

Using the Epitran package (Mortensen et al.,
2018), we transliterate both loans and original
words into the International Phonetic Alphabet
(IPA). The Epitran package can be extended to
support new languages, as we did here in the case
of Finnish, using Omniglot6 as a resource. Epitran
is not a perfect mapping to real pronunciation, es-
pecially in the case of abjads such as Arabic script,
a point of relevance later (Sec. 4.4, Sec. 7.1).

Having gathered positive examples of loanwords,
we need to gather sufficient negative examples to
both train an algorithm, and to try and fool the
trained algorithm. Negative examples can be:

• Synonyms: words with similar meaning to
a loanword but pronounced differently, e.g.,
“driver” vs. chauffeur.

• Hard negatives: closest phonetic neighbors
to a loanword that have different meaning,
e.g., “annex” vs. ânesse.

• Randoms: random pairings where the two
words have no discernible phonetic or seman-
tic relationship.

To create the synonyms dataset, we take a list
of 440 English words, each of which has multi-
ple synonyms associated with it. With the Google
Translate API, we translate the main word into one
language from our current relevant pair, and each
synonym into the other. We then construct word
pairs in the donor and recipient language using the
Cartesian product of each word with each trans-
lated synonym. We remove any duplicates, and any
pairs that also occur in the loanword dataset, as
we do not want true positives labeled as negatives
when training the loanword detection model.

To create the hard negatives dataset, we use
the PanPhon package (Mortensen et al., 2016) to

5One such example is Hindiagr (/@g@r/), which can be
both a loan from Persian, meaning “if,” and a descendent of
Sanskritagz, referring to a type of wood.

6https://www.omniglot.com/writing/
finnish.htm

https://en.wikipedia.org/wiki/List_of_languages_by_writing_system
https://en.wikipedia.org/wiki/List_of_languages_by_writing_system
https://www.omniglot.com/writing/finnish.htm
https://www.omniglot.com/writing/finnish.htm
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compute six edit distances (see Sec. 4.2) between
the IPA transcriptions of the gathered loanwords,
and up to 20,000 candidate lemmas of the donor
language, which are also transliterated into the IPA
using Epitran. The result here is that each loan-
word is paired with up to six candidates that have a
low phonetic edit distance but are not the original
word in the donor language. We remove duplicates
where multiple distance metrics chose the same
closest neighbor, and where pairs cooccur with the
synonyms or loans datasets.

Finally in the randoms dataset, we pair each
loan with a random word in the donor language.

4 Similarity Metrics
Every word pair in the WikLoW dataset has mea-
sures of textual, phonetic, semantic, and articula-
tory similarity associated with it.

4.1 Textual Similarity
This is simply the Levenshtein edit distance be-
tween two strings. Where the two languages are
written with different scripts, this is simply the max-
imum length of the strings, but in some cases, a
language written in the same script as the donor lan-
guage may borrow a word and keep the spelling un-
changed, even if the pronunciation changes. A case
in point is the word “science,” a loan derived from
French science, which is spelled identically but pro-
nounced very differently (/saI@n(t)s/ vs. /sjÃs/).
Textual edit distance may be a useful feature for
some language pairs, so we keep this metric.

4.2 Phonetic Similarity
Having created IPA transcriptions of the words, we
compute 6 distance metrics over the transcriptions,
all available from the PanPhon package:

• Fast Levenshtein Distance. A C implemen-
tation of Levenshtein distance (Levenshtein
et al., 1966). PanPhon sets all edit costs to 1.

• Dolgo Prime Distance. Based the notion of
the Dolgopolsky list of the 15 most stable
lexemes (Dolgopolsky, 1986) but extended by
PanPhon to a list of 14 most stable phonemes.
Phonemes are mapped to these classes, over
which Levenshtein distance is calculated.

• Feature Edit Distance. IPA is converted to
articulatory feature vectors (e.g., storing pres-
ence, absence, or irrelevance of articulatory
features place/manner of articulation, round-
edness, pulmonic quality, etc.). Levenshtein
distance is calculated over the feature vectors.

Figure 1: KDE plots of Fast Levenshtein and Dolgo
Prime distances.

• Hamming Feature Distance. Same as Leven-
shtein distance, but with substitution cost be-
ing the Hamming distance (Hamming, 1950)
between the feature vectors, normalized by
the length of the vector.

• Weighted Feature Distance. Accounts for
the class of the IPA symbol when calculating
the Levenshtein costs as well as the proba-
bility of that specific edit. Weights are pre-
specified by PanPhon.

• Partial Hamming Feature Distance. Inser-
tion and deletion costs are 1, however the cost
of substitution for a zero value is half the sub-
stitution cost for a nonzero value.

We use the PanPhon normalized version of all
edit distances, which divides by the maximum
length of the two words in the pair. Fig. 1 shows
kernel density estimation plots of the distribution of
Fast Levenshtein and Dolgo Prime distances over
the entire dataset. Loans have the lowest distance
on average, followed by hard negatives.

