
Proceedings of the 29th International Conference on Computational Linguistics, pages 4976–4995
October 12–17, 2022.

4976

Unsupervised Sentence Textual Similarity
with Compositional Phrase Semantics

Zihao Wang
Department of CSE

HKUST
Hong Kong, China

zwanggc@cse.ust.hk

Jiaheng Dou and Yong Zhang ∗

BNRist, RIIT, Institute of Internet Industry
Department of Computer Science and Technology

Tsinghua University, Beijing, China
djh19@mails.tsinghua.edu.cn
zhangyong05@tsinghua.edu.cn

Abstract

Measuring Sentence Textual Similarity (STS)
is a classic task that can be applied to many
downstream NLP applications such as text gen-
eration and retrieval. In this paper, we focus
on unsupervised STS that works on various
domains but only requires minimal data and
computational resources. Theoretically, we pro-
pose a light-weighted Expectation-Correction
(EC) formulation for STS computation. EC for-
mulation unifies unsupervised STS approaches
including the cosine similarity of Additively
Composed (AC) sentence embeddings (Arora
et al., 2017), Optimal Transport (OT) (Kus-
ner et al., 2015), and Tree Kernels (TK) (Le
et al., 2018). Moreover, we propose the Re-
cursive Optimal Transport Similarity (ROTS)
algorithm to capture the compositional phrase
semantics by composing multiple recursive EC
formulations. ROTS finishes in linear time and
is faster than its predecessors. ROTS is empiri-
cally more effective and scalable than previous
approaches. Extensive experiments on 29 STS
tasks under various settings show the clear ad-
vantage of ROTS over existing approaches.1

Detailed ablation studies demonstrate the effec-
tiveness of our approaches.

1 Introduction

Sentence Textual Similarity (STS) measures the
semantic equivalence between a pair of sentences,
which is supposed to be consistent with human
evaluation (Agirre et al., 2012). STS is also an ef-
fective sentence-level semantic measure for many
downstream tasks such as text generation and re-
trieval (Wieting et al., 2019; Zhao et al., 2019;
Nikolentzos et al., 2020; Çelikyilmaz et al., 2020).
In this paper, we focus on unsupervised STS which
is expected to compare texts of various domains
but only requires minimal data and computational
resources.

∗ Corresponding author.
1Our code can be found in https://github.com/

zihao-wang/rots.

There are several typical ways to compute un-
supervised STS, including 1) treat each sentence
as an embedding by the Additive Composition
(AC) (Arora et al., 2017) of word vectors, then
estimate the STS of two sentences by their co-
sine similarity; 2) treat each sentence as a prob-
abilistic distribution of word vectors, then measure
the distance between distributions. Notably, Opti-
mal Transport (OT) (Peyré and Cuturi, 2019)2 is
adopted to compute the STS (Kusner et al., 2015).
OT-based approaches search for the best alignment
with respect to the word-level semantics and result
in state-of-the-art solution (Yokoi et al., 2020).

In this paper, we argue that phrase-level seman-
tics should also be exploited to fully understand the
sentences. For example, “optimal transport” should
be considered as a mathematical term rather than
two independent words. Specifically, the phrase
chunk is composed of lower-level chunks and is
usually represented as a node in tree structures.
The aforementioned AC and OT-based STS meth-
ods are too shallow to include such structures. Tree
Kernels (TK) (Le et al., 2018) consider the parsed
syntax labels. However, it boils down to syntax-
based but sub-optimal word alignment under our
comparison experiment.

Recent advancement of Pretrained Language
Models (PLMs) also demonstrate the importance of
contextualization (Peters et al., 2018; Devlin et al.,
2019; Ethayarajh, 2019). PLMs can be further
adopted to STS tasks by supervised fine-tuning (De-
vlin et al., 2019), under carefully designed transfer
learning (Reimers and Gurevych, 2019) or domain-
adaptation (Li et al., 2020; Gao et al., 2021). With-
out those treatments, the performances of PLM-
based STSs are observed to be very poor (Yokoi
et al., 2020). Meanwhile, PLM-based STSs suffer
from high computational costs to fit large amounts
of high-quality data, which might prevent them

2OT-based distance reflects the dissimilarity between sen-
tences and can also be used as STS.

https://github.com/zihao-wang/rots
https://github.com/zihao-wang/rots


4977

from broader downstream scenarios.
In this paper, we propose a set of concepts and

similarities to exploit the phrase semantics in the
unsupervised setup. Our contributions are four
folds:
Unified formulation We unify three types of un-

supervised STS models (AC (Arora et al.,
2017), OT (Yokoi et al., 2020) and TK (Le
et al., 2018)) by the EC similarity in Sec-
tion 3. EC similarity uncovers the strengths
and weaknesses of the three approaches.

Phrase vectors and their alignment We general-
ize the idea of word alignment to phrase align-
ment in Section 4. After the formal definition
of Recursive Phrase Partition (RPP), we com-
pose the phrase weights and vectors by those
from finer-grained partitions under the invari-
ant additive phrase composition and general-
ize the word alignment to phrase alignment.
Empirical observations show that EC similar-
ity is an effective formulation to interpolate
the existing unsupervised STS, and yields bet-
ter performances.

Recursive Optimal Transport We propose the
Recursive Optimal Transport Similarity
(ROTS) in Section 5 based on the phrase align-
ment introduced in Section 4. ROTS com-
putes the EC similarity at each phrase parti-
tion level and ensembles them. Notably, Prior
Optimal Transport (Prior OT) is adopted to
guide the finer-grained phrase alignment by
the coarser-grained phrase alignment at each
expectation step of EC similarity.

Extensive experiments We show the comprehen-
sive performance of ROTS on a wide spectrum
of experimental settings in Section 6 and the
Appendix, including 29 STS tasks, five types
of word vectors, and three typical preprocess-
ing setups. Specifically, ROTS is shown to be
better than all other unsupervised approaches
including BERT based STS in terms of both
effectiveness and efficiency. Detailed abla-
tion studies also show that our constructive
definitions are sufficiently important and the
hyper-parameters can be easily chosen to ob-
tain the new SOTA performances.

2 Related Work

Embedding the symbolic words into continuous
space to present their semantics (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,

2017) is one of the breakthroughs of modern NLP.
Notably, it shows that the vector (or semantics)
of a phrase can be approximated by the addi-
tive composition of the vectors of its containing
words (Mikolov et al., 2013). Thus, word embed-
dings can be further utilized to describe the se-
mantics of texts beyond the word level. Several
strategies were proposed to provide sentence em-
beddings.

Additive Composition. Additive composition of
word vectors (Arora et al., 2017) forms effective
sentence embeddings. The cosine similarity be-
tween the sentence embeddings has been shown to
be a stronger STS under transferred(Wieting et al.,
2016; Wieting and Gimpel, 2018) and unsupervised
settings (Arora et al., 2017; Ethayarajh, 2018) than
most of the deep learning approaches (Socher et al.,
2013; Le and Mikolov, 2014; Kiros et al., 2015;
Tai et al., 2015).

Optimal Transport. By considering sentences as
distributions of embeddings, the similarity between
sentence pairs is the consequence of optimal trans-
port of sentence distributions (Kusner et al., 2015;
Huang et al., 2016; Wu et al., 2018; Yokoi et al.,
2020). OT models find the optimal alignment with
respect to word semantics via their embeddings and
have the SOTA performances (Yokoi et al., 2020).

Syntax Information. One possible way to inte-
grate contextual information in a sentence is to
explicitly employ syntactic information. Recurrent
neural networks (Socher et al., 2013) were pro-
posed to exploit the tree structures in the supervised
setting but were sub-optimal than AC-based STS.
Meanwhile, tree kernels (Moschitti, 2006; Croce
et al., 2011) can measure the similarity between
parsing trees. Most recently, ACV-tree kernels (Le
et al., 2018) combine word embedding similarities
with parsed constituency labels. However, tree ker-
nels compare all the sub-trees and suffer from high
computational complexity.

Pretrained Language Models This paradigm pro-
duces contextualized sentence embeddings by ag-
gregating the word embeddings repeatedly with the
deep neural networks (Vaswani et al., 2017) trained
on large corpuses (Devlin et al., 2019). In the unsu-
pervised setting, PLMs are sub-optimal compared
to SOTA OT-based models (Yokoi et al., 2020).
One of the common strategies to improve the per-
formance is to adjust PLM-generated embedding
according to a large amount of external data such
as transfer learning (Reimers and Gurevych, 2019),



4978

flow (Li et al., 2020), whitening (Su et al., 2021),
and contrastive learning (Gao et al., 2021). How-
ever, this domain adaptation paradigm requires a
complex training process and the performance is
highly affected by the similarity between the target
test data and external data (Li et al., 2020; Gao
et al., 2021).

3 Unification of Unsupervised STS
Methods

Given a pair of sentences (s(1), s(2)), we are
expected to estimate their similarity score s ∈
[0, 1]. For sentence s(1) (or s(2)), we have vec-
tor {v(1)i }mi=1 (or {v(2)j }nj=1) and weight {w(1)

i }mi=1

(or {w(2)
j }nj=1). We quickly review three types of

unsupervised STS in Section 3.1 (see Figure 1 (a-
c)), then unify them by the Expectation-Correction
similarity in Section 3.2.

3.1 Review of Three Types of STS
Additive Composition (AC) AC methods (Arora
et al., 2017; Ethayarajh, 2018) firstly compute
the sentence embedding x(·) =

∑
iw

(·)
i v

(·)
j , then

estimate the similarity by the cosine similarity
sAC = cos(x(1), x(2)), see Figure 1 (a).
Optimal Transport (OT) Given pairwise word
distance matrix D = Dij and two marginal distri-
butions µi and νi, the optimal transport alignment
ΓOT is computed by solving the following mini-
mization problem (Kusner et al., 2015).

ΓOT = argmin
Γij≥0

∑
ij

ΓijDij , (1)

s.t.
∑
j

Γij = µi,
∑
i

Γij = νj .

The higher ΓOT,ij means that the alignment from
i-th word in s(1) to j-th word in s(2) is preferred,
because those two words are semantically closer,
see Figure 1 (c). Different choices of D,µ, ν lead
to different distances. The SOTA OT-based STS
is the Word Rotator’s Distance (WRD)3 (Yokoi
et al., 2020), which solves Problem (1) with Dij =

1− cos(w
(1)
i , w

(2)
j ) and

µi =
w

(1)
i ∥v

(1)
i ∥2∑

k w
(1)
k ∥v

(1)
k ∥2

, (2)

νj =
w

(2)
j ∥v

(2)
j ∥2∑

k w
(2)
k ∥v

(2)
k ∥2

.

3Without further specification, OT is referred to WRD

The similarity is

sOT =
∑
ij

ΓOT,ij cos(w
(1)
i , w

(2)
j ). (3)

WRD is equivalent to AC if and only if each sen-
tence contains one word (Yokoi et al., 2020).
Tree Kernel (TK) General tree kernels compare
the syntactic parsing information (Moschitti, 2006;
Croce et al., 2011). Recently, ACV-Tree (Le et al.,
2018) combines word-level semantics with syntax
information by a simplified partial tree kernel (Mos-
chitti, 2006), see Figure 1 (b). Word similarities
from the same structure, i.e. NP, are repeatedly
counted and thus more important. Then the simi-
larity score can be re-written as

sTK =
∑
ij

ΓTK,ij cos(w
(1)
i , w

(2)
j ) (4)

where ΓTK is the normalized weight matrix gener-
ated by the tree kernel 4.

