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Abstract

We analyze the learning dynamics of neural
language and translation models using Loss
Change Allocation (LCA), an indicator that
enables a fine-grained analysis of parameter
updates when optimizing for the loss function.
In other words, we can observe the contribu-
tions of different network components at train-
ing time. In this article, we systematically
study masked language modeling, causal lan-
guage modeling, and machine translation. We
show that the choice of training objective leads
to distinctive optimization procedures, even
when performed on comparable Transformer
architectures. We demonstrate how the vari-
ous Transformer parameters are used during
training, supporting that the feed-forward com-
ponents of each layer are the main contributors
to the optimization procedure. Finally, we find
that the learning dynamics are not affected by
data size and distribution but rather determined
by the learning objective.

1 Introduction

Neural models and Transformers in particular have
achieved a great performance in almost every nat-
ural language processing (NLP) task. However,
they largely remain black-box systems despite var-
ious efforts to analyze them. Much work has
been devoted to understanding the dense represen-
tations that are created during training (Pavlick,
2022; Saphra, 2021) in an attempt to see whether
known linguistic properties are present and how
they are expressed in the model (Vulic et al., 2020;
Raganato et al., 2020; Serrano and Smith, 2019).
However, the intrinsic dynamics of the training
procedure itself have not been analyzed in depth
for highly complex network architectures. In this
paper, we take a closer look into the process of
parameter optimization, aiming at

* identifying the network components that con-
tribute to the optimization of the loss function,

Ovinitr@ifi.uio.no

* revealing the effects of learning objectives and
network components on training dynamics,

* detecting the impact of training data size and
distribution on learning dynamics and param-
eter updates.

In order to enable a systematic comparison, we
set out with a standard architecture that we train
from scratch for each individual task. We use the
Transformer architecture (Vaswani et al., 2017)
with its common parametrization and size, and train
it with three popular learning objectives: masked
language modeling (MLM) (Taylor, 1953; Devlin
et al., 2019), causal language modeling (CLM), and
neural machine translation (NMT). The latter is an
interesting special case as it is designed as a condi-
tional language model in a sequence-to-sequence
architecture with encoder and decoder components.

For the analysis, we use Loss Change Allocation
(LCA) (Lan et al., 2019), an indicator of the con-
tribution of individual parameters to the decrease
of the total loss. Its accumulative properties pro-
vide us with a tool to perform a fine-grained anal-
ysis of the opaque optimization process of com-
plex Transformer-based neural NLP models. We
can, therefore, examine how individual layers and
sub-layer components contribute to the overall loss
function. This confers a unique view of the training
process and how the network parameters behave
during the learning procedures. Our analysis pro-
vides insight over the training dynamics broken
down over the model layers and sub-layer com-
ponents. On the one hand, we observe key dif-
ferences in the learning dynamics across the ob-
jective arise from the nature of the loss function;
depending whether being trained for gap-filling or
auto-regressive prediction. On the other hand, we
see clear differences linked to the nature of the
sub-layer components.

We use a consistent experimental setup to enable
a systematic and fair comparison between mod-
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els and learning objectives. With this, we can ob-
serve all parameters when training our models from
scratch. The methodology and setup are described
in detail in sections 2 and 3 before we move on to
our analyses and discussion of results in section 4.

2 Methodology

2.1 Neural architecture

All the models in our experiments optimize for
cross-entropy loss and are based on the Trans-
former architecture, which currently dominates the
entire field of NLP. We use a consistent setup of
overall 12 layers; for the machine translation model
the layers are divided into 6 each for the encoder
and the decoder. Each layer is comprised of multi-
headed attention and feed-forward modules that
also pass information via residual connections. The
essential parameters of the multi-headed attention
network include the so-called key WX, query W€,
value WV and out W© parameters.! We refer to
those parameters as the self-attention block. Key,
query and value are used independently H times
to compute a self-attention output vector, where
H is the number of heads. The heads are concate-
nated and down-projected to the dimension of the
model dj, via the out linear transformation W9, to
be passed to a two-layered feed-forward network
(FFwd) creating the dense-layer representation. If
we obviate the biases, dropout and normalization
steps, we describe the interaction of the trainable
parameters (the WW parameter matrices) in one layer
of the Transformer as follows:

P=XWP; ®=KQ,V )
QK" ,
Z; = softmax Vi, 1=1:H
(\/@)
Z=1Z,...,Zg)|W° )
FF =Wy RelU(Wh Z) 3)

All our models are set to dy, = 512, dj, = 64 and
H = 8, as is common practice. The decoder layers
used in the MT systems use an additional encoder-
decoder attention module in which the keys and
queries are computed using the last encoder layer
state, while the values come from the module’s
input signal.