4.3 Semantic Similarity
A loanword between a pair of languages must both
sound and mean the same. While phonetic sim-
ilarity, calculated with edit distance, has been a
foundation for past work in loanword detection,
modern large language models provide an opportu-
nity to select for semantic similarity between word
vectors, provided the models are trained over mul-
tilingual data. We make use of the simultaneous
multilingual training objectives of MBERT (Devlin
et al., 2019) and XLM (Conneau et al., 2020) to
benefit from cross-language proximity of contextu-
alized word embeddings, as shown in (Cao et al.,
2019). We use the cosine function as our vector
similarity measure.
MBERT is the multilingual version of BERT,
pretrained on 104 languages, with demonstrated
capacity for knowledge transfer on downstream
tasks. It differs from BERT in two ways: i) in its
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masked language modeling pretraining, each batch
comprises sentences from all languages, and ii) its
dictionary is shared among all languages and is
created by WordPiece from concatenating all cor-
pora. Pires et al. (2019) show that MBERT’s ability
to transfer is due to a multilingual representation,
which enables it to manage transfer across different
scripts. These representations seem to share a com-
mon subspace that contains linguistic information,
independent of specific languages.

XLM-100 is a cross-lingual (100-language) pre-
trained model which extends previous BERT-based
models with a Translation Language Modeling
(TLM) objective as well as the masked language
and causal language modeling objectives, and has
demonstrated success in unsupervised machine
translation tasks (Conneau and Lample, 2019).
XLM uses byte-pair encoding subword tokeniza-
tion (Sennrich et al., 2016) which includes the most
frequent symbol pairs when creating the token vo-
cabulary. This makes it suitable for encoding to-
kens common in low-resourced languages (LRL)
while alleviating bias towards high-resource lan-
guages, by reducing tokenization of LRL words at
the character level. This improves the alignment of
embedding spaces of languages that share either the
same alphabet or proper nouns (Smith et al., 2017),
both of which occur frequently among loanwords.

To these models, we input a “sentence” consist-
ing of the word preceded by the [CLS] or <bos>
token and followed by the [SEP]/<eos> token.
We retrieve the vector of the [CLS]/<bos> token
as a representation of the entire semantics of the
input, to account for tokenization possibly splitting
the word.

4.4 Alignment Network
To account for different phonotactics in paired
languages (e.g., Swedish /sku:lA:/→ Finnish
/koulu/), we build a model to align phonemes in
a word pair and account for epenthesis, elision,
and metathesis, which provides a more informa-
tive measure than simply edit distance. Mortensen
et al. (2016) show that information-rich phonologi-
cal representations do better than character-based
models or one-hot encodings in tasks such as NER.

We convert the IPA transcriptions to 21 subseg-
mental articulatory features using PanPhon7. These

7Panphon does not contain suprasegmental or tonal infor-
mation which may explain why alignment logits involving
tonal languages such as Chinese may not sufficiently encode
articulatory alignment (see Sec. 6)

features were padded to the maximum length of a
vector in the borrower-donor pair. The features for
the loanword and original word were then concate-
nated for input to the alignment network.

The alignment network is a deep feedforward
neural network trained on the aforementioned
concatenated features of the alldata split of our
datasets. The network was trained against the
loan/non-loan binary label. This is not to predict
loan status, but because we do not include any se-
mantic information at this step, the label acts as
an indicator of “phonetically aligned” or not. A
positive prediction means the model predicts that
the two words in the pair are strongly phonetically
aligned according to the articulatory features. Dur-
ing inference, we get the pre-sigmoid logit value as
a holistic alignment score between the two words.

5 Evaluation
For evaluation, we create three data distributions
for each language pair. One (the balanced dis-
tribution), contains half loanwords and half non-
loans. This is a well-behaved distribution well-
suited for machine learning. The non-loans are
drawn roughly 1

7 from the hard negatives, 4
7 from

the synonyms, and 2
7 from the randoms, reflecting

the notion that relatively few words in a language
are likely to be very phonetically close to a loan-
word on average, while there are likely to be many
more words of synonymous or similar meaning.

Another distribution attempts to approximate the
actual proportion of loanwords from the donor lan-
guage into the recipient language (the “realistic”
distribution, or realdist). Sometimes this propor-
tion is well-documented, and at other times not.8.
Where a figure is provided in the linguistic litera-
ture, we use it. Otherwise, we take the number of
loanwords we collected from Wiktionary and di-
vide it by the total number of lemmas in the borrow-
ing language, and impose a lower bound of 10%, to
maintain enough loanwords in the testing set. The
non-loans portion of the realdist set is drawn in the
same proportions as in the balanced set. For all lan-
guage pairs currently in the WikLoW dataset, the
realdist contains <50% loanwords, but for other
language pairs, e.g., Korean-Chinese, >50% loan-
words is certainly possible or likely (Sohn, 2005).

The final distribution (abbreviated alldata),
takes all the data we collected from Wiktionary,

8Sometimes documentation conflicts, such as Macrea
(1961) and Sala (1988), which provide differing figures for
Romanian loanwords from French, depending on whether all
words or only core vocabulary is considered.
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to purposely overweight the dataset against loan-
words, to test our method in a difficult condition.

To each distribution, we concatenate two one-hot
vectors representing the scripts of the languages in
the pair. This allows certain models to learn de-
pendencies between the scripts and other variables,
e.g., if the languages are written in different scripts,
the textual Levenshtein distance becomes nearly
meaningless.

