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Abstract

We present a subword regularization method
for WordPiece, which uses a maximum match-
ing algorithm for tokenization. The proposed
method, MaxMatch-Dropout, randomly drops
words in a search using the maximum matching
algorithm. It realizes finetuning with subword
regularization for popular pretrained language
models such as BERT-base. The experimental
results demonstrate that MaxMatch-Dropout
improves the performance of text classification
and machine translation tasks as well as other
subword regularization methods. Moreover, we
provide a comparative analysis of subword reg-
ularization methods: subword regularization
with SentencePiece (Unigram), BPE-Dropout,
and MaxMatch-Dropout.

1 Introduction

Subword regularization (Kudo, 2018) is a well-
known technique for improving the performance of
NLP systems, whereby a model is trained with vari-
ous tokenizations that are sampled for each training
epoch. This approach provides data augmentation
and model robustness against tokenization differ-
ences.

Kudo (2018) first introduced subword regular-
ization using a unigram language model that was
included in their tokenization tool, namely Sen-
tencePiece (Kudo and Richardson, 2018), and re-
ported its effectiveness on machine translation
tasks. Provilkov et al. (2020) proposed a subword
regularization method for byte pair encoding (BPE)
known as BPE-Dropout and demonstrated the su-
periority of their method over that using the uni-
gram language model in machine translation tasks.
Moreover, subword regularization contributes to
the performance improvement of text classification
tasks (Hiraoka et al., 2019).

∗The author is currently affiliated with Fujitsu Limited.
This work was carried out at the Tokyo Institute of Technology.
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Figure 1: MaxMatch-Dropout randomly removes ac-
cepting states in the trie. In this figure, a state corre-
sponding to “word” is dropped and a single input “word”
is tokenized as “w, or, d.”

As subword regularization is implemented as a
modification of a tokenizer, each method is special-
ized to a particular tokenizer type. For example,
the original subword regularization (Kudo, 2018)
is specialized to a tokenizer that uses the unigram
language model and BPE-Dropout is specialized
to the BPE-based tokenizer. However, these exist-
ing subword regularization tools cannot be directly
applied to the other common tokenizers such as
WordPiece (Song et al., 2021).

WordPiece is a tokenizer that is based on the
maximum matching algorithm. It is used as the de-
fault tokenizer for the popular pretrained language
model BERT (Devlin et al., 2018). Although the
widely used BERT models (e.g., BERT-base) can
improve the performance of various NLP tasks,
subword regularization cannot be used for the fine-
tuning of the model because no subword regular-
ization method exists for WordPiece. The use of
subword regularization for the finetuning of pre-
trained models with WordPiece may result in a
further performance improvement.

In this paper, we present a simple modification
of WordPiece for the use of subword regulariza-
tion. The proposed method, which is known as
MaxMatch-Dropout, randomly drops words in a
vocabulary during the tokenization process. That
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Algorithm 1 Algorithm for Word Tokenization
Require: Single Word w, Vocabulary V , Dropout Rate q.
1: S ← Empty List
2: Index of Characters i← 1
3: while i < |w| do
4: Subword s← ∅
5: for j = 1 to |w| − i do
6: if wi:i+j ∈ V and Ber(1− q) then
7: s← wi:i+j

8: if s = ∅ then return [UNK]
9: else

10: Add s to S
11: i← i+ |s|

return S

is, MaxMatch-Dropout randomly removes accept-
ing states from a trie for tokenization. The ex-
perimental results demonstrate that MaxMatch-
Dropout improves the performance of text classifi-
cation and machine translation in several languages,
as well as other subword regularization methods.
Furthermore, MaxMatch-Dropout contributes to a
further performance improvement with pretrained
BERT on text classification in English, Korean, and
Japanese.

2 Maximum Matching

A simple modification to the maximum match-
ing algorithm is implemented so that MaxMatch-
Dropout can realize subword regularization. Prior
to explaining the modification, we briefly review
the maximum matching on which the proposed
method is based1.