3.2 Expectation Correction (EC)
Three approaches discussed above, though moti-

vated in different ways, can be seen as a linear ag-
gregation of pair-wise cosine similarities of words.
We unified them into the following EC similarity
with two steps called expectation and correction.
Expectation Both ACV-Tree (see Equation (4))
and OT (see Equation (3)) aggregate pairwise word
similarities by the alignment matrix ΓTK and ΓOT .
AC also implies the implicit word alignment ΓAC ,
the cosine similarity can be further decomposed by
plugging in the sentence vectors:

cos(x(1), x(2)) =
⟨
∑

iw
(1)
i v

(1)
i ,

∑
j w

(2)
j v

(2)
j ⟩

∥x(1)∥∥x(2)∥
= C

∑
ij

ΓAC,ij cos(v
(1)
i , v

(2)
j )(5)

where ΓAC,ij = µiνj , µ and ν are defined in Equa-
tion (2). This observation connects AC to the expec-
tation of word similarities 5. Hence, the key of ex-
pectation step, is to compute inter-sentence word
alignment matrix Γ. Specifically, ΓAC is implicitly
induced by weights and vector norms without con-
sidering the semantics or syntax between words,
ΓTK is constructed by comparing node labels in

4In this paper, TK indicates the ACV-Tree kernel
5Equation (5) motivates the marginal conditions of WRD

in a different way



4979

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)

AC

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NP

NP

VP
VP

ACV-Tree

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)

OT

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NPNP

VP

VP

ROTS (COARSE)

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NPNP

VP

VP

ROTS (FINE)

word vector

phrase vector

phrase weight

word weight additive composition

cosine similarity

alignment

prior alignment

(a) (b) (c)

(d) (e)

Figure 1: Different unsupervised STS methods with blue elements for s(1) and orange elements for s(2). (a)
AC (Arora et al., 2017): cosine similarity between additively composed sentence embeddings. (b) ACV-Tree (Le
et al., 2018): weighted averaging pairwise word similarity. Similarities from v

(1)
i to vectors in s(2) are shown.

More weights are assigned to pairs contained in the same constituency structure, indicated by thicker arrows. (c)
OT (Yokoi et al., 2020): compute the optimal transport alignment of words by solving problem (1). (d) ROTS at
coarser hierarchy: the OT alignment of phrases vectors and weights. (e) ROTS at finer hierarchy: fine-level OT
alignment based on the prior of coarse-level alignment in (d).

Table 1: The comparison of different approaches.

Method Inter-sentence Expectation Intra-sentence Correction Tiime ComplexityWord Semantics Phrase Semantics Syntax
AC (Arora et al., 2017; Ethayarajh, 2018) ✗ ✗ ✗ ✓ O(m + n)
OT (Kusner et al., 2015; Yokoi et al., 2020) ✓ ✗ ✗ ✗ O(mn)
TK (Le et al., 2018) ✗ ✗ ✓ ✗ O(mn)
ROTS (ours) ✓ ✓ ✓ ✓ O(m + n)

syntax trees, and ΓOT is obtained by optimizing
word semantics. (See Table 1)
Correction In Equation (5), the coefficient

C =

∑
k w

(2)
k ∥v

(2)
k ∥

∥
∑

k w
(2)
k v

(2)
k ∥

∑
k w

(1)
k ∥v

(1)
k ∥

∥
∑

k w
(1)
k v

(1)
k ∥

=
√
K1K2

also has special interpretation. For the specific sen-
tence i = 1, 2, the coefficient Ki can be rewritten
as

Ki − 1 =
(
∑

k w
(i)
k ∥v

(i)
k ∥)

2

∥
∑

k w
(i)
k v

(i)
k ∥2

− 1

=
∑
k ̸=m

w
(i)
k w

(i)
m ∥v(i)k ∥∥v

(i)
m ∥

∥
∑

k w
(i)
k v

(i)
k ∥2

[
1− cos(v

(i)
k , v(i)m )

]
.

We have Ki ≥ 1 and the equality holds if and only
if all word vectors are in the same direction, i.e.
they are semantically close. Ki increases as the
semantics of words in a sentence become more
diverse. In the latter situation, the sentence similar-
ity tends to be underestimated since unnecessary
alignments are forced by the joint distribution. The

coefficient C corrects this intra-sentence seman-
tics. This correction step distinguishes AC from
OT and TK approaches (see Table 1).

Then we introduce the EC similarity by combin-
ing E-step and C-step as follows:

Definition 1 (EC similarity). The EC similarity of
STS is defined by:

C̃
∑
ij

Γij cos(v
(1)
i , v

(2)
j ), (6)

where Γ is the word alignment matrix for the ex-
pectation and C̃ = (αC +1−α) is the coefficient
for correction, hyper-parameter α ∈ [0, 1] linearly
interpolates the C and 1 and controls the strength
of correction.

4 From Word to Phrase Alignment

In this section, we extend the word alignment to the
phrase alignment. We define the phrase partitions
of sentences with the recursive structure from any
tree. Then we define the phrase weight and vector
by the additive composition of sub-phrase (or word)
weights and vectors.



4980

Autonomous cars shift insurance liability toward manufacturersshift

cars liability toward

Autonomous insurance manufacturers

nsubj

amod

dobj

compound

prep

pobj
Autonomous cars shift insurance liability toward manufacturers

Autonomous insurance manufacturerscars shift liability toward

𝒫!

𝒫"

𝒫#

Figure 2: Dependency tree (left) by SpaCy (Honnibal and Montani, 2017) and recursive phrase partitions (right)

4.1 Recursive Phrase Partitions (RPP)
For sentence s = [t1, ..., tn] containing n tokens
ti, 1 ≤ i ≤ n, we define the Recursive Phrase Par-
titions (RPP) as a set of partitions {P0,P1, ...,PL}
of the sentence s, where Pl is the partition at l-th
level, 1 ≤ l ≤ L. Specifically, Pl = [Pl,1, ..., Pl,q]
contains a sequence of phrases, where the q-th
phrase Pl,q = s[bl,q : el,q] is the span in s from
the beginning index bl,q to the ending index el,q.
So we have two properties:

1. Concatenating all phrases recovers the sen-
tence, that is ⊕qPl,q = s, where ⊕ is the
string concatenation.

2. For two different levels, i.e. 0 ≤ l1 < l2,6 any
phrase in level l2 is contained in the unique
phrase in level l1.

In our definition, the P0 = [s] and PL = [t1, .., tn]
are the coarsest partition and the finest partition,
respectively. The second property guarantees that
the recursive phrase partitions can be nested so that
each phrase can be recursively divided. RPP can
be constructed from any tree representation of the
sentence, including constituency tree, dependency
tree, or even naive binary separation of token se-
quences. Figure 2 shows an example of RPP from
a dependency tree. Some phrases (such as ‘shift’
in P2) are added to satisfy the first property.

4.2 Compositional Phrase Semantics
Once the RPP structure of a sentence is given, we
define the vector ṽ and weight w̃ for each phrase.
Our definition is invariant with respect to the AC
sentence embedding, that is, AC sentence embed-
ding x is invariant to the phrase partition Pl of the
sentence.

x =
n∑
i

wivi =
∑
q

w̃l,qṽl,q,

where the phrase weights and vectors are given by

w̃l,q =

el,q∑
i=bl,q

wi, ṽl,q =

el,q∑
i=bl,q

wivi/w̃l,q.

6We denote the root is level 0. The level index increases
as the tree goes deeper.

In this way, the sentence vector can also be repre-
sented by the additive composition of phrase vec-
tors and weights, where each phrase vector can
be again composed by the word vectors additively.
Our definitions of phrase weights and vectors recur-
sively aggregate the information from finer-grained
level (i.e. ‘autonomous’ and ‘cars’) information
to coarser-grained level (i.e. ‘autonomous cars’).
Furthermore, our discussion about EC similarity
in Section 3.2 at the word level can also be gen-
eralized to any phrase partitions. That is, we
can use the EC similarity to consider the inter-
sentence phrase alignment and then correct the
intra-sentence phrase semantics of each partition.

5 Recursive Optimal Transport and STS

In this section, we connect the dots by applying
EC similarity in Section 3.2 to phrase alignment
in Section 4 on tree structures. Specifically, we
present Recursive Optimal Transport Similarity
(ROTS) which computes the phrase alignment at
each (l + 1)-th level phrase partition with the guid-
ance of the phrase alignment at the l-th level.

5.1 Prior Optimal Transport (Prior OT)
Prior OT (Zhao et al., 2020) was firstly proposed
to pass prior information when minimizing the
entropy-regularized Wasserstein loss. When it
comes to the OT-based STS, we re-consider the ob-
jective function in Problem (1) with an additional
prior alignment Π:∑

ij

ΓijDij + ϵKL(Γ∥Π), (7)

where KL(Γ∥Π) = −
∑

ij Γij log Πij − H(Γ) is
the KL-divergence between the phrase alignment Γ
and the prior alignment Π, and H(·) is the entropy.
ϵ is the hyper-parameter that controls how close
the obtained Γ∗ is to Π. When ϵ = 0, Equation (7)
falls back to Equation (1), and when ϵ is sufficiently
large, the optimal Γ∗ is sufficiently close to Π in
terms of KL-divergence.

Notably, the objective in Equation (7) can be
minimized by the Sinkhorn algorithm (Cuturi,



4981

2013; Zhao et al., 2020). Compared to tree ker-
nels (Moschitti, 2006; Croce et al., 2011; Le et al.,
2018), Sinkhorn algorithm is based on matrix oper-
ations such that it can be accelerated by GPUs (Cu-
turi, 2013). Sinkhorn algorithm has time complex-
ity O(mn/ϵ2) (Dvurechensky et al., 2018). In our
practice, we usually choose the large prior strength,
i.e. ϵ > 1 that allows faster convergence.

We can interpolate WRD and AC with the help
of Prior OT under EC similarity.

Example 1 (EC Interpolation of WRD and AC).
Given a prior matrix Π = ΓAC , we first compute
the alignment Γϵ by minimizing Equation (7) with
WRD’s choice of D,µ, ν in Equation (2). Then we
compute the EC interpolation similarity by

Interp = C̃
∑
ij

Γϵ,ij cos(v
(1)
i , v

(2)
j ),

where ϵ > 0 is the prior strength in Equation (7).
When (α, ϵ) = (0, 0), 1 − Interp = sOT

7. When
(α, ϵ) = (1,+∞) , Interp = sAC .

5.2 Recursive Optimal Transport Similarity
Given two sentences s(1), s(2) with their RPPs
{P(1)

0 ,P(1)
1 , ...,P(1)

L1
} and {P(2)

0 ,P(2)
1 , ...,P(2)

L2
},

ROTS considers partition pairs (P(1)
k ,P(2)

k ) from
the coarsest k = 0 level to the finest k = d ≤
min(L1, L2) level, where d is a hyper-parameter.
Given the computed k-th alignment matrix Γ(k)

of (P(1)
k ,P(2)

k ), ROTS constructs the following
prior alignment Π(k+1) for next EC computation
(P(1)

k+1,P
(2)
k+1).