'W denote the parameter matrices, as in Alammar (2018)

2.2 Training objectives

Machine Translation In the traditional encoder-
decoder approach to neural MT, the model pre-
dicts words in the target sentence, word by word,
i.e., given a source sentence X = (z1,...,27,),
a target sentence Y = (y1,...,yr,) and a model
parametrized by 6, at each step the model learns
to provide estimates of the conditional probability
distribution P(y;| X, y1,...yi—1,0). For this, we
train the standard Transformer for performing trans-
lation and then analyze its encoder and decoder.

Causal Language Modeling CLMs estimate the
probability of a word given the previous words in a
sentence. Formally, the model is trained with inputs
X = (x1,...,xi—1) and outputs Y = (x;), to esti-
mate P(x;|x1,...,x;—1,0). We follow Radford and
Narasimhan (2018) and use stacked Transformer
decoder layers as models.

Masked Language Modeling The MLM objec-
tive is designed for predicting randomly masked
tokens from an input sentence. For our experiments,
we adopt the RoBERTa (Liu et al., 2020b) imple-
mentation of the MLM objective (Devlin et al.,
2019). Namely, we sample 15% of the tokens to
be predicted and replace the corresponding input
token by [MASK] 80% of the time, with a random
token 10% of the time and the other 10% is left
unchanged. This is done with dynamic masking,
so we generate the masking pattern every time we
feed a sequence.

For a sentence (z1, ..., z7), where token z; is
replaced with [MASK], the input to the model
is X = (1131, ey i1, [MASK], L1y eeey xT) and
the output Y = (z;), by estimating P(x;| X, 0).

2.3 Loss Change Allocation

We use Loss Change Allocation (LCA) (Lan et al.,
2019) because it allows for a fine-grained analysis
of each network component. It measures the contri-
butions of each parameter to the change in the loss
function at each gradient update by decomposing
the components of an approximate path integral
along the training trajectory using a Runge-Kutta
integrator (Runge, 1895; Kutta, 1901).

To compute the change in loss due to a param-
eter ¢ € RX update from step ¢ to ¢ + 1, the
LCA uses the first order approximation for the
change in loss during the (¢ 4 1)-th training step
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where 7(?) represents the ¢-th entry of any vector
n, and V,L(yp;) is the gradient of the loss with
respect to ¢ evaluated at (.

This formulation makes it possible to aggregate
the LCA over higher-level breakdowns because the
sum of all individual components equals the total
change in loss. This also holds for layer- and sub-
layer accumulations as each contribution has the
same fundamental units as the loss: nats for models
that optimize for cross-entropy loss, as is our case.

The LCA measure allows us to identify loss de-
creases at a per-parameter, per-timestep level. Put
simply, a negative LCA at a given parameter up-
date translates into that parameter being beneficial
for the optimization process because the LCA is
negative when that parameter’s component of the
gradient is negative. Conversely, positive LCA is
“hurting” the learning process, for instance caused
by noisy mini-batches where the gradient points
in the wrong direction or has too large a step size
for an irregular loss landscape (Lan et al., 2019;
Jastrzebski et al., 2019; Xing et al., 2019). In other
words, the raw value of the LCA is an intuitively in-
terpretable statistic that allows analyzing the train-
ing dynamics.

3 Experimental setup

Models. We apply the common Transformer base
settings of Vaswani et al. (2017). For consistency,
we train all the models using the same toolkit,
fairseq (Ott et al., 2019). We record the LCA at
every parameter update and refer the reader to Ap-
pendix A for a details on model hyper-parameters.

Data. In our main experiments we use the En-
glish - German portion of Europarl (Koehn, 2005).
We download, preprocess and split it using Opus-
Tools (Aulamo et al., 2020). We use 2.5k sentences
for dev and test, leaving a total of 1.9M sentences
in the training data. For all systems we learn and
apply byte-pair-encoding (BPE) segmentation (Sen-
nrich et al., 2016; Kudo and Richardson, 2018). For
the MT systems we use a 32k vocabulary shared
among source and target, while for the LMs we
train monolingual models, also with 32k vocabu-
lary.

We perform additional experiments to investi-
gate how different training signals may affect the
LCA, and hence the validity and limitations of our

conclusions. For these, we use data in different
languages (English, Estonian, German, Finnish),
domains (Europarl, WMT?), and of different sizes
(700k, 2M and 5M utterances). Details about all
experiments’ data and model settings can be found
in Appendices A and B.