Each distribution was divided into a 90:10
train/test split, and then shuffled. We evaluate four
different binary classifiers on all distributions: a
logistic regressor (LR), a linear SVM, a Random
Forest (RF), and a deep neural network (NN). The
neural network consists of 3 layers of 512, 256,
and 128 hidden units respectively, all with ReLU
activation and followed by 10% dropout, and a
final sigmoid activation, and is trained for 5,000
epochs with Adam optimization and BCE loss. We
perform the evaluations listed below.
Single Multilingual Model (SMM) For each dif-
ferent data distribution, we train a single model on
the data from every language pair listed in Table 1
except for Persian-Arabic, Hungarian-German,
German-Italian, and Catalan-Arabic, which we
reserve for subsequent experiments. The single
multilingual model is evaluated on the unseen test
sets for all language pairs used in training.
Pair-Specific Models For each distribution, we
train and evaluate on a single language pair only,
so we can compare the performance of the SMM
to models specialized for each language pair.
Pruned Training Set We train on the realdist
train set and evaluate on the alldata test set. This
allows us to test on a much larger test set that con-
tains a lower proportion of loanwords, and test the
ability of our model to pick out loanwords from
a more challenging distribution with less training
data. The realdist train set is pruned of word pairs
that appear in the alldata test set, since the two dis-
tributions were originally created separately. This
experiment used the neural network classifier only.
Unseen Language Pairs We evaluate the perfor-
mance of the SMM on Persian-Arabic, Hungarian-
German, German-Italian, and Catalan-Arabic,
which the model has never seen. This experiment
used the neural network classifier only.

6 Results
Our primary metrics are precision, recall, and F1-
score on positive loanword identification. Table 2
shows the average positive F1 score on the realdist

LR NN SVM RF

F1 (+) 85 86 84 85

Table 2: Average F1 (+) of 4 classifiers (as %)

distribution of the 4 classifiers we evaluated. The
remaining tables and figures all focus on the results
of the neural network, are sorted by decreasing
number of loanwords in the language pair, and are
discussed in Sec. 7. Table 3 presents the SMM
results. Fig. 2 shows the alldata test results from
Table 3 in bar graph form compared to the perfor-
mance of the loanword detection model on each
language pair when trained only on data from that
language pair, and to the model when trained on
the smaller pruned realdist training data. Table 4
shows the SMM’s performance on the unseen lan-
guage pairs, and Fig. 3 plots F1 score against the
number of loanwords in each pair’s test set.

7 Discussion
We can quantitatively compare our approach to that
of Mi et al. (2021), who report 75.35% average pre-
cision, 74.09% average recall, and 74.71% average
F1 on loanword detection in Uyghur on borrowings
from Russian, Arabic, Turkish, and Chinese. Our
results are on different language pairs but are com-
parable to or exceed this, particularly if the testing
set is balanced between loans and non-loans.

In Fig. 2, we can see that in most cases, the mul-
tilingual model outperforms the single-pair models
on the same language pair on loanword retrieval,
though this effect is most pronounced in language
pairs with a higher density of loanwords. The
model trained on the smaller pruned realdist data
sees an appreciable drop in precision, but an equal
or greater increase in loanword recall, and this ef-
fect is especially pronounced in pairs with fewer
loanwords in the data overall, suggesting that train-
ing on a more realistic distribution may be advanta-
geous when prioritizing reducing false negatives.

Fig. 3 shows the correlation between test set size
and performance of the SMM (including unseen
language pairs). There appears to be a strong cor-
relation between the proportion of loanwords in a
test set (as expected, a balanced set leads to optimal
performance), but also the raw size of the test set
itself. The model performs better on larger test sets,
unseen or not, regardless of what data it was trained
on. We speculate that this may be because when a
borrowing language borrows a lot of words from
a donor language, it does so at around the same
time (e.g., English from Norman French), meaning
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 90 96 90 94 93 88 94 94 85 85 81
98 97 98 99 97 96 98 99 98 97 98 98 98
83 89 84 85 82 82 86 76 86 81 78 69 71

R
(+)

81 91 87 90 73 82 88 61 75 86 68 71 51
98 99 99 99 97 99 100 93 99 99 98 98 93
75 88 84 85 66 73 81 49 63 72 56 62 47

F1
(+)

86 93 89 93 81 88 91 72 83 90 75 70 62
98 98 98 99 97 98 99 96 98 98 98 98 95
79 89 84 85 73 77 83 60 73 76 65 65 57

Table 3: Single multilingual NN model results as % (1st row: realdist, 2nd row: balanced, 3rd row: alldata).
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

SMM P(+) Pair only P(+) Sm-SMM P(+) SMM R(+) Pair only R(+) Sm-SMM R(+)
SMM F1(+) Pair only F1(+) Sm-SMM F1(+)

Figure 2: NN alldata results comparing base SMM, pair-specific model, and SMM trained on pruned realdist data
(Small-SMM).

fa-ar hu-de de-it ca-ar

P
(+)

95 95 73 100
97 100 100 75
75 73 54 25

R
(+)

75 36 33 20
97 93 92 30
64 30 29 10

F1
(+)

84 52 46 33
97 96 96 43
69 43 38 14

Table 4: Holdout performance (same format as Table 3).

there are consistent transformations applied, which
a network can pick up. This may not be the case
in language pairs with a sparser density. Catalan-
Arabic performance is particularly low and there
are only 10 words in the test set, many of which
were likely mediated by Spanish first.