Π(k+1)
minj

=
µk+1,mi

νk+1,nj
Γ
(k)
ij∑

m̃i∈P
(1)
k,i ,ñj∈P

(2)
k,j

µk+1,m̃i
νk+1,ñj

.(8)

Specifically, the (i, j) phrase alignment score Γ
(k)
ij

at k-th level will be separated to the sub-phrase
alignment (mi, nj) at the (k+1)-th level according
to the marginal µk+1,mi

and νk+1,nj
, where mi, nj

are the index of the sub-phrase of i, j respectively.
With the coarse-to-fine prior Π(k+1), ROTS com-
putes the phrase alignment matrix Γ(k+1) at the
(k + 1)-th level by Prior OT (Equation (7)). The
computation process of ROTS is shown in Algo-
rithm 1. For k = 0, each sentence has a single vec-
tor, the alignment matrix Γ(0) = 1 is a 1×1 matrix.
The complexity of ROTS is O(m+ n+ d(ρd/ϵ)2)

7Interp itself also leads to the identical STS evaluation as
sOT in terms of correlation.

Algorithm 1 Recursive OT Similarity

Require: Two sentences s(1), s(2) with recur-
sive phrase partitions {P(1)

0 ,P(1)
1 , ...} and

{P(2)
0 ,P(2)

1 , ...}, depth d and prior strengths
ϵk, k = 1, ..., d, correction strength α.

Ensure: ROTSk at each level k.
1: Prepare the weights and vectors at level 0.
2: Initialize 0-th level alignment Γ(0) ← 1.
3: for k ← 1, ..., d do
4: Prepare the weights and vectors at level k.
5: Get k-th prior Π(k) by Eq. (8) from Γ(k−1).
6: Get k-th alignment Γ(k) by Eq. (7) with ϵk.
7: Get ROTSk by Eq. (6) with C̃ = αC+1−

α, where C =
∑

k w
(2)
k ∥v(2)k ∥

∥
∑

k w
(2)
k v

(2)
k ∥

∑
k w

(1)
k ∥v(1)k ∥

∥
∑

k w
(1)
k v

(1)
k ∥

.

8: end for

where ρ is the maximum branching number of
the tree and is usually small for natural language.
When the hyper-parameter d is fixed, the complex-
ity of Algorithm 1 grows linearly with the sentence
length m and n (see Table 1).

Our ROTS is featured by finding the finer-level
phrase alignment under the guidance of the coarser-
level phrase alignment. Unlike the tree kernels (Le
et al., 2018) that highly rely on syntax trees and syn-
tax labels, ROTS is based on the EC phrase align-
ment at different phrase partition levels that are
induced by a syntax tree. Specifically, the phrase
alignments are obtained from the phrase semantic
information, i.e. weights and vectors rather than
plain syntax labels (see Table 1).

6 Experiments

We first present the experimental setting of unsuper-
vised STS. Then we conduct the benchmark study
of all unsupervised STS approaches. Detailed ab-
lation studies justify the effect of ROTS. In the ap-
pendix, further discussions on the impact of word
vectors, and preprocessing steps are included.

6.1 Experimental Settings

Text processing SpaCy (Honnibal and Montani,
2017) is a open-source text processing toolkit in-
cluding rich functionality such as tokenization and
dependency parsing. It is very suitable for prepro-
cessing pipelines. The text processing model in
en_core_web_sm is used.
Word vectors Word2Vec (Mikolov et al., 2013),



4982

GloVe (Pennington et al., 2014), and fastText (Bo-
janowski et al., 2017) are considered in the unsu-
pervised STS cases. Two word vectors trained on
transferred learning settings, i.e. PSL (Wieting
et al., 2015) and ParaNMT (Wieting and Gimpel,
2018), are considered in the transferred STS cases.
Further information can be found in Appendix A.2.
Preprocessing The scope of our pre-processing
steps extends the “vector converters” in (Yokoi
et al., 2020). Those preprocessing steps can all
be applied to EC similarity and are detailed in Ap-
pendix A.3. Three typical setups are selected, in-
cluding SUP (Ethayarajh, 2018), SWC (Yokoi et al.,
2020) and WR (Arora et al., 2017).
Datasets We consider (1) STSB dev and test set in
STS-Benchmark (Cer et al., 2017); (2) STS[year]
STS from 2012 to 2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016); (3) SICK (Marelli et al., 2014);
(4) Twitter (Xu et al., 2015). Details can be found
in Appendix A.1. Each dataset includes several
sub-tasks, and there are 29 tasks in total.
Related baselines Some unsupervised STS base-
lines are closely related to EC similarity, includ-
ing COS (SIF (Arora et al., 2017), uSIF (Etha-
yarajh, 2018)), ACV-Tree (Le et al., 2018), and
WRD (Yokoi et al., 2020). WMD (Kusner et al.,
2015) is important but not included since WMD
has been shown clearly suboptimal to WRD (Yokoi
et al., 2020).
Other Unsupervised Baselines BERT’s final-layer
and last-2-layers embeddings (BERT and BERT-
last2ave) (Li et al., 2020) BERTScore (Zhang
et al., 2020), DynaMax-Jaccard (Zhelez-
niak et al., 2019a), Center Kernel Alignment
(CKA) (Zhelezniak et al., 2019b) and Kraskov-
Stögbauer–Grassberger (Kraskov et al., 2004)
(KSG) cross entropy estimation (Zhelezniak et al.,
2020).
Default hyper-parameters We summarize the re-
sult with different parameters. Results show that
excellent scores are achieved with α = 1, d = 4
and ϵk = 10, 1 ≤ k ≤ L.

6.2 Unsupervised Benchmark

An unsupervised STS benchmark study is con-
ducted over STSB, SICK, and STS by years
(STS12-16). Twitter is not included since most
of the baselines did not report the score. fastText is
chosen as the pretrained word vector.

We re-implement SIF, uSIF and WRD and com-
pare the Pearson’s r× 100 in Table 2 together with

FastText
+SWC

FastText
+SUP

FastText
+WR

60

61

62

63

64

65

66

67

68

Pe
ar

so
n'

s r
×

10
0

COS
WRD
PRD+L1
PRD+L2
PRD+L3
PRD+L4
ROTS+L1
ROTS+L2
ROTS+L3
ROTS+L4
ROTS+mean
ROTS+max
ROTS+min
ROTS+last

Figure 3: Ablation study for ROTS depth and aggre-
gation. Scores are averaged from STSB, Twitter and
SICK.

the ACV-Tree8 and BERTScore+fastText9. Other
baselines are compared by Spearman’s ρ in Table 3.
The clear advantage of ROTS-mean is shown. Our
results confirm the finding reported by (Yokoi et al.,
2020) that the BERT-based method is sub-optimal
under unsupervised settings.

6.3 Ablation Study

For ablation study, the scores are averaged from
scores on the three datasets, including SICK, STSB
test, and Twitter. We don’t include STS12-16 since
they overlap with STSB. Depths and Aggregations,
Correction and Prior, and Recursive Phrase Parti-
tions are discussed since they are closely related to
ROTS. More experiments on different word vectors
and preprocessings can be found in Appendix B.
Uncertainty quantification by the BCa confidence
interval (Efron, 1987) on different datasets can be
found in Appendix E.

Depths and Aggregations Once all ROTSk are
obtained, we consider different aggregation meth-
ods including mean, max, min, last and picks the
k-th level. The ablation study of depth and ag-
gregation is shown in Figure 3. We report the
ROTS results at different levels and different ag-
gregations. We also include the Phrase Rotator’s
Distance (PRD) at the same recursive phrase par-
titions as ROTS. PRD-Lk is the special case of
ROTS-Lk by setting ϵk = 0 and α = 0. AC is
equivalent to 0-th level ROTS and WRD is the L-th
level of PRD so they are included.

ROTS similarities (blue and purple bars) dom-
inate among all other baselines. We can see that
the performances of ROTS and PRD increase as
their levels get deeper (the related bars are plotted
with deeper blue and orange colors). Interestingly,

8Scores extracted from (Le et al., 2018), STS13 is not valid
since they didn’t report on SMT subtask

9Scores extracted from (Yokoi et al., 2020)



4983

Table 2: Pearson’s r × 100 for ROTS and related unsupervised baselines. Best cases are in boldface.

Similarity STSB SICK STS12 STS13 STS14 STS15 STS16
ACV-Tree (Le et al., 2018) - - 61.60 - 72.83 75.80 -
BERTScore fastText (Zhang et al., 2020) 53.86 64.69 51.95 45.86 61.66 69.00 -
SIF(Arora et al., 2017) 70.13 73.20 63.46 59.30 72.95 73.27 70.79
uSIF(Ethayarajh, 2018) 73.47 72.73 63.24 61.41 74.37 76.33 73.47
WRD+SWC(Yokoi et al., 2020) 74.58 67.09 63.80 57.55 71.06 77.65 75.46
WRD+SUP(Yokoi et al., 2020) 74.80 67.67 64.03 58.50 71.32 77.65 75.38
WRD+WR(Yokoi et al., 2020) 73.13 68.73 63.81 58.09 70.60 77.28 74.48
ROTS+SWC+mean 75.33 71.79 63.91 62.29 74.30 77.96 75.95
ROTS+SUP+mean 74.25 73.13 63.52 61.49 74.44 76.75 74.28
ROTS+WR+mean 71.52 73.84 63.77 59.58 73.15 73.91 71.97

Table 3: Spearman’s ρ× 100 for ROTS and other unsupervised baselines. Best cases are in boldface.

Similarity STSB SICK STS12 STS13 STS14 STS15 STS16
BERTlarge (Devlin et al., 2019) 46.99 53.74 46.89 53.32 49.27 56.54 61.63
BERTlarge-last2avg (Li et al., 2020) 59.56 60.22 57.68 61.37 61.02 68.04 70.32
KSG k=10 (Zhelezniak et al., 2020) - - 60.40 61.50 68.30 77.00 75.10
MaxPool+KSG k=10 (Zhelezniak et al., 2020) - - 59.50 60.20 67.50 75.00 74.10
DynaMax Jaccard (Zhelezniak et al., 2019a) - - 61.30 61.70 66.90 76.50 74.70
CKA dCorr (Zhelezniak et al., 2019b) - - 60.90 63.40 67.80 76.20 73.40
CKA Gaussian (Zhelezniak et al., 2019b) - - 60.80 64.60 68.00 76.40 73.80
ROTS+SWC+mean 72.69 62.88 63.07 62.61 70.73 78.06 75.74
ROTS+SUP+mean 71.63 61.81 62.13 61.04 70.85 77.26 74.50
ROTS+WR+mean 69.78 61.39 61.48 59.29 70.19 75.18 73.26

Figure 4: Effects of correction and prior for ROTS-L4
on fastText vectors

PRDs are generally worse than WRD, which indi-
cates that the naive phrase alignment may not be
suitable, and may suffer from sub-optimal inter-
sentence alignment and intra-sentence semantics.
The performance gains of ROTS-Lk from PRD-Lk
clearly show that both the coarse-to-fine prior and
the EC similarity are important.

Correction Step and Prior We adjust the α in
Definition 1 to control the correction effect and the
ϵk for the prior strength at the k-th phrase partition
level. For simplicity, we assume prior strengths
ϵk are controlled by the single parameter ϵ. We
report the Pearson’s r× 100 of ROTS-L4 averaged
on the three datasets in Figure 4 since ROTS-L4
is the best in Figure 3. As shown in Figure 4,
proper correction and prior are essential to produce
good performances. The correction step is very
important since results without it decrease signifi-
cantly. This is consistent with the PRD observation

in Figure 3. α and ϵ can be chosen easily since
the performances is good and consistent if α > 0.5
and ϵ > 5.