Given a vocabulary and a single word, the maxi-
mum matching searches the longest subword in the
vocabulary and greedily tokenizes the word into a
sequence of subwords from beginning to end. For
example, let the vocabulary be composed of {a, b,
c, d, abc, bcd}. The tokenizer with the maximum
matching divides a word “abcd” into “abc, d”2. As
the maximum matching searches subwords from
the beginning of the word, this word is not tok-
enized as “a, bcd.” When an input word includes
an unknown character, such as “abce,” the tokenizer
replaces this word with a special token, “[UNK].”
This tokenization process is usually implemented
using a trie. The detailed tokenization process us-
ing the maximum matching for this example with
the trie (Figure 4) is described in Appendix A.

1Song et al. (2021) explains the efficient implementation
of the maximum matching in detail.

2We do not use special tokens for a subword that begins in
the middle of a word (e.g., “##”) for simple explanation.

3 Proposed Method: MaxMatch-Dropout

The proposed method extends the maximum match-
ing with an additional dropout process. This
method randomly replaces accepting states into
non-accepting states with dropped states. That is,
accepting tokens are randomly skipped with a spec-
ified probability q, where q is a hyperparameter.

Figure 1 depicts the tokenization process of a
word “word” with a vocabulary that includes {w,
o, r, d, or, rd, word}. Although the maximum
matched subword beginning with the first character
is “word” in the vocabulary, in this case, the state
corresponding to “word” is dropped. Thus, the
latest accepted subword “w” is yielded and the
next matching begins from the second character.
Finally, the tokenization process results in “w, or,
d.”

This process is also outlined in Algorithm 1 3.
In the algorithm, wi,i+j denotes a subword begin-
ning from the i-th character and ending with the
(i+ j − 1)-th character in the word w, where |w|
and |s| are the lengths of the input word and sub-
word, respectively. Moreover, Ber(1− q) denotes
a Bernoulli distribution that returns 1 with a proba-
bility of 1− q.

The tokenization process of MaxMatch-Dropout
is detailed in Table 6 of Appendix A. The differ-
ence between MaxMatch-Dropout and the original
maximum matching can be observed by comparing
Tables 5 and 6.

The regularization strength can be tuned using
the hyperparameter q. The proposed method is
equivalent to the original maximum matching with
q = 0.0, and it tokenizes a word into characters
with q = 1.0 if all characters are included in the
vocabulary.

The official code is available at https:
//github.com/tatHi/maxmatch_
dropout.

4 Experiments

We conducted experiments on text classification
and machine translation tasks to validate the per-
formance improvement provided by MaxMatch-
Dropout.

We used two tokenizers and subword regulariza-
tion methods as a reference for both tasks: Senten-
cePiece (Unigram) (Kudo and Richardson, 2018)
with subword regularization (Sub. Reg.) (Kudo,

3Algorithm 1 does not use a trie for simple explanation.

https://github.com/tatHi/maxmatch_dropout
https://github.com/tatHi/maxmatch_dropout
https://github.com/tatHi/maxmatch_dropout
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English Korean Japanese
APG APR TS QNLI QQP RTE SST-2 NLI STS YNAT TR WRIME

|V | 32K 32K 32K 32K 32K 12K 8K 24K 16K 32K 16K 12K
Metric F1 F1 F1 Acc. F1 Acc. Acc. Acc. F1 F1 F1 F1
BiLSTM
Unigram 69.05 65.85 76.21 66.48 83.61 49.10 80.05 41.93 67.02 68.57 86.6 46.36
+ Sub. Reg. 70.65 66.80 77.49 66.56 83.91 53.31 83.30 42.84 68.08 73.67 87.11 49.47
BPE 67.10 64.67 75.24 67.11 82.82 53.07 78.10 41.22 67.42 64.27 84.95 44.34
+ BPE-Dropout 68.45 65.38 76.04 66.69 82.69 53.97 82.00 41.52 66.26 69.12 85.68 46.01
WordPiece 63.17 62.97 73.14 64.04 82.11 53.55 81.04 39.96 61.75 62.44 84.95 46.36
+ MM-Dropout 64.90 64.36 75.22 64.28 82.14 53.91 83.75 40.61 62.88 70.08 86.98 47.28
BERT
WordPiece 77.28 70.99 81.93 89.45 89.83 62.00 90.97 82.18 83.22 83.96 89.08 89.08
+ MM-Dropout 78.55 71.68 82.08 89.74 89.86 62.27 91.07 82.19 85.43 84.31 89.14 89.14