7.1 Error Analysis
Mistakes made by the SMM, particularly on lan-
guage pairs that perform less well, are illuminating.

Finnish-Swedish false negatives, e.g., kyökki/kök
and rontti/strunt, suggest that additional final vow-

F1
(+

)

0

10

20

30

40

50

60

70

80

90

100

# loanwords in pair test set
0 100 200 300 400 500 600

realdist balanced alldata

Figure 3: F1 score vs. number of loans per pair. Solid
markers indicate unseen language pairs.

els and reduction of consonant clusters pose a dif-
ficulty. Other false negatives back this up, such
as Mandarin-English巧克力 (qiǎokèlì)/chocolate
or Romanian-Hungarian sudui/szidni, which show
sometimes irregular transformation to fit the bor-
rowing language’s phonotactics.

False positives are overwhelmingly hard nega-
tives, and the model has particular trouble with
languages that use abugidas or alphabets that bor-
row from languages that use abjads, due to the lack
of vowels. Examples include Hindi-Persian EnsAr
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(nisār)/nasr and Azerbaijani-Arabic r@bb/rabbaba.
This can largely be attributed to Epitran not insert-
ing vowels into Perso-Arabic transcriptions.

This suggests one clear way to potentially im-
prove our method: incorporating multi-head atten-
tion into the phonemic alignment network rather
than the current feedforward structure, which is
performing the task the way single-head attention
would and then averaging over all alignments.

Cognates are excluded from the positive loans
data unless the cognate was actually later borrowed
into the recipient language, as sometimes happens
(e.g. “chef” vs. “head”). It is rare for cognates to
be misclassified as loanwords due to intervening
sound changes between two languages with com-
mon ancestry, but there are cases where a loanword
is paired with a word in the source language that is
cognate to it but is not the original borrowed word.
Table 5 shows some of these rare cases.

Language pair Word pair

en-fr communard/communal
en-de Blume/Bluhm
ro-fr cupolă/coupelle
de-fr Montage/montant

Table 5: Cognates mislabeled as loanwords by SMM.

7.2 Influence of Features
Neural networks are difficult to interpret, but the
weights of the logistic regression classifier, which
on average performed ∼1-3% lower than the neu-
ral network, gives a sense of which features are
important. Overall the alignment score is a strong
positive correlate to loanword status across all lan-
guage pairs. As expected, Levenshtein textual edit
distance is inversely correlated with loanword sta-
tus in pairs that share the same script, but not when
the languages use different scripts. Interestingly,
the semantic similarity metrics do not have a lot of
influence on the model, but XLM is generally more
influential than MBERT, and this influence is more
pronounced among the lower-resourced languages
(e.g., Kazakh-Russian, Hindi-Persian, Azerbaijani-
Arabic), which supports XLM’s claim to be more
suited to LRLs, but the influence is most pro-
nounced on English-French, the highest-resourced
language pair currently in WikLoW, which under-
cuts the claim somewhat. Since loanwords are ex-
pected to be semantically similar, this task allows
us to investigate the quality of multilingual lan-
guage models on different language pairs. These
findings are also borne out by ablation tests on

the neural network classifier. For instance, drop-
ping the alignment score and semantic similarities
causes recall on the different-script pairs (Hindi-
Persian, Azerbaijani-Arabic, Mandarin-English) to
drop by 20% or more, while not affecting the same-
script pairs as significantly. Sec. A.5 in the ap-
pendix shows these findings in more detail.

7.3 Human Comparison
To compare the performance of our model to hu-
man performance on loanword retrieval, we se-
lected three language pairs, English-French, Hindi-
Persian, and Mandarin-English, took the list of
loanwords from the test set of the alldata dis-
tribution, and asked N annotators who were flu-
ent speakers of each borrowing language to mark
which in the list they thought were loans from the
listed donor language. This was a fast way to assess
human loanword recall and provide comparative
numbers to our system on these language pairs.
Table 6 shows the results.

Pair N
Human
µ R(+)

SMM
R(+)

κ
# loans

(homonyms)

en-fr 7 29 88 .059 508 (8)
hi-fa 6 60 72 .113 125 (4)
zh-en 6 859 47 .034 95 (1)

Table 6: Human average loanword recall vs. SMM
recall (as %).

Our system is able to significantly exceed hu-
man recall on English-French and Hindi-Persian,
but not on Chinese-English (as noted those num-
bers may be inflated). Some loans were also
homonyms, which may have had a small impact on
human recall (see supplement). We also calculated
Fleiss’ kappa (Fleiss, 1971) over the human annota-
tions and found that even when individual humans
demonstrated moderate-to-high recall on loanword
retrieval, there was virtually no agreement among
annotators on which loanwords they identified.

8 Conclusions and Future Work
Automated loanword detection enables a number of
downstream tasks. Coreferents and named entities
across languages may often be loanwords, and com-
mon vocabulary enables potential improvements in
machine translation (Ortega et al., 2021).