4 Analyzing the training dynamics and
parameter contributions

In this section we systematically dissect the de-
velopment of the training process using the LCA
indicator. In section 4.1, we look at the overall pic-
ture by aggregating the contributions throughout
the entire training process. The aggregated figures
showcase differences that originate from the train-
ing tasks and contrast the monolingual LMs with
the sequence-to-sequence MT model. In section
4.2 we zoom into the iterative training procedure to
further analyze the dynamics of learning network
parameters over time. In section 4.3 we analyze
the individual attention heads and in section 4.4 we
look at the parameters that Aurt the optimization
process.

4.1 Layer-wise contributions

In Figure 1 we depict the LCA aggregated over
all parameters within each layer component and
summed over all time steps. The plots reveal par-
ticular characteristics for the components of each
model, evidencing that the training dynamics are
highly dependent on nature of the sub-layers. In
particular, the difference in the order of magnitude
across the components, indicates that the optimiza-
tion process relies heavily on the feed-forward com-
ponents.

Across modeling objectives, the clearest differ-
ence can be seen in the shapes of the self-attention
block; the key, query, value and out parameters in
eq. (1) and (2). The MLLM shows a concave trend,
where the main contributions are on the last layers
and, to some degree, on the first two layers, while
the middle layers display minor contributions. For
CLM, contributions are higher for layers 1 and 6-
10, with a tendency to be more evenly distributed
among all layers. It contrasts with the MLM by em-
phasizing the penultimate layers, not the final ones,
and shows a drop in the final layer contributions.
We refer to this bimodal shape as cup-and-handle
shaped from here on. In the MT setup, it is easy

Including paracrawl, rapid 2016, europarl-v7, news-
commentary-v13 and commoncrawl
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Figure 1: LCA aggregated over all training steps results for individual components of different layers. Each bar

location in the x-axis denotes a separate layer.

to identify the transition from the encoder, and we
see that the key-query pair behave similarly, as do
the value-out pair. The encoder’s key-query be-
haviour peaks at the first layer, and falls drastically
at the second layer, showing a slight increase af-
terwards. Meanwhile, the value-out couple show a
more clear concave form with prominent initial and
final layers. The decoder’s key-query pair show a
cup-and-handle shape, and the value-out LCA is
similar but does not drastically decrease for the last
layer.

The feed-forward block components, W; and
W5 in eq. (3), show a higher order of magnitude
and a similar shape for all models, with the highest
accumulated LCA value in the final layer. However,
MLM stands out by having strong contributions in
the fist layer and a steep increase towards the fi-
nal layers. Unlike the other models, the MLM
shows the same trend for all the sub-layer compo-
nents. The CLM shows monotonic increases over
all layers, with the particularity that layers 4-7 show
sharper jumps — noticeably, Layer 7 is where we
observe the change in trend for the attention-block
components. For the MT model, we again see the
separation between encoder and decoder with the
highest contributions at the end layers of each mod-
ule. The encoder shows linear increase, while the
decoder behaves more like the CLM model with
moderate contributions initially and high increase
towards the last layer.

Discussion. Under our controlled experimental
setup, it is reasonable to assume that the specific
behaviour observed in the learning dynamics stem
from the particularities of each task. Specifically,
the MLM performs the cloze task: has access to
all tokens in the sentence and decodes a few, non-
sequential tokens. We hypothesize that this forces

MLM to compose output representations simulta-
neously, leading to a higher amount of information
flowing into upper layers. This is consistent with
previous research stating that MLMs recreate token
identity in later layers, and more contextualized rep-
resentations (Voita et al., 2019a; Ethayarajh, 2019).
In contrast, the CLM has access to previous tokens
only and generates the following one. The left-
to-right decoding, may also be the reason for the
shape of the attention parameters. The model sees
only the past context, and hence depends more on
the middle layers. Some support for this hypothesis
comes from Ethayarajh (2019), showing that CLMs
produce more context-specific representations as
early as layers 4-5, presumably to predict the next
word more accurately. Also, Voita et al. (2019a)
demonstrate that when advancing across the layers
of the [CLM] network, the system loses informa-
tion about input and accumulates information about
output, that is, the context in the CLM case. More-
over, middle layers potentially help learning more
fine-grained syntactic information on MLMs (Ten-
ney et al., 2019), a behavior that may become more
prominent for CLMs due to its nature, although we
leave the testing of this hypothesis for future work.