Recursive Phrase Partitions ROTS relies on
the recursive phrase partitions that might be pro-
duced from parsing trees. Instead of exhausting the
parsers, we consider the simplest binary tree, i.e.
the sub-phrase partition is constructed by uniformly
splitting each phrase, to show the lower bound of
the ROTS performances. We see from Table 4 that
the ROTS with spaCy dependency parser performs
best in all cases among related baselines. Given the
preprocessing setups, we find that the binary tree
still outperforms WRD and AC with SUP and SWC
setups. For sub-optimal WR setup, ROTS with the
binary tree are very close to that in WRD and better
than AC. Though preprocessing setups affect the
performance, we can observe the performance gain
by introducing the recursive phrase partitions given
the setup. Therefore, we conclude that the coarse-
to-fine prior captures the intra-sentence structures.
The performance gain can be observed by even the
simplest binary tree.

6.4 More empirical experiments

Some results are presented in the Appendix, includ-
ing the justification of more choices on preprocess-
ing in Appendix B.2, comparison under transfer
and supervised setting in Appendix B.3, compu-



4984

Table 4: Pearson’s r × 100 for different parsers. spaCy:
ROTS-L4 with the spaCy parser, Binary: ROTS-L4 with
a binary tree. The best score is indicated in the boldface
and the second highest score is underlined.

Model spaCy Binary WRD AC
fastText + SUP 67.45 67.20 66.63 66.45
fastText + SWC 67.52 67.26 66.26 66.97
fastText + WR 66.47 66.15 66.20 65.11

tation time in Appendix C, interpolation of WRD
and AC by EC similarity in Appendix D.

7 Conclusion

In this paper, we present a new EC similarity of
STS that allows flexible adaptation of word-level
alignment, which successfully unifies three differ-
ent unsupervised approaches. By taking advantage
of the recursive phrase partitions, we generalize
EC similarity to the phrase alignment. Then, we
propose ROTS, a new sentence similarity that con-
siders phrase semantics by conducting phrase align-
ment in a coarse-to-fine order under the coarse-
to-fine prior OT. The thorough comparison with
unsupervised baselines demonstrates the state-of-
the-art performance and technical details of ROTS
are fully justified by the ablation study.

8 Acknowledgement

This work was supported by the National Key R&D
Program of China (2020AAA0109603).

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.

Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic textual
similarity, english, spanish and pilot on interpretabil-
ity. In SemEval@NAACL-HLT.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.
Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In SemEval@COLING.

Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T.
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-
man Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In SemEval@NAACL-HLT,
pages 497–511.

Eneko Agirre, Daniel M. Cer, Mona T. Diab, and
Aitor Gonzalez-Agirre. 2012. Semeval-2012 task

6: A pilot on semantic textual similarity. In
SemEval@NAACL-HLT, pages 385–393.

Eneko Agirre, Daniel M. Cer, Mona T. Diab, Aitor
Gonzalez-Agirre, and Weiwei Guo. 2013. *sem 2013
shared task: Semantic textual similarity. In Second
Joint Conference on Lexical and Computational Se-
mantics.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence em-
beddings. In ICLR.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2017. Enriching word vectors with
subword information. Trans. Assoc. Comput. Lin-
guistics, pages 135–146.

Asli Çelikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
CoRR, abs/2006.14799.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for english. In EMNLP, pages 169–
174.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In LREC.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In EMNLP, pages 1034–
1046.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In NIPS, pages
2292–2300.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

Pavel E. Dvurechensky, Alexander Gasnikov, and
Alexey Kroshnin. 2018. Computational optimal
transport: Complexity by accelerated gradient de-
scent is better than by sinkhorn’s algorithm. In ICML,
pages 1366–1375.

Bradley Efron. 1987. Better bootstrap confidence inter-
vals. Journal of the American statistical Association,
82(397):171–185.

Kawin Ethayarajh. 2018. Unsupervised random walk
sentence embeddings: A strong but simple baseline.
In Rep4NLP@ACL, pages 91–100.

http://arxiv.org/abs/2006.14799
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055


4985

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and GPT-2 embeddings. In
EMNLP-IJCNLP, pages 55–65.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort,
Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian
Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H.
Gayraud, Hicham Janati, Alain Rakotomamonjy, Iev-
gen Redko, Antoine Rolet, Antony Schutz, Vivien
Seguy, Danica J. Sutherland, Romain Tavenard,
Alexander Tong, and Titouan Vayer. 2021. Pot:
Python optimal transport. Journal of Machine Learn-
ing Research, 22(78):1–8.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In EMNLP, pages 6894–6910.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing.

Gao Huang, Chuan Guo, Matt J. Kusner, Yu Sun, Fei
Sha, and Kilian Q. Weinberger. 2016. Supervised
word mover’s distance. In NIPS, pages 4862–4870.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NIPS, pages 3294–3302.

Alexander Kraskov, Harald Stögbauer, and Peter Grass-
berger. 2004. Estimating mutual information. Physi-
cal review E, 69(6):066138.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings to
document distances. In ICML, pages 957–966.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
pages 1188–1196.

Yuquan Le, Zhi-Jie Wang, Zhe Quan, Jiawei He, and
Bin Yao. 2018. Acv-tree: A new method for sentence
similarity modeling. In IJCAI, pages 4137–4143.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
EMNLP, pages 9119–9130.

Tianlin Liu, Lyle Ungar, and João Sedoc. 2019. Contin-
ual learning for sentence representations using con-
ceptors. In NAACL-HLT, pages 3274–3279.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In SemEval@COLING, pages 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In ECML, pages 318–329.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In ICLR.

Giannis Nikolentzos, Antoine J.-P. Tixier, and Michalis
Vazirgiannis. 2020. Message passing attention net-
works for document understanding. In AAAI, pages
8544–8551.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT, pages 2227–2237.

Gabriel Peyré and Marco Cuturi. 2019. Computational
optimal transport. Found. Trends Mach. Learn., 11(5-
6):355–607.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP-IJCNLP, pages 3980–3990.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In ACL, pages 1631–1642.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen
Ou. 2021. Whitening sentence representations
for better semantics and faster retrieval. CoRR,
abs/2103.15316.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
ACL, pages 1556–1566.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. TACL, 3.

http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
http://arxiv.org/abs/2103.15316
http://arxiv.org/abs/2103.15316


4986

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In ICLR.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond BLEU: training
neural machine translation with semantic similarity.
In ACL, pages 4344–4355.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In ACL,
pages 451–462.

Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu,
Avinash Balakrishnan, Pin-Yu Chen, Pradeep Raviku-
mar, and Michael J. Witbrock. 2018. Word mover’s
embedding: From word2vec to document embedding.
In EMNLP, pages 4524–4534.

Wei Xu, Chris Callison-Burch, and Bill Dolan. 2015.
Semeval-2015 task 1: Paraphrase and semantic simi-
larity in twitter (PIT). In NAACL-HLT, pages 1–11.

Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki,
and Kentaro Inui. 2020. Word rotator’s distance. In
EMNLP, pages 2944–2960.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In ICLR.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In EMNLP-
IJCNLP, pages 563–578.

Xu Zhao, Zihao Wang, Hao Wu, and Yong Zhang. 2020.
Semi-supervised bilingual lexicon induction with
two-way interaction. In EMNLP, pages 2973–2984.

Vitalii Zhelezniak, Aleksandar Savkov, and Nils Ham-
merla. 2020. Estimating mutual information between
dense word embeddings. In ACL, pages 8361–8371.

Vitalii Zhelezniak, Aleksandar Savkov, April Shen,
Francesco Moramarco, Jack Flann, and Nils Y. Ham-
merla. 2019a. Don’t settle for average, go for the
max: Fuzzy sets and max-pooled word vectors. In
ICLR.

Vitalii Zhelezniak, April Shen, Daniel Busbridge, Alek-
sandar Savkov, and Nils Hammerla. 2019b. Correla-
tions between word vector sets. In EMNLP-IJCNLP,
pages 77–87.



4987

A Extended Experimental Setup
information

A.1 Dataset details

• STSB dev and test set in STS-Benchmark (Cer
et al., 2017). It can be downloaded directly
from (Ethayarajh, 2018)’s implementation 10.

• STS[year] STS from 2012 to 2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016). STS12
contains 5 subtasks, STS13 contains 4 sub-
tasks, STS14 contains 6 subtasks, STS15 con-
tains 5 subtasks and STS16 contains 5 sub-
tasks. The reported score is averaged from
scores for related subtasks. It can be obtained
by (Conneau and Kiela, 2018)’s implemen-
tation 11. A newer implementation is also
available 12.

• SICK Semantic relatedness task at SemEval
2014 (Marelli et al., 2014). It can be down-
loaded directly from (Ethayarajh, 2018)’s im-
plementation 13.

• Twitter Paraphrase and semantic similarity
in Twitter (PIT) at SemEval 2015 (Xu et al.,
2015). This dataset was obtained by emailing
the author.

A.2 Pretrained Word Vectors

We list the downloadable links of word vectors
used in this paper.

• Word2Vec (Mikolov et al., 2013): We use the
pretrained word2vec 14. However, this file is
in .bin format. We use gensim (Řehůřek
and Sojka, 2010) to convert the file to .vec
format.

• GloVe (Pennington et al., 2014): We use
the 300D GloVe vectors trained on Common
Crawl (840B tokens, 2.2M vocabulary) 15.

• fastText (Bojanowski et al., 2017): We use
the 300D fastText vectors trained on Common
Crawl (600B tokens) without subword infor-
mation 16.

10https://github.com/kawine/usif
11https://github.com/facebookresearch/

SentEval
12https://github.com/babylonhealth/

corrsim
13https://github.com/kawine/usif
14GoogleNews-vectors-negative300.bin.gz
15http://nlp.stanford.edu/data/glove.

840B.300d.zip
16https://dl.fbaipublicfiles.com/

fasttext/vectors-english/crawl-300d-2M.
vec.zip

• PSL (Wieting et al., 2015): We use the pre-
trained vectors from the author 17.

• ParaNMT (Wieting and Gimpel, 2018): Two
versions are provided by the author 18 and
we keep the same choice as (Ethayarajh,
2018) 19.

A.3 Preprocessing of word vectors

Other preprocessing setups are discussed as
follows: Here we list several preprocessing ap-
proaches mentioned in previous research. For those
with hyper-parameters, we also give the hyper-
parameters used in this paper.

• Word-level Each word is associated with one
weight. We consider SIF (W)eights (Arora
et al., 2017) with a = 10−3 and (U)SIF
weights (Ethayarajh, 2018).

• Vocabulary-level Vectors are modified based
on the vectors of words in the whole vo-
cabulary, e.g. (A)ll-but-the-top (Mu and
Viswanath, 2018) with D = 3, (C)onceptor
negation (Liu et al., 2019) with α = 2.

• Sentence-level Vectors are modified by vec-
tors of words in the same sentence, including
Dimension-wise (S)caling (Ethayarajh, 2018).

• Corpus-level Vectors are modified based on
all sentences in the corpus, e.g. main com-
ponent (R)emoval (Arora et al., 2017) and
(P)iece-wise component removal (Ethayarajh,
2018) with p = 5.

A.4 Various STS and the required resources

We summarize the usage of data and other re-
sources of popular STS models in Table 5. The key
difference between unsupervised settings and other
settings is the usage of external data to further train
the model. We majorly consider the approaches
that can be used without training.