Parallel corpora of loanwords also afford
learning cross-lingual contextual word embed-
ding mappings—inspired by the success of pre-

9These numbers may be artificially high due to the Chinese
annotators being bilingual in English.
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Transformer embedding mappings (Bojanowski
et al., 2016), and the potential of post-Transformer
alignments (Cao et al., 2019). These can be incor-
porated into the Transformer architecture to pro-
vide auxiliary signals to enhance translation in two
ways: i) Introducing another multi-head attention
between the input language embeddings and their
mappings in the target language space—similar to
the second multi-head attention block in the origi-
nal Transformer architecture (Vaswani et al., 2017).
We propose to map embeddings between a source
language LX and target language LY by comput-
ing a transformation matrix between paired rep-
resentations of semantically-equivalent words or
sentences, then to compute attention weights be-
tween these mapped embeddings, and concatenate
these auxiliary attention outputs with the attention
between tokens from LX and already-generated to-
kens from LY . ii) Unmasking identified loanwords
in the target language in the decoder’s input, which
is expected to provide further context to the de-
coder in the target language. This would replicate
a uniquely human linguistic capability: the ability
to pick up context in an unfamiliar language by
picking out known words (i.e., loans from a known
language). Fig. 4 shows a proposed architecture for
these operations.

راز موفقیت ھمیشھ تلاش کردن است सफलता ---- ---- हमेशा ---- ---- ----

सफलता का रह� हमेशा कोिशश करना है।

Loanword Detection
Algorithm

सफलता का ---- हमेशा ---- ---- ----

LX to LY
Embedding

Mapper

Multi-Head
Attention

Add & Norm

Gold Output:

Figure 4: Proposed novel Transformer architecture for
exploiting loanword knowledge in machine translation.

Mapping between embedding spaces also al-
lows expanding our method and dataset to new

languages not covered by MBERT or XLM through
resources like IndicBERT (Kakwani et al., 2020).

8.1 Why Study Loanwords?
In keeping with the COLING 2022 special theme,
“Tackling the Grand Challenges of the world by pro-
moting mutual understanding through language,”
we posit that common vocabulary decreases bar-
riers to communication, and representing it of-
fers a particular benefit to LRLs in NLP, by pro-
viding a way to leverage resources from higher-
resourced languages that have contributed vocabu-
lary to an LRL. In this, Wiktionary itself has been
and can continue to be a resource (Zesch et al.,
2008; Krizhanovsky and Smirnov, 2013; De Melo,
2015; Wu and Yarowsky, 2020). Loanword de-
tection is also necessarily not language agnostic,
and is therefore important for linguistic diversity
and inclusion in NLP (Joshi et al., 2020), although
our multilingual results suggest that there may be
key features of loanwords that allow detection to
generalize.

We propose these challenges to the community:
1. We have presented a novel baseline for loan-

word detection across arbitrary language pairs
that delivers high-quality results, but there
remain challenges particularly for languages
with divergent phonotactics.

2. We have also presented a method to gather
more data for new languages, and demon-
strated our detection method’s performance
on unseen language pairs, which we present
as a baseline for comparison.

3. We have also provided homonym data, which
is tailor-made to confound a loanword de-
tection algorithm. Discriminating loanwords
from their homonyms remains a challenge that
presents many interesting opportunities in ar-
eas like machine translation and comparative
and corpus linguistics.
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Appendix

A.1 Further Details on Data Collection
We use the MediaWiki API to conduct our data
collection. To maintain adherence to Wiktionary’s
terms of service, we make no more than 200 re-
quests per second and sleep after a specified num-
ber of words are processed (by default, 200).

When conducting the initial data collection, we
exclude terms that begin or end with hyphens, as
those are likely to be affixes; that are only one letter
long, as those are likely to contribute too much
noise to the final dataset; and those that contain
numerals or non-phonetic, non-syllabic, or non-
logographic (depending on the language) symbols.

The choice of language pairs investigated here
was determined in part by the intersection of
languages that are supported by all 3 of Epi-
tran, MBERT, and XLM-100, and that have a
[Recipient]_terms_borrowed_from_
[Donor] category on Wiktionary that contains
more than 1,000 entries. The exceptions to this
are: Finnish-Swedish, where Finnish is not na-
tively supported by Epitran, but we built our
own Finnish G2P mapping for Epitran; Mandarin-
English, where some terms were discarded during
preprocessing, causing the number to fall below
1,000; and Hungarian-German, German-Italian,
and Catalan-Arabic, which were selected specif-
ically for having fewer than 1,000 loanwords listed
in Wiktionary.

Table 7 shows the 2-letter ISO 639-1 codes for
these languages, which can help in interpreting
Table 3 (Sec. 6).