Table 1: Experimental results of text classification (averaged scores of five runs). The higher scores for the
tokenizations with/without subword regularization are indicated in bold. The scores that significantly surpassed the
results without subword regularization (p < 0.05, McNemar’s test) are underlined.

2018) and BPE (Sennrich et al., 2016) with BPE-
Dropout (Provilkov et al., 2020). We employed
WordPiece (Song et al., 2021), which was im-
plemented by HuggingFace (Wolf et al., 2020),
as a basic tokenizer for the proposed MaxMatch-
Dropout 4.

We set the vocabulary size of each tokenizer to
be equal to compare the three methods as fairly
as possible. The vocabulary of each tokenizer in-
cluded all characters that appeared in the train-
ing splits. We selected the hyperparameters for
the subword regularization (e.g., q of MaxMatch-
Dropout) according to the performance on the de-
velopment splits. Note that we could not fairly
compare the performance of MaxMatch-Dropout
to that of other subword regularization methods
because they are based on different tokenizers and
vocabularies. WordPiece was used as the baseline
for MaxMatch-Dropout to investigate whether the
method could successfully perform subword regu-
larization and improve the performance similarly
to other methods.

4.1 Text Classification
Datasets We exploited text classification datasets
in three languages: English, Korean, and Japanese.
APG and APR are genre prediction and rating pre-
diction, respectively, on review texts that were cre-
ated from the Amazon Product Dataset (He and
McAuley, 2016). TS is a sentiment classification
for tweets 5. We also employed QNLI (Rajpurkar
et al., 2016), QQP (Chen et al., 2018), RTE (Ben-
tivogli et al.), and SST-2 (Socher et al., 2013) from

4Table 12 in the Appendix presents tokenization examples
for each tokenizer.

5https://www.kaggle.com/c/
twitter-sentiment-analysis2

the GLUE benchmark (Wang et al., 2018). NLI,
STS, and YNAT are text classification datasets that
are included in Korean GLUE (KLUE) (Park et al.,
2021). TR (Suzuki, 2019) and WRIME (Kajiwara
et al., 2021) are sentiment classification datasets
for tweets in Japanese. We used the original devel-
opment sets as test sets and exploited a randomly
selected 10% of the original training sets as devel-
opment sets for the datasets in GLUE and KLUE
owing to the numerous experimental trials.

Setup We used two backbones for the text clas-
sification: BiLSTM (Hochreiter and Schmidhu-
ber, 1997; Graves and Schmidhuber, 2005) and
BERT (Devlin et al., 2018). We employed BERT-
base-cased6, BERT-kor-base7(Kim, 2020), and
BERT-base-Japanese-v28 for the English, Korean,
and Japanese datasets, respectively. All of these
BERT models employ WordPiece as their tok-
enizers, and we finetuned them using MaxMatch-
Dropout. We set the maximum number of training
epochs to 20 for BiLSTM and the finetuning epochs
to 5 for BERT. The trained model with the highest
score in the development split was selected and
evaluated on the test split. We selected the vocab-
ulary sizes according to the performance on the
development splits when using WordPiece without
MaxMatch-Dropout. The selected vocabulary sizes
were applied to all tokenizers.