B Extended Experiments

17https://drive.google.com/file/d/
0B9w48e1rj-MOck1fRGxaZW1LU2M/view?usp=
sharing

18https://www.cs.cmu.edu/~jwieting/
19https://github.com/kawine/usif/blob/

master/paranmt.tar.gz

https://github.com/kawine/usif
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://github.com/babylonhealth/corrsim
https://github.com/babylonhealth/corrsim
https://github.com/kawine/usif
GoogleNews-vectors-negative300.bin.gz
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
https://drive.google.com/file/d/0B9w48e1rj-MOck1fRGxaZW1LU2M/view?usp=sharing
https://drive.google.com/file/d/0B9w48e1rj-MOck1fRGxaZW1LU2M/view?usp=sharing
https://drive.google.com/file/d/0B9w48e1rj-MOck1fRGxaZW1LU2M/view?usp=sharing
https://www.cs.cmu.edu/~jwieting/
https://github.com/kawine/usif/blob/master/paranmt.tar.gz
https://github.com/kawine/usif/blob/master/paranmt.tar.gz


4988

Table 5: Necessary resources of typical STS model

Model Pretrain Data
Parser Weights Word

Vector
Language
Model

Training
texts

Training
labels

Transferred
texts

Transferred
labels

Unsupervised setting
BERT layer embedding
(Devlin et al., 2019)

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

BERTScore (Zhang
et al., 2020)

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Additive composition
(Arora et al., 2017;
Ethayarajh, 2018)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

DynaMax-Jaccard
(Zhelezniak et al.,
2019a)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Center Kernel Align-
ment (Zhelezniak et al.,
2019b)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

KSG cross entropy
(Zhelezniak et al.,
2020)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

OT (Kusner et al., 2015;
Yokoi et al., 2020)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

ACV-Tree (Le et al.,
2018)

✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

ROTS (ours) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Transfer and domain
adaptation settings
SentenceBERT
(Reimers and Gurevych,
2019)

✗ ✗ ✗ ✓ ✗ ✗ *NLI *NLI

BERT-Flow-*NLI (Li
et al., 2020)

✗ ✗ ✗ ✓ ✗ ✗ *NLI ✗

BERT-Flow-*target (Li
et al., 2020)

✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

SimCSE-*NLI (Gao
et al., 2021)

✗ ✗ ✗ ✓ ✗ ✗ *NLI *NLI

Fine-tuning LM
BERT-Finetune ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

B.1 Joint effect of word vectors and
preprocessings

We investigate the effects of the word vectors in
Table 6. It has been shown that fastText is the
best word vector for all three kinds of unsupervised
STS regardless of the three pre-processing steps.
Furthermore, ROTS performs best compared to AC
and WRD when the fastText is chosen.

B.2 Other preprocessing setups

In Table 6, it is also found that SWC is the best
performed pre-processing setup in eight out of nine
combinations of word vectors and unsupervised
STSes. It is also shown that given the SWC as the
preprocessing setup, ROTS performs best among
three unsupervised STS for all three kinds of word
vectors. We also explore the combination of pre-
processing setups from word level to corpus level.
We provide preliminary results about the impact
of preprocessing on ROTS in STSB test split with

Table 6: Pearson’s r×100 for benchmark study with dif-
ferent word vectors and pre-processing setups. The best
word vector achieved given the same pre-processing
setup is indicated by boldface. The best pre-processing
setup given the word vector is underlined.

Pre-processing Word Vectors Similarity
AC WRD ROTS

WR
fastText 65.11 66.20 66.47
GloVe 57.86 61.92 60.73
Word2Vec 57.35 59.52 58.68

SWC
fastText 66.97 66.26 67.52
GloVe 66.57 65.21 66.95
Word2Vec 60.21 60.13 60.66

SUP
fastText 66.45 66.63 67.45
GloVe 64.08 65.04 65.53
Word2Vec 57.69 59.49 58.90

fastText vectors. We report the score of ROTS-L4
in Table 7.

By Table 7, we suggest that C at the vocabulary
level, S at the sentence level, R at the corpus level
are beneficial. It is not clear which one of U or W in



4989

Table 7: STSB test results by ROTS-L4 with fastText
vectors with different preprocessing setups.

Setup Pearson’s r × 100 BCa 95% CI
+W 72.59 [70.02, 74.90]
+WR∗ 72.34 [69.81, 74.66]
+U 72.62 [70.01, 74.96]
+SU 74.52 [71.90, 76.89]
+SUP∗ 74.69 [72.01, 77.00]
+SW 74.78 [72.31, 77.11]
+SWP 74.90 [72.32, 77.08]
+SWA 74.97 [72.47, 77.15]
+SUA 75.20 [72.73, 77.43]
+SWR 75.21 [72.75, 77.45]
+SUR 75.35 [72.88, 77.53]
+SWC∗ 75.66 [73.23, 77.84]
+SUC 75.73 [73.25, 77.95]
+SWRC 75.80 [73.33, 77.92]
+SWRCA 75.86 [73.46, 78.11]
+SURC 75.89 [73.39, 78.08]
+SURCA 75.94 [73.49, 78.18]

the word level for ROTS-L4 is more effective. As
a result, we propose to combine the choices for vo-
cabulary, sentence, and corpus levels, i.e. SCR for
ROTS with U or W. Moreover, we think the two
preprocessing setups in the vocabulary level, i.e.
CA can also be combined. The best performance
of ROTS-L4 is achieved by SURCA. The setups
suggested by previous words are starred in the table,
i.e. SWC for WRD (Yokoi et al., 2020), SUP (Etha-
yarajh, 2018) and WR (Arora et al., 2017) for AC.
Though they may not be the best choice for ROTS-
L4, we argue the results presented are sufficient to
reveal the advantage of ROTS over other related
baselines under various setups.

B.3 Evaluation for transfer and
semi-supervised settings

The results can be found in Table 8. ROTS that
using the transferred ParaNMT word vector has
good performance even compared to Sentence
BERT with pretrained BERT large or RoBERTa
large (Reimers and Gurevych, 2019), and is better
than the domain adaptation settings (Li et al., 2020).
It is shown that PLM based models (Cer et al.,
2018; Reimers and Gurevych, 2019; Li et al., 2020;
Gao et al., 2021) are on par with ROTS with trans-
fered word vectors (Wieting and Gimpel, 2018).

C Computation Speed

We report the computation speed for different simi-
larities on a computer with an Intel i7 CPU of 2.6
GHz with 6 cores and 16 GB RAM. The optimal
transport is computed by the POT (Flamary et al.,

2021) package 20.
We compare the computation of ROTS with

WRD and PRD on STS-B test split (1379 sentence
pairs to compute in total). Notably, we focus on
the speed by Sinkhorn algorithm (Cuturi, 2013) for
two reasons: (1) it has O(n2) time complexity; (2)
it can be easily accelerated by GPU.

Table 9 reports the speed by different OT-based
algorithms. We note that the reported speeds for
phrase alignment algorithms (PRD and ROTS) also
include the time for parsing and constructing the
recursive phrase partitions. This additional pro-
cess brings additional computational overhead and
slows down the speed. As a consequence of parsing,
we can see that for PRD, #OT/sec is slowed down
compared to WRD. However, ROTS is based on
Prior OT with larger regularization strength, and
each call of ot.sinkhorn requires much less
time, thus making up the computational overhead
by parsing.

D EC Interpolation of WRD and AC

We consider 15 combinations from 5-word vectors
and 3 preprocessing setups. For each case, we grid-
search 10 values of α by linearly splitting [0, 1], and
10 values of ϵ by logarithmically splitting [0, 400],
resulting in 100 runs. The performances of 15 cases
are shown in Figure 5. Grid-search results indicate
that the proper choice of EC similarity outperforms
both WRD and AC, thus showing solidness. Specif-
ically, most of the best interpolation performances
appear when α = 1 (14 cases) and ϵ ∈ [1, 10]
(14 cases), which confirms the ablation study in
Figure 4. This observation demonstrates the effec-
tiveness of the correction term and indicates that
the best choice of the alignment matrix should be
chosen carefully.

E Dataset Breakdown Tables and
Uncentity Quantification

We provide the breakdown tables related to Fig-
ure 3 with different word vectors, e.g. fastText in
Table 13, GloVe in Table 14, Word2Vec in Table 15,
PSL in Table 16 and ParaNMT in Table 17. We
see that WRD performs consistently well on Twit-
ter dataset. For STSB and SICK, ROTS is better,
resulting in the best overall performance.

20https://github.com/PythonOT/POT

https://github.com/PythonOT/POT


4990

Table 8: Spearman’s ρ× 100 for different models in semisupervised and transferred setting

Similarity STS-B SICK STS12 STS13 STS14 STS15 STS16
ParaNMT Transfer
ROTS+WR+mean (ParaNMT) 78.51 65.90 65.39 63.95 75.41 79.90 77.86
ROTS+SWC+mean (ParaNMT) 78.65 65.29 64.88 62.08 74.24 79.16 76.38
SNLI + MNLI transfer
Sentence BERT(large) 79.23 73.75 72.27 78.46 74.90 80.99 76.25
Sentence RoBERTa(large) 79.10 74.29 74.53 77.00 73.18 81.85 76.82
domain adaptation setting
BERT (large) Flow *NLI 68.09 64.62 61.72 66.05 66.34 74.87 74.47
BERT (large) Flow target 72.26 62.50 65.20 73.39 69.42 74.92 77.63
SimCSE-BERT *NLI 76.85 72.23 68.40 82.41 74.38 80.91 78.56

Table 9: Comparison of computation speed

Method Function in POT Reg Reg. Strength #OT/STS #STS/sec #OT/sec
WRD ot.sinkhorn Entropy 0.1 1 208.52 208.52
PRD 4 levels ot.sinkhorn Entropy 0.1 5 32.80 164.00
ROTS 4 levels ot.sinkhorn KL Prior 10 5 60.56 302.80

E.1 Three Typical Preprocessings
We provide further information for Table 2, in-
cluding the Pearson’s r × 100 for each individual
datasets, plus STSB dev split and Twitter. Still, we
focus on fastText vectors, and list three preprocess-
ing setups, e.g. WR in Table 10, SWC in Table 11,
SUP in Table 12. We find that ROTS has the best
performance in WR and SUP, which is consistent
with Table 2, and AC is good with SWC.

E.2 Five Word Vectors



4991

0
0.5

1

Word2Vec
(75.70, 78.08, 77.15)

GloVe
(78.29, 80.72, 79.39)

Fasttext
(78.75, 81.43, 80.87)

PSL
(78.39, 80.70, 80.27)

ParaNMT
SUP

(82.36, 84.30, 84.12)

0
0.5

1
(76.02, 78.94, 78.66) (78.29, 81.76, 81.55) (79.01, 82.20, 82.06) (78.16, 80.77, 80.59)

SW
C

(81.51, 83.58, 83.46)

0 0.6 10 40
0

0
0.5

1
(75.66, 78.14, 76.75)

0 0.6 10 40
0

(77.32, 77.32, 71.74)

0 0.6 10 40
0

(77.83, 80.38, 78.86)

0 0.6 10 40
0

(77.74, 80.20, 79.31)

0 0.6 10 40
0

W
R

(82.24, 84.38, 84.13)

60
63
66
69
72
75
78
81
84
87

Pearson's r×
100

Figure 5: Interpolating AC and WRD by Example 1 on STS-B dev set. For each case, black dots indicate the highest
score. The title of each subplot indicates scores by (WRD, Best Interpolation, AC).