A.2 Further Details on Semantic Similarity
In our experiments, for the XLM-100 and MBERT
models, we extract the <bos> embeddings (equiv-
alent to the [CLS] token for MBERT) for a
word pair from the last_hidden_state. Nu-
merous studies like (Jawahar et al., 2019) and
(Tenney et al., 2019) suggest that BERT’s later
layers encode comparatively more high-level se-
mantic information than its middle layers which
tend to capture more syntactic features in the
linguistic hierarchy. For both the models, the
dimensions of the generated embeddings are of
the shape (batch_size, sequence_length,
hidden_size) where batch_size is 8
for both, sequence_length is the number
of tokens from the word after tokenization
(max_length is 512 for both models) whereas

Code Language

ar Arabic
az Azerbaijani
ca Catalan
de German
en English
fa Persian
fi Finnish
fr French
hi Hindi
hu Hungarian
id Indonesian
it Italian
kk Kazakh
nl Dutch
pl Polish
ro Romanian
ru Russian
sv Swedish
zh Mandarin

Table 7: ISO 639-1 language codes for languages in
current dataset.

the embedding dimension i.e., hidden_size is
1280 for the XLM and 768 for MBERT. We then get
the cosine similarities between the generated em-
beddings of each word pair of the borrower-donor
pair in order to extract their semantic similarities.

A.3 Further Details on Alignment Network
The alignment network was trained for 5,000
epochs with Binary Cross-Entropy (BCE) loss and
Adam optimization, with a 20 percent validation
set to prevent overfitting. The DNN consists of two
hidden layers with 512 neurons each with ReLU
activation, followed by 10% dropout, and an output
layer and a sigmoid function.

Previous studies like Wu and Klabjan (2021)
have suggested that logit outputs of neural net-
works can be a reliable and agnostic uncertainty
measure that captures innate features of classes
during classification and detection tasks. The align-
ment network here maps the concatenated artic-
ulatory features of a word pair to their class and
therefore, the logits will contain class-based infor-
mation that can subsequently be used as crucial
features for our classifiers. In other words, these
logits encode alignment information of the artic-
ulatory features that can be mapped to whether a
pair is a phonetically similar, conditioned upon the
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sound patterns of their respective languages, or not.

A.4 Results from Other Classifiers

The main paper presented the results of the neu-
ral network classifier in detail and discussion of
the weights from the logistic regressor. Here we
present results from the logistic regression classi-
fier (Table 8), the support vector machine (Table 9),
and the random forest (Table 10).

The neural network is consistently the best-
performing classifier, by about 1-5% F1, depending
on which distribution is being evaluated on. The
other classifiers can be expected to perform about
this much lower. One thing to note is that the effect
is most pronounced on the alldata dataset, which
is the hardest dataset for any classifier on aver-
age, due to the overwhelming preponderance of
non-loans. When the dataset is balanced between
loans and non-loans, the type of classifier chosen
for loanword detection is almost immaterial, with
almost perfect performance all around. It seems at
these proportions, the information encoded in the
datasets, such as alignment score, edit distances,
and cosine similarities, are informative enough. For
this reason we have focused most discussion in the
main body of the paper on the alldata and realdist
datasets.

However, while the behavior of the logistic re-
gressor and SVM are largely consistent with each
other, and track that 1-5% difference with the neu-
ral network across all language pairs, the behavior
of the random forest is rather different and incon-
sistent with the other classifiers. For example, it
gets 100% recall on the balanced distributions of
Indonesian-Dutch and Romanian-French (as well
as Kazakh-Russian like the other classifiers), but
on the Chinese-English alldata distribution, re-
call comes in ∼20% below the other classifiers.
The other pairs with dissimilar scripts see a simi-
lar, albeit reduced effect on the same distribution,
but so do some pairs that share a script, such as
Indonesian-Dutch and Romanian-French.

A.5 Further Details on Influence of Features

This section contains the quantitative breakdown
of the influence of different features on the re-
sults, which was discussed in Sec. 7.2. Fig. 5
is a graph representation of the logistic regressor
weights mentioned there. The circular markers rep-
resent language pairs where both languages use the
same script (including extended versions), while

the square markers represent pairs where the lan-
guages use different scripts.
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Figure 5: Logistic regressor weights trained on the all-
data distribution.

Inferences drawn from the logistic regressor
weights are bolstered by ablation tests on the neu-
ral network. Table 11 shows the neural network
performance when the alignment scores and cosine
similarities are not used as input features.

Articulatory alignment scores and cosine simi-
larities are most important when the languages in
the pair use different scripts. When these are re-
moved as training inputs, and only phonetic and
textual distance metrics are left, along with the
script encodings, performance on the Azerbaijani-
Arabic alldata distribution drops by 10% positive
F1 and Hindi-Persian drops by 20% positive F1.
The most drastic case is Mandarin-English, where
without these features, positive F1 on realdist and
alldata drop by 19% and 47% respectively, and
positive recall drops by 20% and 42% respectively.
This is because the different scripts make textual
Levenshtein distance a useless feature here, and
the differing phonologies of Mandarin and English
make the phonetic edit distances noisy (e.g., see
Sec. 7.1). Meanwhile, on certain same-script pairs,
particularly those where words tend to be imported
with little change in spelling (e.g., English-French,
English-German, German-French), performance
can actually go up slightly, because in these cases,
textual Levenshtein distance is enough to detect
that the word is a loan.