For the MT model, the task at hand also dictates
the observed behaviour. By design, the encoder
is more similar to an MLM because it has access
to all tokens in the source side, while the decoder
has more similarities to a CLM. We observe that
the training dynamics behave accordingly — espe-
cially the self-attention parameters, with the slight
differences arising perhaps from translation being
a more complex task (see Voita et al. (2021) for a
discussion on how NMT is a composition of sev-
eral sub-tasks). MT also requires a higher capacity
from the model. The encoder—decoder bottleneck
triggers this even further making clear why we,
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as Zhu et al. (2020), observe peaks at the transi-
tion from encoder layers to decoder in W7 and Wo.
The encoder transfers information to the next stage
where the decoder starts its generative task.

Finally, we observe higher-magnitude contribu-
tions from the feed-forward block for all models
may be due to the differences in the update frequen-
cies. This was noted by Zhu et al. (2020) between
sparse and dense layer, but this argument can be ex-
tended to the difference in feed-forward and atten-
tion blocks contributions, since the attention block
updates are relative to the token they score from
the input (see eq. 1), whereas feed-forward block
updates are relative to all tokens. In accordance
with Mickus et al. (2022), who show the high rel-
ative importance of the feed-forward components
in the token representations, our results also sug-
gest that when analyzing Transformer-based mod-
els and their representations the feed-forward mod-
ules should not be discarded in favor of the more
readily interpretable multi-headed attention com-
ponents.

4.2 The learning dynamics over time

So far, we have pointed out the time-collapsed be-
haviour in the self-attention and the feed-forward
components of each layer. In this section, we show
the particular dynamics of the LCA values over the
course of training (Figure 2), analyzing the parame-
ters in two broad groups: the feed-forward parame-
ters Wy and W7 from eq. (3), and the self-attention
block parameter matrices W for the key, query
and value parameters from eq. (1). Since the
LCA presents a high variance during training, mak-
ing the learning process fuzzy, as noted by Lan
et al. (2019), the trends in Figure 2 were obtained
using moving averages with a window of 1k steps.

All models show that the largest LCA values are
observed early during training, denoting a fast ini-
tial learning phase, after which the gradient descent
learning dynamics transitions to a much slower ex-
ploration phase, in line with the findings of Feng
and Tu (2021). The plots also reveal the conver-
gence property (Raghu et al., 2017) in action, by
which earlier layers tend to converge faster. How-
ever, the MLM presents a distinctive behavior in
the initial and final layers. The embedding layer,
as well as layers 1, 10—12 contribute substantially
to the overall loss optimization especially in the
beginning of the training runs. Moreover, these lay-
ers present oscillations for much longer and with

larger magnitudes. In contrast, the middle layers do
not show substantial activity throughout the entire
training process in MLM. These parameters con-
verge early during training, particularly those in the
self-attention block. CLM and MT parameter con-
tribution patterns display many similarities in shape
across almost all layers and blocks. MT displays
a smoother convergence than CLM, especially for
layers 7-10. The most significant contributions in
CLM clearly come from layers 7-9 in the atten-
tion block and the layers 7—12 of the feed-forward
block. These higher activations in the middle lay-
ers also exhibit the most striking differences to the
MT model.

Discussion. We observe that some of the parame-
ters settle remarkably early, with very minor con-
tributions to the loss decrease after an initial phase.
This is in line with Lan et al. (2019), who, after ana-
lyzing the noisiness of the training process, suggest
to freeze parameters that harm the optimization
process since it sheds light on the connection be-
tween LCA and how parameters are optimized for
the task at hand. In other words, some parame-
ters are not that relevant after the initial training
phase, where the loss decreases drastically. On the
contrary, the MLM later layers take a significantly
longer time to settle. Feng and Tu (2021) show that
in SGD optimization with mislabeled data points,
the parameters go through a late retrofitting phase
in which they try to learn to account for the mis-
labeled data. In our case, we do not have a set
of correct-incorrect labels, but we do the random
masking for the cloze task on-the-fly, implying
that the training data contains a lot of examples
with easy-to-learn rules, and some rarer harder-to-
generalize exceptions. We draw a comparison to
such retrofitting in the observed oscillations of the
MLM initial and final layers, since MLM mostly
induces learning at independent lexical level (as en-
coded in the initial embedding layer) and the most
contextualized layers at the end of the self-attention
chain.