Table 10: Breakdown table for benchmark study with WR preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 70.13 [67.35, 72.53] 73.13 [70.40, 75.54] 72.34 [69.78, 74.66]
dev 78.85 [76.93, 80.56] 77.83 [75.49, 79.87] 79.78 [77.76, 81.48]

Twitter test 52.01 [47.67, 56.15] 56.73 [52.07, 60.83] 53.32 [48.75, 57.45]
SICK test 73.20 [71.66, 74.68] 68.73 [67.13, 70.27] 73.75 [72.16, 75.17]

STS12

MSRpar 39.84 [33.68, 45.44] 49.93 [44.04, 54.97] 43.04 [36.93, 48.40]
MSRvid 86.01 [84.22, 87.59] 82.38 [79.82, 84.57] 86.35 [84.59, 87.91]
SMTeuroparl 52.41 [44.52, 60.64] 52.01 [45.61, 58.37] 51.95 [44.82, 59.52]
OnWN 74.31 [70.55, 77.55] 74.59 [71.42, 77.30] 74.43 [70.78, 77.58]
SMTnews 64.71 [54.76, 73.79] 60.13 [52.37, 67.16] 62.92 [53.37, 72.18]

STS13

FNWN 42.94 [29.66, 53.80] 48.59 [35.52, 58.61] 44.64 [31.36, 55.42]
headlines 72.88 [69.45, 75.99] 72.49 [68.53, 75.73] 73.52 [69.99, 76.54]
OnWN 82.36 [79.81, 84.57] 69.74 [65.22, 73.64] 80.67 [77.85, 83.07]
SMT 39.03 [31.69, 46.65] 41.56 [34.95, 47.44] 40.65 [33.25, 47.89]

STS14

deft-forum 51.99 [45.09, 58.05] 46.53 [38.71, 53.75] 50.78 [43.96, 56.97]
deft-news 74.54 [68.55, 78.93] 74.62 [68.82, 79.55] 75.52 [69.80, 79.83]
headlines 68.71 [64.55, 72.33] 67.29 [62.68, 71.45] 69.27 [65.17, 73.02]
OnWN 84.52 [82.31, 86.32] 76.45 [73.25, 79.17] 83.62 [81.32, 85.56]
images 81.33 [78.78, 83.43] 80.06 [77.09, 82.50] 81.72 [79.20, 83.82]
tweet-news 76.62 [72.87, 79.78] 78.65 [75.59, 81.33] 78.27 [74.88, 81.19]

STS15

answers-forums 70.51 [64.96, 75.13] 75.15 [70.11, 79.29] 71.86 [66.44, 76.29]
answers-students 70.86 [66.85, 74.32] 76.02 [72.59, 79.00] 72.49 [68.70, 75.71]
belief 68.88 [61.09, 74.18] 77.71 [71.39, 81.99] 70.61 [62.59, 75.62]
headlines 74.44 [71.27, 77.11] 73.69 [70.17, 76.70] 74.79 [71.52, 77.53]
images 81.68 [79.23, 83.74] 83.83 [81.28, 85.90] 83.17 [80.75, 85.13]

STS16

answer-answer 47.15 [37.71, 55.50] 60.61 [52.21, 67.26] 53.36 [44.49, 60.90]
headlines 72.39 [66.12, 77.41] 73.41 [65.76, 79.02] 73.55 [67.06, 78.37]
plagiarism 82.01 [77.92, 85.28] 82.46 [77.73, 86.24] 82.53 [78.53, 85.90]
postediting 79.37 [71.53, 83.43] 86.11 [81.33, 89.16] 79.81 [72.99, 83.71]
question-question 73.03 [66.30, 77.87] 69.79 [61.18, 76.30] 73.79 [67.24, 78.60]
MEAN 68.51 - 69.32 - 69.40 -



4992

Table 11: Breakdown table for benchmark study with SWC preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 74.78 [72.31, 77.06] 74.58 [72.08, 76.81] 75.66 [73.17, 77.86]
dev 82.06 [80.25, 83.67] 78.47 [76.27, 80.45] 81.33 [79.36, 83.08]

Twitter test 54.01 [49.35, 58.23] 57.10 [52.42, 61.23] 55.56 [50.95, 59.88]
SICK test 72.12 [70.63, 73.57] 67.09 [65.49, 68.60] 71.33 [69.80, 72.76]

STS12

MSRpar 52.05 [46.24, 57.40] 54.85 [49.29, 59.92] 51.96 [46.18, 57.32]
MSRvid 87.23 [85.39, 88.76] 80.91 [78.23, 83.20] 85.48 [83.36, 87.22]
SMTeuroparl 55.44 [49.45, 61.30] 52.75 [46.66, 58.26] 52.94 [46.55, 59.00]
OnWN 73.66 [69.82, 77.04] 73.80 [70.63, 76.62] 73.52 [69.84, 76.80]
SMTnews 56.28 [47.71, 64.54] 56.68 [49.28, 63.64] 54.27 [46.13, 62.82]

STS13

FNWN 53.69 [41.93, 62.83] 47.98 [36.27, 57.19] 53.49 [41.82, 63.02]
headlines 75.92 [72.66, 78.76] 73.67 [70.14, 76.79] 75.38 [71.92, 78.32]
OnWN 82.89 [80.04, 85.20] 67.57 [62.91, 71.77] 76.66 [73.17, 79.70]
SMT 41.81 [34.69, 48.45] 40.98 [34.52, 46.79] 42.44 [35.82, 48.50]

STS14

deft-forum 55.57 [48.68, 61.79] 48.98 [41.00, 55.68] 54.31 [47.11, 60.52]
deft-news 75.92 [70.33, 80.46] 75.63 [70.18, 80.18] 76.13 [70.56, 80.70]
headlines 71.27 [67.27, 74.83] 69.07 [64.70, 73.00] 71.13 [67.08, 74.74]
OnWN 85.05 [82.85, 86.93] 75.28 [72.13, 78.04] 81.41 [78.77, 83.66]
images 83.08 [80.47, 85.19] 79.24 [76.29, 81.77] 82.02 [79.39, 84.25]
tweet-news 79.02 [75.83, 81.82] 78.16 [75.11, 80.76] 79.30 [76.24, 82.05]

STS15

answers-forums 75.46 [70.52, 79.33] 75.29 [70.37, 79.42] 75.76 [70.83, 79.78]
answers-students 74.15 [70.73, 77.18] 76.29 [73.12, 79.10] 74.10 [70.68, 77.12]
belief 78.22 [72.24, 82.23] 77.92 [72.15, 82.19] 78.56 [73.04, 82.59]
headlines 77.10 [74.12, 79.68] 75.11 [71.84, 78.09] 76.73 [73.70, 79.52]
images 85.48 [83.09, 87.40] 83.65 [80.95, 85.76] 85.39 [83.04, 87.25]

STS16

answer-answer 60.44 [51.81, 67.64] 63.92 [56.17, 70.26] 61.66 [53.52, 68.76]
headlines 75.61 [68.93, 80.37] 75.28 [67.87, 80.65] 75.71 [68.87, 80.67]
plagiarism 83.48 [79.25, 86.80] 81.55 [76.49, 85.31] 82.46 [77.98, 86.01]
postediting 83.63 [77.69, 87.06] 86.90 [82.05, 89.85] 84.28 [78.84, 87.61]
question-question 76.09 [68.65, 81.22] 69.66 [61.28, 76.39] 76.08 [68.90, 81.01]
MEAN 71.78 - 69.60 - 71.21 -

Table 12: Breakdown table for benchmark study with SUP preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 73.47 [70.90, 75.86] 74.80 [72.27, 77.13] 74.69 [72.12, 77.01]
dev 80.87 [78.98, 82.55] 78.75 [76.54, 80.72] 81.15 [79.23, 82.92]

Twitter test 53.15 [48.54, 57.23] 57.41 [52.87, 61.57] 54.88 [50.28, 59.08]
SICK test 72.73 [71.16, 74.24] 67.67 [66.06, 69.17] 72.77 [71.26, 74.22]

STS12

MSRpar 41.40 [35.15, 46.68] 50.98 [45.25, 56.10] 44.77 [38.66, 50.10]
MSRvid 86.79 [84.94, 88.35] 83.27 [80.83, 85.32] 87.04 [85.18, 88.62]
SMTeuroparl 53.29 [46.42, 60.68] 52.73 [46.49, 58.45] 52.31 [45.42, 58.92]
OnWN 73.53 [69.66, 76.91] 73.85 [70.76, 76.55] 73.56 [69.81, 76.79]
SMTnews 61.19 [51.71, 70.15] 59.34 [52.19, 66.10] 59.92 [50.88, 69.08]

STS13

FNWN 49.52 [37.76, 59.05] 49.16 [37.65, 58.60] 50.25 [38.73, 59.72]
headlines 73.73 [70.24, 76.79] 72.95 [69.30, 76.21] 74.11 [70.65, 77.17]
OnWN 83.15 [80.48, 85.50] 71.12 [66.69, 74.82] 81.14 [78.13, 83.53]
SMT 39.22 [32.18, 46.23] 40.78 [34.34, 46.68] 40.50 [33.48, 47.03]

STS14

deft-forum 53.39 [46.27, 59.71] 47.60 [39.96, 54.72] 52.21 [45.10, 58.70]
deft-news 76.08 [70.28, 80.42] 75.38 [69.79, 80.11] 76.91 [71.41, 81.28]
headlines 69.86 [65.85, 73.29] 68.11 [63.55, 72.19] 70.12 [65.97, 73.73]
OnWN 85.37 [83.20, 87.16] 77.55 [74.59, 80.08] 84.05 [81.72, 85.98]
images 83.73 [81.36, 85.71] 81.05 [78.26, 83.51] 83.65 [81.31, 85.67]
tweet-news 77.78 [74.24, 80.79] 78.24 [75.16, 80.85] 78.86 [75.59, 81.61]

STS15

answers-forums 74.60 [69.78, 78.61] 75.80 [70.74, 79.72] 75.40 [70.34, 79.27]
answers-students 70.66 [66.65, 74.13] 75.16 [71.79, 78.21] 72.18 [68.21, 75.47]
belief 76.53 [70.16, 80.98] 78.37 [72.23, 82.48] 77.23 [70.94, 81.64]
headlines 75.16 [72.06, 77.80] 74.28 [70.94, 77.36] 75.42 [72.23, 78.15]
images 84.70 [82.47, 86.60] 84.66 [82.23, 86.64] 85.31 [83.12, 87.13]

STS16

answer-answer 54.75 [45.45, 62.55] 62.77 [54.87, 69.23] 58.21 [49.27, 65.50]
headlines 72.71 [66.44, 77.66] 74.16 [66.53, 79.74] 73.90 [67.05, 78.90]
plagiarism 82.37 [78.29, 85.55] 82.21 [77.61, 86.05] 82.62 [78.53, 85.92]
postediting 82.64 [76.07, 86.31] 86.54 [81.65, 89.56] 83.08 [76.90, 86.66]
question-question 74.91 [67.20, 79.98] 71.21 [63.00, 77.61] 75.57 [68.48, 80.59]
MEAN 70.25 - 69.86 - 70.75 -