Results Table 1 presents the experimental re-
sults for the text classification. The table demon-

6https://huggingface.co/
bert-base-cased

7https://huggingface.co/kykim/
bert-kor-base

8https://huggingface.co/cl-tohoku/
bert-base-japanese-v2

https://www.kaggle.com/c/twitter-sentiment-analysis2
https://www.kaggle.com/c/twitter-sentiment-analysis2
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/kykim/bert-kor-base
https://huggingface.co/kykim/bert-kor-base
https://huggingface.co/cl-tohoku/bert-base-japanese-v2
https://huggingface.co/cl-tohoku/bert-base-japanese-v2


4867

IWSLT14 IWSLT15
DeEn EnDe ViEn EnVi ZhEn EnZh

Unigram 36.55 27.89 30.28 29.39 22.64 20.55
+ Sub. Reg. 38.50 29.45 31.58 30.96 23.81 21.79
BPE 35.77 27.87 30.05 29.25 18.80 20.61
+ BPE-Dropout 37.81 29.15 31.39 31.23 20.67 22.02
WordPiece 36.22 27.58 30.13 29.40 17.24 20.45
+ MM-Dropout 38.30 29.54 31.71 31.14 18.21 21.55

Table 2: Experimental results of machine translation
(averaged scores of three runs). ScareBLEU (Post,
2018) was used as the metric. Scores that significantly
surpassed the results without subword regularization
(p < 0.05, bootstrap resampling (Koehn et al., 2007))
are underlined.

strates that MaxMatch-Dropout (MM-Dropout)
improved the performance as well as the other
subword regularization methods. In addition to
the improvement in the BiLSTM-based classifiers,
MaxMatch-Dropout enhanced the performance of
the BERT-based classifiers. These results indicate
that MaxMatch-Dropout is a useful subword regu-
larization method for WordPiece as well as effec-
tive for BERT.

4.2 Machine Translation

Datasets We employed three language pairs for
the machine translation tasks: the De-En, Vi-En,
and Zh-En pairs from the IWSLT corpora. We
selected these datasets because subword regulariza-
tion is particularly efficient in low-resource envi-
ronments (Kudo, 2018; Hiraoka et al., 2021; Takase
et al., 2022).

Setup We applied the Transformer (Vaswani
et al., 2017), which was implemented by
Fairseq (Ott et al., 2019), for the IWSLT settings.
We trained the model with 100 epochs and aver-
aged the parameters of the final 10 epochs. We
evaluated the performance on the Chinese dataset
using character-level BLEU. Following Provilkov
et al. (2020), we set the vocabulary size to 4K for
English, German, and Vietnamese, and 16K for
Chinese.

Results Table 2 displays the experimental results
for the machine translation. The table demonstrates
that MaxMatch-Dropout improved the performance
in all language pairs. The results indicate that the
proposed method is effective for machine trans-
lation as well as existing subword regularization
methods.
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Figure 2: Performance differences with and without
subword regularization against hyperparameters and for
different languages on text classification datasets. MM-
D, SP, and BPE-D denote MaxMatch-Dropout, Senten-
cePiece (Unigram), and BPE-Dropout, respectively.

5 Discussion

5.1 Effect of Hyperparameters

Figure 2 depicts the averaged performance im-
provement over several text classification datasets
against different hyperparameters. The figure in-
dicates that the subword regularization of Senten-
cePiece (Unigram) was the most robust against
the hyperparameters among the three methods. Al-
though both BPE-Dropout and MaxMatch-Dropout
could realize subword regularization using the
dropout technique for the tokenization strategy,
MaxMatch-Dropout was more robust against the
hyperparameters than BPE-Dropout. This result
demonstrates that a performance improvement can
be achieved in WordPiece-based systems using
MaxMatch-Dropout with approximately selected
hyperparameters (e.g., q < 0.5).

Figure 2 also shows the averaged performance
on the datasets in each language against the hyper-
parameters of MaxMatch-Dropout (dashed lines).
It can be observed that MaxMatch-Dropout was
more effective for Asian languages than English.
It is considered that this is because Korean and
Japanese contain various types of n-grams and
many tokenization candidates exist for a single sen-
tence compared to English.

5.2 Token Length

In this subsection, we analyze the token length in
the sampled tokenizations. We sampled the tok-
enization of the training dataset (APG) with three
subword regularization methods and counted the
token lengths for 10 trials.