We should note that with only phonetic and
script features, performance on the balanced distri-
bution remains relatively high but suffers slightly.
However, results vary on the realdist distribution,
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

91 96 89 96 90 94 93 83 93 94 83 82 75
98 97 97 98 97 96 99 98 98 97 95 97 97
80 86 81 84 77 78 83 78 84 77 73 62 65

R
(+)

80 88 83 89 76 82 86 66 73 83 69 65 52
98 98 98 99 98 99 100 94 96 99 99 95 94
72 85 80 83 65 73 76 48 59 68 58 51 46

F1
(+)

85 92 86 93 82 88 89 73 82 88 75 72 61
97 97 97 98 97 98 99 96 97 98 97 96 95
76 86 80 84 71 76 88 60 80 72 65 56 54

Table 8: Single multilingual logistic regression classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row:
alldata).

all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 89 97 90 94 93 85 93 93 82 80 75
97 97 97 99 97 96 99 99 98 97 95 98 98
80 86 79 83 77 78 82 78 85 80 74 62 66

R
(+)

78 87 79 88 74 81 85 63 69 80 63 62 48
98 98 98 99 98 99 100 94 97 99 99 95 94
70 83 75 83 62 71 76 48 57 66 54 54 45

F1
(+)

84 92 84 92 81 87 89 72 79 86 71 70 59
98 97 97 99 97 98 99 96 97 98 97 96 96
75 85 77 83 69 74 79 60 68 73 62 58 54

Table 9: Single multilingual SVM classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row: alldata).

all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 88 97 88 93 92 85 90 95 84 88 84
96 96 95 95 96 93 97 95 97 97 94 99 100
85 91 87 85 83 82 85 77 81 85 81 73 69

R
(+)

80 90 84 89 76 80 91 73 71 77 65 59 40
99 99 99 100 98 100 100 95 99 99 98 97 92
68 86 82 77 58 62 78 47 54 59 54 43 26

F1
(+)

85 93 86 93 82 86 91 79 80 85 74 71 54
97 97 97 97 97 96 98 95 98 98 96 98 96
75 88 84 81 68 71 81 58 65 70 65 54 38

Table 10: Single multilingual random forest classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row:
alldata).

and there appears to be some correlation between
increased performance on realdist without these
features, and the proportion of loans in that distri-
bution, suggesting that this is potentially important
to consider (i.e., the base rate of loans from French
into English, for instance, is relatively high). The
performance penalty we see on LRLs and different-
script pairs do suggest that overall the alignment
score is most critical to generalizable performance,

and the semantic similarities provide a way to ana-
lyze the quality of large multilingual language mod-
els for certain language pairs. These could also be
augmented with other pair-specific metrics, such
as overall measures of lexical or phonetic distance.

A.6 Homonyms in Human Comparison Task

The loanwords from the alldata test sets given to
human annotators, that are also homonyms, are
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

88 95 84 93 82 92 92 79 87 87 77 78 74
94 95 96 92 97 90 99 95 97 92 93 91 81
84 92 87 78 80 81 90 76 92 65 74 81 62

R
(+)

87 95 97 92 67 93 95 66 96 94 85 73 31
96 99 99 96 89 99 98 85 97 96 96 96 86
72 92 93 73 46 77 93 44 93 48 67 41 5

F1
(+)

87 95 90 92 74 93 94 72 91 90 80 75 43
95 97 97 94 93 94 99 90 97 94 94 94 84
78 92 90 76 58 79 92 56 85 56 70 55 10

Table 11: Single multilingual NN classifier (without alignment and cosine similarity inputs) results as % (1st row:
realdist, 2nd row: balanced, 3rd row: alldata).

listed below:

• English-French:

– “punt,” from French pointe, meaning a
bet or wager, with many other etymolo-
gies, including from Old English for a
pontoon boat.

– “Lemans,” French surname from to-
ponym Le Mans, and from Middle En-
glish Lemans, “son of Leman.”

– “bride,” from French bride, meaning
a bridle, and from Old English brȳd,
“bride, daughter-in-law.”

– “paillard,” from a French surname (and
name of a restaurant), and variant of “pal-
liard,” meaning a beggar.

– “lisse,” from French lisser, smooth, and
from Old English lissı̄an, “to relieve.”

– “tarse,” from French tarse, the tarsus or
ankle-bones, and from archaic term for a
male falcon.

– “par,” from French par, meaning
“through, by,” with many other etymolo-
gies, including from Latin pār, “equal.”

– “bombard,” actually a doublet, with two
meanings both meaning “cannon,” both
ultimately from Middle French, one via
modern French bombarde, the other via
Middle English bombard (latter form
also referred to a bassoon).

• Hindi-Persian:

– agr (agar), from Persian, meaning
“if," and a descendent of Sanskritagz
(agaru), a type of wood.

– d�h (deh), from Persian, meaning “vil-
lage," and a descendent of Sanskrit d�h
(deha), body.

– md
 (mard), from Persian, meaning
“man," and a descendent of Sanskrit md

(marda), “destroying”.

– hm (ham), from Persian, meaning “also,"
and natively Hindi ultimately from San-
skrita-m� (asme) , meaning “we,” “us.”

• Mandarin-English:

– 塞特 (sàitè), from English setter but also
from Hebrew male name Seth.