4993

Table 13: Breakdown table with fastText vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 74.80 [72.27, 77.13] 57.41 [52.87, 61.57] 67.67 [66.06, 69.17] 66.63
AC 73.47 [70.90, 75.86] 53.15 [48.54, 57.23] 72.73 [71.16, 74.24] 66.45
ROTS+L0 73.47 [70.77, 75.76] 53.15 [48.47, 57.13] 72.73 [71.19, 74.25] 66.45
ROTS+L1 73.77 [71.24, 76.08] 53.34 [48.84, 57.51] 73.31 [71.71, 74.74] 66.81
ROTS+L2 74.02 [71.40, 76.34] 53.40 [48.76, 57.63] 73.37 [71.85, 74.81] 66.93
ROTS+L3 74.05 [71.25, 76.44] 54.23 [49.76, 58.44] 73.13 [71.56, 74.58] 67.14
ROTS+L4 74.69 [72.12, 77.01] 54.88 [50.28, 59.08] 72.77 [71.26, 74.22] 67.45
ROTS+mean 74.25 [71.70, 76.56] 53.93 [49.50, 58.13] 73.13 [71.59, 74.58] 67.10
ROTS+max 74.58 [71.87, 76.86] 54.88 [50.39, 59.04] 72.77 [71.27, 74.23] 67.41
ROTS+min 73.36 [70.57, 75.71] 52.74 [48.17, 56.90] 72.74 [71.15, 74.17] 66.28
ROTS+last 74.30 [71.70, 76.64] 54.95 [50.51, 59.01] 72.54 [70.96, 74.03] 67.26
with SWC
WRD 74.58 [72.08, 76.81] 57.10 [52.42, 61.23] 67.09 [65.49, 68.60] 66.26
AC 74.78 [72.31, 77.06] 54.01 [49.35, 58.23] 72.12 [70.63, 73.57] 66.97
ROTS+L0 74.60 [72.08, 76.92] 53.74 [49.07, 57.98] 71.57 [70.01, 73.01] 66.64
ROTS+L1 74.84 [72.38, 77.09] 53.99 [49.38, 58.26] 72.02 [70.46, 73.44] 66.95
ROTS+L2 75.08 [72.64, 77.42] 54.09 [49.38, 58.41] 72.00 [70.50, 73.40] 67.06
ROTS+L3 75.25 [72.69, 77.57] 54.95 [50.26, 59.19] 71.72 [70.23, 73.17] 67.31
ROTS+L4 75.66 [73.17, 77.86] 55.56 [50.95, 59.88] 71.33 [69.80, 72.76] 67.52
ROTS+mean 75.33 [72.82, 77.56] 54.59 [49.93, 59.00] 71.79 [70.23, 73.22] 67.24
ROTS+max 75.53 [73.08, 77.77] 55.59 [50.96, 59.70] 71.33 [69.83, 72.80] 67.48
ROTS+min 74.80 [72.16, 77.14] 53.44 [48.65, 57.71] 71.58 [70.04, 73.00] 66.61
ROTS+last 75.47 [72.99, 77.64] 55.73 [51.22, 59.76] 71.15 [69.62, 72.62] 67.45
with WR
WRD 73.13 [70.40, 75.54] 56.73 [52.07, 60.83] 68.73 [67.13, 70.27] 66.20
AC 70.13 [67.35, 72.53] 52.01 [47.67, 56.15] 73.20 [71.66, 74.68] 65.11
ROTS+L0 70.14 [67.47, 72.65] 52.03 [47.45, 56.02] 73.20 [71.63, 74.68] 65.12
ROTS+L1 70.67 [67.98, 73.12] 52.13 [47.62, 56.29] 73.82 [72.30, 75.28] 65.54
ROTS+L2 71.21 [68.59, 73.62] 52.03 [47.21, 56.24] 74.01 [72.52, 75.49] 65.75
ROTS+L3 71.31 [68.51, 73.77] 52.76 [48.20, 56.84] 73.94 [72.42, 75.40] 66.00
ROTS+L4 72.34 [69.78, 74.66] 53.32 [48.75, 57.45] 73.75 [72.16, 75.17] 66.47
ROTS+mean 71.52 [68.99, 73.87] 52.59 [47.95, 56.78] 73.84 [72.27, 75.28] 65.98
ROTS+max 72.17 [69.51, 74.51] 53.32 [48.78, 57.36] 73.75 [72.22, 75.20] 66.41
ROTS+min 70.12 [67.20, 72.64] 51.44 [46.76, 55.55] 73.21 [71.60, 74.66] 64.92
ROTS+last 71.78 [69.21, 74.10] 53.41 [49.05, 57.46] 73.48 [71.92, 74.96] 66.22

Table 14: Breakdown table with GloVe vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 71.97 [69.18, 74.43] 55.63 [50.93, 60.07] 67.52 [65.94, 69.13] 65.04
AC 69.54 [66.72, 72.05] 49.79 [44.88, 54.34] 72.92 [71.40, 74.43] 64.08
ROTS+L0 69.54 [66.68, 72.13] 49.79 [44.83, 54.33] 72.92 [71.34, 74.40] 64.08
ROTS+L1 70.03 [67.29, 72.51] 50.1 [45.13, 54.72] 73.51 [71.95, 74.94] 64.55
ROTS+L2 70.62 [67.89, 73.03] 50.3 [45.20, 54.90] 73.56 [72.03, 75.06] 64.83
ROTS+L3 70.94 [68.20, 73.40] 51.08 [46.17, 55.50] 73.33 [71.78, 74.74] 65.12
ROTS+L4 71.79 [69.19, 74.15] 51.83 [46.91, 56.23] 72.98 [71.44, 74.50] 65.53
ROTS+mean 70.96 [68.26, 73.37] 50.73 [45.79, 55.23] 73.35 [71.79, 74.83] 65.01
ROTS+max 71.57 [68.98, 73.95] 51.83 [47.05, 56.38] 72.98 [71.41, 74.43] 65.46
ROTS+min 69.87 [66.98, 72.43] 49.54 [44.59, 54.14] 72.93 [71.37, 74.40] 64.11
ROTS+last 71.49 [68.90, 73.83] 51.76 [47.01, 56.10] 72.8 [71.21, 74.31] 65.35
with SWC
WRD 72.34 [69.61, 74.79] 57.31 [52.66, 61.52] 65.99 [64.36, 67.51] 65.21
AC 73.14 [70.51, 75.51] 55.34 [50.75, 59.63] 71.23 [69.69, 72.67] 66.57
ROTS+L0 72.93 [70.19, 75.32] 54.37 [49.51, 58.72] 70.53 [68.94, 72.02] 65.94
ROTS+L1 73.19 [70.55, 75.59] 54.6 [49.87, 58.91] 70.97 [69.39, 72.39] 66.25
ROTS+L2 73.51 [70.95, 75.90] 54.79 [50.00, 59.19] 70.94 [69.41, 72.40] 66.41
ROTS+L3 73.7 [71.06, 76.06] 55.67 [50.86, 59.99] 70.68 [69.15, 72.13] 66.68
ROTS+L4 74.18 [71.66, 76.50] 56.38 [51.78, 60.67] 70.3 [68.77, 71.77] 66.95
ROTS+mean 73.77 [71.24, 76.14] 55.29 [50.58, 59.63] 70.75 [69.23, 72.22] 66.60
ROTS+max 74.01 [71.44, 76.30] 56.38 [51.71, 60.68] 70.3 [68.73, 71.74] 66.90
ROTS+min 73.24 [70.60, 75.63] 54.01 [49.20, 58.35] 70.54 [68.99, 72.06] 65.93
ROTS+last 74.01 [71.43, 76.31] 56.45 [51.79, 60.54] 70.13 [68.60, 71.65] 66.86
with WR
WRD 69.05 [65.99, 71.79] 48.69 [43.60, 53.49] 68.01 [66.36, 69.60] 61.92
AC 64.67 [61.65, 67.48] 37.56 [32.30, 42.53] 71.36 [69.72, 72.89] 57.86
ROTS+L0 64.67 [61.65, 67.46] 37.56 [32.23, 42.61] 71.36 [69.72, 72.91] 57.86
ROTS+L1 65.39 [62.39, 68.02] 38.24 [33.05, 43.22] 72.12 [70.52, 73.60] 58.58
ROTS+L2 66.32 [63.51, 68.98] 39.12 [33.70, 44.14] 72.47 [70.85, 73.99] 59.30
ROTS+L3 66.46 [63.59, 69.17] 40.58 [35.47, 45.37] 72.58 [71.00, 74.06] 59.87
ROTS+L4 67.9 [65.24, 70.38] 41.77 [36.62, 46.55] 72.52 [70.93, 74.01] 60.73
ROTS+mean 66.75 [63.97, 69.35] 39.63 [34.30, 44.41] 72.36 [70.80, 73.91] 59.58
ROTS+max 67.68 [65.01, 70.09] 41.77 [36.67, 46.65] 72.52 [70.93, 74.02] 60.66
ROTS+min 64.74 [61.59, 67.57] 37.47 [32.12, 42.42] 71.37 [69.71, 72.91] 57.86
ROTS+last 67.36 [64.63, 69.84] 41.31 [36.23, 46.06] 72.23 [70.66, 73.70] 60.30



4994

Table 15: Breakdown table with Word2Vec vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 70.77 [67.85, 73.44] 41.36 [36.04, 46.45] 66.34 [64.73, 67.88] 59.49
AC 69 [66.05, 71.73] 33.12 [27.54, 38.18] 70.96 [69.29, 72.53] 57.69
ROTS+L0 69 [66.05, 71.68] 33.12 [27.55, 38.19] 70.96 [69.31, 72.52] 57.69
ROTS+L1 69.42 [66.39, 72.09] 33.37 [27.90, 38.44] 71.38 [69.76, 72.93] 58.06
ROTS+L2 69.95 [66.94, 72.47] 33.8 [28.39, 38.93] 71.74 [70.13, 73.26] 58.50
ROTS+L3 70.13 [67.15, 72.70] 34.42 [28.79, 39.60] 71.5 [69.86, 73.02] 58.68
ROTS+L4 70.57 [67.73, 73.13] 34.97 [29.38, 40.20] 71.17 [69.51, 72.65] 58.90
ROTS+mean 69.99 [67.02, 72.60] 33.99 [28.39, 39.10] 71.47 [69.88, 73.03] 58.48
ROTS+max 70.57 [67.73, 73.13] 34.97 [29.53, 40.05] 71.17 [69.58, 72.74] 58.90
ROTS+min 68.91 [65.89, 71.57] 33.18 [27.90, 38.37] 70.75 [69.07, 72.25] 57.61
ROTS+last 70.17 [67.38, 72.81] 34.49 [28.84, 39.53] 70.72 [69.09, 72.28] 58.46
with SWC
WRD 70.64 [67.76, 73.22] 43.46 [38.05, 48.49] 66.29 [64.68, 67.83] 60.13
AC 70.41 [67.47, 73.05] 38.84 [33.44, 44.03] 71.39 [69.81, 72.89] 60.21
ROTS+L0 70.13 [67.23, 72.81] 38.46 [33.08, 43.54] 70.75 [69.17, 72.26] 59.78
ROTS+L1 70.44 [67.59, 73.09] 38.67 [33.18, 43.75] 71.02 [69.46, 72.51] 60.04
ROTS+L2 70.87 [68.02, 73.46] 39.03 [33.49, 43.93] 71.2 [69.61, 72.66] 60.37
ROTS+L3 71.03 [68.06, 73.57] 39.58 [33.98, 44.54] 70.92 [69.34, 72.40] 60.51
ROTS+L4 71.4 [68.58, 73.98] 40.03 [34.62, 45.28] 70.56 [69.02, 72.01] 60.66
ROTS+mean 70.92 [68.06, 73.46] 39.21 [33.82, 44.34] 70.97 [69.42, 72.43] 60.37
ROTS+max 71.4 [68.60, 73.96] 40.03 [34.60, 45.49] 70.56 [68.98, 72.03] 60.66
ROTS+min 70.05 [67.08, 72.66] 38.51 [33.04, 43.56] 70.59 [69.06, 72.13] 59.72
ROTS+last 71.22 [68.32, 73.74] 39.74 [34.26, 44.76] 70.23 [68.61, 71.71] 60.40
with WR
WRD 70.33 [67.42, 73.02] 40.56 [35.15, 45.83] 67.68 [66.09, 69.20] 59.52
AC 67.86 [64.83, 70.63] 31.85 [26.34, 36.76] 72.33 [70.74, 73.79] 57.35
ROTS+L0 67.87 [64.88, 70.59] 31.86 [26.51, 36.88] 72.33 [70.74, 73.83] 57.35
ROTS+L1 68.4 [65.42, 71.04] 32.07 [26.56, 37.15] 72.68 [71.08, 74.19] 57.72
ROTS+L2 69.09 [66.06, 71.70] 32.4 [26.71, 37.43] 73.04 [71.46, 74.49] 58.18
ROTS+L3 69.44 [66.50, 72.09] 32.96 [27.63, 38.06] 72.85 [71.33, 74.37] 58.42
ROTS+L4 70 [67.15, 72.54] 33.48 [27.87, 38.72] 72.55 [70.94, 74.04] 58.68
ROTS+mean 69.14 [66.29, 71.78] 32.6 [27.20, 37.64] 72.82 [71.28, 74.29] 58.19
ROTS+max 70 [67.12, 72.52] 33.48 [27.99, 38.60] 72.55 [70.99, 74.08] 58.68
ROTS+min 67.83 [64.78, 70.66] 31.94 [26.48, 36.82] 72.12 [70.52, 73.67] 57.30
ROTS+last 69.58 [66.77, 72.17] 33.09 [27.75, 38.21] 72.22 [70.62, 73.70] 58.30