Figure 3 presents the frequency of token lengths
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Figure 3: Frequency of token lengths with each sub-
word regularization method on APG dataset (English).
0.0 denotes the vanilla settings without subword regu-
larization. 0.5 indicates subword regularization when
the hyperparameter was 0.5 (e.g., q = 0.5). MM-D, SP,
and BPE-D denote MaxMatch-Dropout, SentencePiece
(Unigram), and BPE-Dropout, respectively.

in the tokenized training datasets with/without sub-
word regularization. The figure indicates that the
length frequency did not change, regardless of
the use of subword regularization, when Senten-
cePiece (Unigram) was applied. In contrast, both
MaxMatch-Dropout (MM-D) and BPE-Dropout
(BPE-D) yielded many characters when the hyper-
parameter was 0.5, because they are based on the
token-level dropout and yield characters when the
hyperparameter is 1.0. However, the frequency
curve of MaxMatch-Dropout was gentler than that
of BPE-Dropout. We believe that this tendency
aided in the robustness of the MaxMatch-Dropout
performance, as reported in Section 5.1.

6 Conclusion

We have introduced a subword regularization
method for WordPiece, which is a common
tokenizer for BERT. The proposed method,
MaxMatch-Dropout, modifies the tokenization pro-
cess using the maximum matching to drop words
in the vocabulary randomly. This simple mod-
ification can realize subword regularization for
WordPiece. Furthermore, the experimental results
demonstrated that MaxMatch-Dropout can improve
the performance of BERT. MaxMatch-Dropout is
also effective in the training of text classification
tasks without BERT and machine translation tasks,
as well as existing subword regularization methods.
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Figure 4: Trie for vocabulary including tokens {a, b, c,
d, abc, bcd}.

Read Action Output
a Accept "a"
b Non-accept "ab"
c Accept "abc"
d Reject the transition to "abcd"

& Yield the latest subword abc
d Accept "d"
$ Reject the transition to "d$"

& Yield the latest subword abc, d

Table 3: Operation for tokenizing input word “abcd”
into “abc, d” using trie shown in Figure 4. “$” denotes
a special symbol indicating the end of the word.

A Maximum Matching in Detail

As described in Section 2, a trie is generally used to
tokenize an input word with the maximum match-
ing algorithm. Figure 4 depicts the trie correspond-
ing to the vocabulary that includes six tokens: {a,
b, c, d, abc, bcd}. The tokenization process using
this trie for the input words “abcd” and “abce” is
presented in Tables 3 and 4, respectively.

Table 6 details the operation for tokenizing an
input word “word” into “w, or, d” using the pro-
posed MaxMatch-Dropout, as outlined in Section
3. Table 5 describes the tokenization process using
the original maximum matching for Figure 1 with-
out the dropout process. Therefore, the difference
in the tokenization process between the original
maximum matching and MaxMatch-Dropout can
be observed by comparing Tables 5 and 6.

B Related Work

This work is related to tokenization methods, which
split raw texts into a sequence of tokens. Three
well-known tokenization methods have been em-
ployed in recent NLP systems: SentencePiece (Un-
igram) (Kudo and Richardson, 2018), BPE (Sen-
nrich et al., 2016), and WordPiece (Song et al.,
2021). SentencePiece (Unigram) is a unigram lan-
guage model-based tokenizer, whereas BPE em-

Read Action Output
a Accept "a"
b Non-accept "ab"
c Accept "abc"
e Reject the transition to "abcd"

& Yield the latest subword abc
e Detect an OOV character

& Output [UNK] [UNK]

Table 4: Operation for tokenizing input word “abce”
including out-of-vocabulary (OOV) character into
“[UNK]” using trie shown in Figure 4.

Read Action Output
w Accept "w"
o Non-accept "wo"
r Non-accept "wor"
d Accept "word"
$ Reject the transition to "word$"

& Yield the latest subword word

Table 5: Operation for tokenizing input word “word”
by applying original maximum matching (i.e., the op-
eration without any dropout process) for trie shown in
Figure 1. “$” denotes a special symbol indicating the
end of the word.

ploys a frequency-based tokenization technique.
Although both methods are used extensively in
many NLP systems, Bostrom and Durrett (2020)
reported that the unigram language model-based to-
kenizer (i.e., SentencePiece (Unigram)) is superior
to BPE in several downstream tasks. Our experi-
mental results in Tables 1 and 2 also support this
finding.