A.7 Proportion of Loanwords in Each
Distribution

Table 12 shows the proportion of loanwords in each
distribution for each language pair. The balanced
distribution always contains 50% loans and so is
not included.

A.8 Supported Languages and Scripts

Our system can in principle support the languages
in Table 13 out of the box. While we have only
tested on the language pairs mentioned in the main
paper, and not every pairing in Table 13 has a suf-
ficient volume of loanwords listed in Wiktionary,
data collected in any of these languages can be con-
verted to IPA with Epitran or extensions, and pro-
cessed by MBERT and XLM to get cosine similari-
ties between word vectors. Epitran can be extended
to other languages by defining custom mapping,
preprocessing, and postprocessing rules, as we did
here for Finnish.

Proper functionality makes an assumption that
the language given is written in the associated script
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Pair
% Loans
(realdist)

% Loans
(alldata)

en-fr 30 14.841
en-de 10 13.322
id-nl 40 14.996
pl-fr 10 12.252
ro-fr 30 11.999
kk-ru 10 11.807
fa-ar 40 11.289
ro-hu 10 10.788
de-fr 10 10.206
hi-fa 30 10.126
fi-sv 10 9.754
az-ar 15 9.324
zh-en 10 10.496
hu-de 10 6.155
de-it 10 3.344
ca-ar 10 1.291

Table 12: Proportion of loanwords per pair in each
distribution

listed. This serves the purpose of not only main-
taining support in Epitran but also in collecting
clean data from Wiktionary, and in assigning the
correct one-hot script encoding during training and
evaluation.

A.9 Organization of Code/Data
README.md contains instructions to run the
full pipeline. language-pairs.json is
a JSON file containing information about
the language pairs to make datasets for, in-
cluding codes for Epitran and Google Trans-
late and desired realdist proportion of loans.
language-pairs-holdout.json is the
same for language pairs to be included in the
holdout test set and withheld from training.
language-pairs-pipelinetest.json
contains only Catalan-Arabic, which is a small
sample and runs (relatively) quickly, in order to
validate the pipeline. These JSON files drive most
of the rest of the code.
supported_languages.txt contains the

list of supported languages (cf. Table 13).
epitran-extensions contains preprocess-
ing, mapping, and postprocessing rules for new Epi-
tran language. Currently this contains only Finnish,
which only uses pre and map. To run Epitran for
the new language, these would need to be moved
into the corresponding folder in the Epitran distri-

ISO code Language Script

sq Albanian Latin
ar Arabic Latin
az Azerbaijani Latin
bn Bengali Bengali
my Burmese Myanmar
ca Catalan Latin
zh Chinese Chinese
hr Croatian Latin
cs Czech Latin
nl Dutch Latin
en English Latin
fi Finnish Latin
fr French Latin
de German Latin
hi Hindi Devanagari
hu Hungarian Latin
id Indonesian Latin
it Italian Latin
jv Javanese Latin
kk Kazakh Cyrillic
ky Kyrgyz Cyrillic
ms Malay Latin
ml Malayalam Malayalam
mr Marathi Devanagari
fa Persian Arabic
pl Polish Latin
pt Portuguese Latin
pa Punjabi Gurmukhi
ro Romanian Latin
ru Russian Cyrillic
es Spanish Latin
sw Swahili Latin
sv Swedish Latin
ta Tamil Tamil
te Telugu Telugu
tr Turkish Latin
uk Ukranian Cyrillic
ur Urdu Arabic
uz Uzbek Latin
vi Vietnamese Latin

Table 13: Currently supported languages and scripts.

bution in Python’s site-packages.

wiktionary-scraper-python contains
the scrapers for initial data collection. Results are
saved in results.

Datasets contains the code to make the
four dataset splits with edit distances. Results
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are sorted by type split: Loans, Synonyms,
Hard-Negatives, and Randoms. Data files
contain word pairs, IPA transcriptions of each word,
English translations of each word (for interpretabil-
ity by a more general audience, and not used in
training or evaluation—translations may be inac-
curate due to shortcomings in the Google Trans-
late model for the language in question). Note
that calculating all the dataset splits for a language
pair, particularly the hard negatives, may take a
very long time, up to days, due to the number of
passes through the data. This inefficiency is the
main reason why only a subset of the 24K available
Romanian-French loans are used in these exper-
iments. Decreasing the time complexity of cal-
culating the hard negatives while maintaining the
quality of the output is the topic of ongoing re-
search. production_train_test is the di-
rectory containing the datasets that will be used
for final evaluation. These are sorted by language
pair and then by evaluation distribution: alldata,
balanced, and realdist. Datasets also
contains the human annotation spreadsheets in
folder human_annotation.
Classifiers contains the code to both train

the alignment network for a language pair and
get the logit alignment score for each word pair,
and to get the cosine similarities from MBERT
and XML. Datasets with logit and similarity val-
ues are resaved in production_train_test.
Classifiers also contains the code to perform
evaluation under all conditions mentioned in the
main body of this paper.
torch_models contains a saved instance of

the single multilingual model. Final_results
contains the results from that model and others,
which are reported in this paper. FleissKappa
contains the code to calculate Fleiss’ kappa
score over the human annotations (found inside
Datasets).