Table 16: Breakdown table with PSL vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 73.78 [71.22, 76.14] 45.72 [40.09, 51.01] 67.83 [66.23, 69.41] 62.44
AC 73.50 [70.84, 75.91] 42.49 [36.81, 47.63] 71.97 [70.38, 73.50] 62.65
ROTS+L0 73.50 [70.87, 75.82] 42.49 [36.95, 47.70] 71.98 [70.40, 73.47] 62.66
ROTS+L1 73.76 [71.14, 76.07] 42.71 [37.24, 47.82] 72.60 [71.05, 74.07] 63.02
ROTS+L2 73.95 [71.37, 76.21] 42.81 [37.08, 47.96] 72.61 [71.11, 74.08] 63.12
ROTS+L3 73.95 [71.31, 76.32] 43.40 [37.81, 48.61] 72.37 [70.84, 73.83] 63.24
ROTS+L4 74.48 [71.98, 76.76] 43.78 [38.22, 48.98] 72.01 [70.47, 73.45] 63.42
ROTS+mean 74.19 [71.60, 76.44] 43.10 [37.48, 48.31] 72.39 [70.85, 73.86] 63.23
ROTS+max 74.42 [71.87, 76.76] 43.78 [38.04, 49.04] 72.01 [70.50, 73.48] 63.40
ROTS+min 73.52 [70.90, 75.85] 42.36 [36.69, 47.46] 71.98 [70.40, 73.47] 62.62
ROTS+last 74.24 [71.63, 76.52] 43.74 [38.23, 48.95] 71.74 [70.23, 73.25] 63.24
with SWC
WRD 73.01 [70.32, 75.35] 46.01 [40.33, 51.24] 66.73 [65.19, 68.24] 61.92
AC 74.22 [71.73, 76.54] 43.76 [38.16, 48.85] 70.07 [68.54, 71.57] 62.68
ROTS+L0 73.93 [71.36, 76.25] 43.62 [38.07, 48.76] 69.60 [68.00, 71.10] 62.38
ROTS+L1 74.06 [71.43, 76.41] 43.83 [38.19, 49.15] 70.13 [68.56, 71.66] 62.67
ROTS+L2 74.15 [71.55, 76.46] 43.90 [38.10, 49.26] 70.17 [68.64, 71.64] 62.74
ROTS+L3 74.14 [71.58, 76.44] 44.45 [38.75, 49.74] 69.98 [68.41, 71.45] 62.86
ROTS+L4 74.47 [71.87, 76.78] 44.82 [39.21, 50.08] 69.68 [68.16, 71.12] 62.99
ROTS+mean 74.37 [71.81, 76.73] 44.19 [38.65, 49.45] 69.98 [68.41, 71.44] 62.85
ROTS+max 74.41 [71.83, 76.67] 44.83 [39.20, 50.06] 69.68 [68.14, 71.13] 62.97
ROTS+min 74.03 [71.44, 76.36] 43.45 [37.94, 48.60] 69.60 [68.06, 71.15] 62.36
ROTS+last 74.37 [71.84, 76.66] 44.88 [39.25, 50.08] 69.41 [67.83, 70.82] 62.89
with WR
WRD 72.52 [69.80, 74.89] 45.04 [39.41, 50.32] 68.38 [66.77, 69.92] 61.98
AC 71.13 [68.34, 73.60] 40.18 [34.60, 45.38] 72.37 [70.80, 73.85] 61.23
ROTS+L0 71.13 [68.41, 73.61] 40.18 [34.51, 45.23] 72.37 [70.77, 73.87] 61.23
ROTS+L1 71.57 [68.95, 74.01] 40.45 [34.84, 45.47] 73.02 [71.43, 74.48] 61.68
ROTS+L2 72.05 [69.30, 74.44] 40.59 [34.86, 45.82] 73.07 [71.53, 74.54] 61.90
ROTS+L3 72.22 [69.51, 74.62] 41.19 [35.48, 46.47] 72.90 [71.36, 74.38] 62.10
ROTS+L4 72.93 [70.34, 75.21] 41.61 [35.85, 46.86] 72.60 [71.00, 74.06] 62.38
ROTS+mean 72.34 [69.75, 74.72] 40.87 [35.30, 46.18] 72.88 [71.31, 74.31] 62.03
ROTS+max 72.79 [70.22, 75.05] 41.61 [35.87, 46.84] 72.60 [71.04, 74.06] 62.33
ROTS+min 71.36 [68.54, 73.78] 40.11 [34.50, 45.39] 72.38 [70.84, 73.91] 61.28
ROTS+last 72.63 [70.04, 74.94] 41.43 [36.01, 46.70] 72.35 [70.79, 73.85] 62.14



4995

Table 17: Breakdown table with ParaNMT vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 79.05 [76.85, 81.05] 52.21 [47.20, 56.89] 70.02 [68.52, 71.45] 67.09
AC 79.55 [77.23, 81.61] 46.56 [41.08, 51.56] 73.89 [72.47, 75.24] 66.67
ROTS+L0 79.55 [77.15, 81.57] 46.55 [41.14, 51.50] 73.89 [72.45, 75.26] 66.66
ROTS+L1 79.73 [77.44, 81.77] 46.81 [41.44, 51.79] 74.47 [73.09, 75.83] 67.00
ROTS+L2 79.73 [77.40, 81.71] 47.08 [41.87, 52.25] 74.56 [73.14, 75.88] 67.12
ROTS+L3 79.54 [77.09, 81.61] 48.09 [42.85, 52.77] 74.31 [72.91, 75.68] 67.31
ROTS+L4 79.74 [77.41, 81.77] 48.71 [43.50, 53.50] 73.93 [72.55, 75.33] 67.46
ROTS+mean 79.81 [77.48, 81.83] 47.60 [42.36, 52.44] 74.30 [72.90, 75.65] 67.24
ROTS+max 79.74 [77.43, 81.78] 48.73 [43.51, 53.49] 73.93 [72.51, 75.28] 67.47
ROTS+min 79.29 [76.79, 81.36] 46.22 [40.78, 51.23] 73.89 [72.45, 75.25] 66.47
ROTS+last 79.37 [77.02, 81.41] 48.72 [43.42, 53.61] 73.63 [72.16, 74.95] 67.24
with SWC
WRD 77.98 [75.65, 79.96] 52.49 [47.49, 57.00] 68.92 [67.41, 70.35] 66.46
AC 79.70 [77.58, 81.65] 46.46 [41.22, 51.39] 71.58 [70.07, 72.98] 65.91
ROTS+L0 79.71 [77.55, 81.57] 46.20 [40.78, 51.13] 71.23 [69.75, 72.64] 65.71
ROTS+L1 79.78 [77.56, 81.63] 46.48 [41.19, 51.48] 71.77 [70.30, 73.17] 66.01
ROTS+L2 79.70 [77.54, 81.64] 46.84 [41.49, 51.89] 71.85 [70.40, 73.23] 66.13
ROTS+L3 79.47 [77.14, 81.51] 47.97 [42.69, 52.76] 71.67 [70.27, 73.04] 66.37
ROTS+L4 79.48 [77.34, 81.41] 48.72 [43.67, 53.62] 71.36 [69.89, 72.76] 66.52
ROTS+mean 79.79 [77.55, 81.74] 47.40 [42.14, 52.49] 71.64 [70.14, 72.99] 66.28
ROTS+max 79.45 [77.24, 81.43] 48.74 [43.61, 53.64] 71.36 [69.89, 72.74] 66.52
ROTS+min 79.63 [77.33, 81.61] 45.90 [40.58, 50.83] 71.24 [69.76, 72.68] 65.59
ROTS+last 79.28 [77.07, 81.23] 48.72 [43.68, 53.51] 71.05 [69.58, 72.47] 66.35
with WR
WRD 79.03 [76.80, 80.97] 50.82 [45.66, 55.60] 70.94 [69.47, 72.39] 66.93
AC 79.53 [77.28, 81.52] 43.46 [38.01, 48.50] 74.54 [73.07, 75.88] 65.84
ROTS+L0 79.53 [77.20, 81.46] 43.46 [38.11, 48.50] 74.54 [73.08, 75.84] 65.84
ROTS+L1 79.75 [77.50, 81.75] 43.71 [38.19, 48.46] 75.12 [73.70, 76.49] 66.19
ROTS+L2 79.78 [77.45, 81.75] 43.98 [38.40, 49.10] 75.22 [73.82, 76.56] 66.33
ROTS+L3 79.55 [77.15, 81.63] 45.05 [39.73, 49.92] 75.02 [73.61, 76.32] 66.54
ROTS+L4 79.71 [77.41, 81.62] 45.70 [40.42, 50.78] 74.68 [73.29, 76.04] 66.70
ROTS+mean 79.83 [77.57, 81.83] 44.54 [39.07, 49.62] 75.00 [73.62, 76.36] 66.46
ROTS+max 79.71 [77.42, 81.64] 45.71 [40.18, 50.60] 74.68 [73.27, 76.01] 66.70
ROTS+min 79.28 [76.85, 81.34] 43.14 [37.45, 48.16] 74.54 [73.10, 75.87] 65.65
ROTS+last 79.39 [77.03, 81.36] 45.62 [40.29, 50.65] 74.41 [72.98, 75.77] 66.47