WordPiece9 is another famous tokenizer that is
mainly employed by large pretrained models such
as BERT (Devlin et al., 2018). As WordPiece is
based on the maximum matching algorithm, it is
superior to other tokenization methods in terms of
the tokenization speed. In fact, WordPiece is em-
ployed in real NLP systems such as Google search-
ing (Song et al., 2021). However, the experimental
results in this study (Table 1 and 2) demonstrated
that WordPiece is inferior to SentencePiece (Uni-
gram) and BPE in terms of performance. The pro-
posed method can compensate for this shortcoming
without decreasing the inference speed.

Kudo (2018) introduced a subword regulariza-
tion technique for SentencePiece (Unigram) using
dynamic programming. Provilkov et al. (2020) pro-
posed a subword regularization method for BPE
using the dropout technique. Niu et al. (2020) inves-

9Although the original term “wordpiece” indicates BPE-
based tokenization (Schuster and Nakajima, 2012), in this
paper, “WordPiece” indicates a tokenizer with the maximum
matching for BERT following Song et al. (2021).
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Read Action Output
w Accept "w"
o Non-accept "wo"
r Non-accept "wor"
d (Randomly) Non-accept "word"
$ Reject the transition to "word$"

& Yield the latest subword w
o Accept "o"
r Accept "or"
d Reject the transition to "ord"

& Yield the latest subword w, or
d Accept "d"
$ Reject the transition to "d$"

& Yield the latest subword w, or, d

Table 6: Operation for tokenizing input “word” using
trie for MaxMatch-Dropout shown in Figure 1. “$” de-
notes a special symbol indicating the end of the word.

tigates these two methods in machine translation.
This study has introduced a subword regularization
method for WordPiece, and presented an in-depth
investigation of the three methods in text classifica-
tion and machine translation.

C Contributions

This study contributes to the NLP community in
terms of the following two main points:

• A subword regularization method for Word-
Piece is proposed, which improves the text
classification and machine translation perfor-
mance.

• An intensive performance investigation of the
three famous tokenization and subword regu-
larization methods used in NLP (i.e., Senten-
cePiece (Unigram), BPE, and WordPiece with
subword regularization) is presented.

D Dataset Statistics

Table 7 displays the detailed information of the
datasets. We report the numbers of samples in the
training, development, and test splits. Furthermore,
we present the number of label types for text clas-
sification datasets.

E Detailed Experimental Settings

Tables 8 and 9 present the detailed settings of the
backbone models that were used in text classifi-
cation and machine translation tasks, respectively.
We used the default values of PyTorch for the hy-
perparameters that are not described in these tables.
We set the number of tokenization candidates to
∞ for the subword regularization of SentencePiece
(Unigram).

Dataset Train Dev. Test Labels
English Text Classification
APG 96,000 12,000 12,000 24
APR 96,000 12,000 12,000 5
TS 80,000 10,000 10,000 2
QNLI 188,536 10,475 5,463 2
QQP 327,461 36,385 40,430 2
RTE 2,241 249 277 2
SST-2 60,614 6,735 872 2
Korean Text Classification
NLI 22,498 2,500 3,000 3
STS 10,501 1,167 519 2
YNAT 41,110 4,568 9,107 7
Japanese Text Classification
TR 129,747 16,218 16,219 3
WRIME 30,000 2,500 2,500 5
Machine Translation
DeEn 160,239 7,283 6,750 -
ViEn 130,933 768. 1,268 -
ZhEn 209,941 887. 1,261 -

Table 7: Statistics of datasets.

Parameter BiLSTM BERT
Embedding Size 64 768

BiLSTM/BERT Hiden Size 256 768
# of BiLSTM/BERT Layers 1 12

Dropout Rate 0.5 0.1
Optimizer Adam AdamW

Learning Rate 0.001 0.00002

Table 8: Overview of hyperparameters for backbone
models of text classification tasks.

We selected the hyperparameters for the subword
regularization methods (the smoothing parameter
for SentencePiece (Unigram) and the dropout prob-
abilities for BPE-Dropout and MaxMatch-Dropout)
according to the performance on the development
splits in the experiments. Tables 10 and 11 sum-
marize the selected values of the hyperparameters
for the text classification and machine translation,
respectively. Note that the other methods without
subword regularization (Unigram, BPE, and Word-
Piece) do not require these hyperparameters.

Parameter Transformer
Enc/Dec Embedding Size 512
Enc/Dec FFN Embedding Size 1,024
# of Enc/Dec Attention Heads 4
# of Enc/Dec Layers 6
Clipping Norm 0.0
Dropout Rate 0.3
Weight Decay 0.0001
Max Tokens for Mini-Batch 1,000
Optimizer Adam
β1 and β2 for Adam 0.9, 0.98
Learning Rate 0.0005
Learning Rate Scheduler Inverse Square Root
Warming-Up Updates 4,000

Table 9: Overview of hyperparameters for backbone
model of machine translation tasks.
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English Korean Japanese
APG APR TS QNLI QQP RTE SST-2 NLI STS YNAT TR WRIME

BiLSTM
Unigram+Sub. Reg. 0.2 0.2 0.2 0.6 0.9 0.3 0.2 0.9 0.3 0.3 0.4 1.0
BPE-dropout 0.2 0.2 0.4 0.1 0.1 0.1 0.3 0.3 0.2 0.3 0.5 0.2
MaxMatch-dropout 0.2 0.3 0.6 0.1 0.1 0.3 0.4 0.4 0.2 0.3 0.4 0.6
BERT
MaxMatch-Dropout 0.6 0.4 0.2 0.1 0.1 0.1 0.3 0.5 0.4 0.5 0.4 0.5

Table 10: Selected hyperparameters for subword regularization methods in text classification tasks.

IWSLT14 IWSLT15
DeEn EnDe ViEn EnVi ZhEn EnZh

Unigram + Sub. Reg. 0.3 0.3 0.4 0.3 0.2 0.2
BPE-Dropout 0.1 0.2 0.2 0.2 0.3 0.2
MaxMatch-Dropout 0.3 0.3 0.4 0.1 0.1 0.2

Table 11: Selected hyperparameters for subword regularization methods in machine translation tasks. The selected
hyperparameters were used for the subword regularization of both the source and target languages.

Hyperparameter Trial Unigram+Sub. Reg. BPE-Dropout MaxMatch-Dropout
No regularization - characteristics characteristics characteristics
0.1 1 character_i_s_t_ic_s characteristics characteristic_s

2 character_i_s_t_ics characteristics characteristics
3 characteristic_s characteristics characteristics
4 cha_rac_t_e_r_istic_s characteristics characteristics
5 ch_ar_act_e_r_istic_s characteristics characteristics

0.5 1 characteristics characteristics characteristic_s
2 characteristics c_har_ac_ter_istics characteristics
3 characteristics characteristics char_acter_istics
4 characteristics char_ac_ter_istics characteristics
5 characteristic_s character_ist_ics characteristics

0.9 1 characteristics c_h_a_r_a_c_t_er_i_s_t_i_c_s char_a_c_t_e_ri_s_t_i_c_s
2 characteristics char_ac_t_er_ist_ics c_har_a_c_t_e_r_istics
3 characteristics c_h_ar_a_c_t_er_i_s_t_ic_s ch_a_r_acter_i_s_t_i_c_s
4 characteristics c_h_a_r_ac_t_e_r_i_s_ti_c_s character_i_s_t_i_cs
5 characteristics c_ha_ra_ct_er_i_st_i_c_s character_i_stic_s

Table 12: Examples of tokenized words using three methods with different hyperparameters for five trials. “_”
indicates token boundaries. The vocabularies for each method were constructed using the APG dataset. Sampled
tokenizations that differed from the original tokenizations without subword regularization are indicated in bold. We
removed special symbols indicating the beginning or middle of words such as “##” for simple explanation.