As noted in section 4.1, the essential operational
difference across objectives can explain the behav-
ioral similarities of CLM and MT in comparison to
MLM. The latter extensively uses contextualized
information to predict lexical gaps and, therefore,
requires strong word embeddings and a careful con-
nection of contextual clues in both directions. CLM
and MT, on the other hand seem to require more
iterative knowledge from all layers forcing more
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Figure 2: Training dynamics trends decomposed over time for the three learning objectives. The embeddings layer
plot is the same on both rows, and it shows a different scale for visualization purposes.

adjustments throughout the entire network.

When focusing on the difference between atten-
tion and feed-forward components, we observe that,
compared to the attention parameters, the feed-
forward components of CLM- and MT-objective
models seem to converge at a much later stage
and have a higher contribution to the loss decrease,
particularly at layers 10-12. This backs up the ob-
servations made by Wang and Tu (2020), where
self-attentive components were empirically found
to be less important for machine translation. For
reference, the mechanism by which these feed-
forward components operate is described by Geva
et al. (2021). Previous studies have also concluded
that attention in MT relies heavily on fixed posi-
tional connections (Raganato et al., 2020; Voita
et al., 2019b). This means that their contribution to
reducing the loss is limited once the essential atten-
tion patterns have been established and learned.

4.3 The training dynamics of individual
attention heads.

Aggregating over all attention heads as we have
done so far could hide variations present across
them. Therefore, in Figure 3 we plot the contri-
butions of each individual head over the entire
training period, for each of the self-attention block
parameter matrices W from eq. (1). First, we ob-
serve some redundancy in that many of the differ-
ences between contributions measured across heads
of the same layer are negligible. Second, we also
see that some layers’ heads range from light green
to dark violet (see e.g., MLM-1, -9 & -12, CLM-3
& -7, MT-5 & -7). These simultaneous behaviours
can be tied to the idea of attention heads special-

MT-1
MT-3
MT-5

|
MT-7 |
MT-9 -1
MT-11
cLM-1
CLM-3 - | -0
|
CLM-5 | |
CLM-7 |
cLM-9 --1
CLM-11
MLM-1 - Y
MLM-3
MLM-5
MLM-7 3
MLM-9 - [ -
| || || . |
MLM-11 B |
|
PR R R R
I T T R B B T B - B B R
> E T > T > T > T > T > T >
H1 H2 H3 H4 H5 H6 H7 HS8

Figure 3: Contribution from individual attention heads,
presented as normalized LCA values. Normalization is
performed over the entire heatmap.

ization (Voita et al., 2019b), by which some heads
serve specific purposes. The observations also pro-
vide support for the observed redundancy in at-
tention heads, which allows to effectively prune
models without compromising prediction quality
(Michel et al., 2019; Zhang et al., 2021). More-
over, most of the layers presenting no clear differ-
ences highlights the similarity in learning dynamics
across all of the attention heads. This is consistent
with findings from Clark et al. (2019), who argued
that the apparent redundancy in BERT’s attention
heads is the result of attention dropout.

4.4 Noise in the optimization process

Using LCA to analyze the optimization process
provides an additional insight to it, by identifying
if there are parameters that surt the training process,
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Figure 4: An overview of the MLM training process.
To focus on the positive LCA we only show the interval
[0,1]. We observe that positive LCA in later stages of
training is present almost exclusively in attention block
parameters, on layers 2—5, consistent with Fig. 1.

causing the total loss to increase instead of decrease.
We check whether there are any such parameters
in our models, and if so, at which phase during
training they hurt the loss optimization. Lan et al.
(2019) argue that the training process is notoriously
noisy and they even recognize that some full layers
hurt the training process.

CLM MLM MT
emb. 2 0 2
key 29 1565 64
query 24 2055 64
value 24 24 130
out 24 6 113
W1 24 0 59
w2 24 0 131
Last step w/positive 1072 59727 2673
Overall max. 5.58 (key) 68.18 (value) 95 (W2)

Table 1: Summary of parameters that hurt the training
process. We show the number of times a block of pa-
rameters has positive LCA, the last training step where
this happens, and the magnitude of the parameter with
the highest positive LCA value.

In our experiments, we rarely observe this phe-
nomenon for the CLM and MT objectives. The
loss-hurting behavior only seems to occur at the
beginning phase of training, specifically during the
first couple of thousand steps, which corresponds
to at most 3% of the total time. Moreover, the
magnitude of such parameters is also rather low,
in the order of 1el. However, it should be noted

that, since we are observing the component-wise
aggregated contributions of parameters, we expect
the effect to be “neutralized” by highly negative
parameters within the corresponding components,
resulting in the relatively low sums.

A different behavior is again shown by the MLM-
objective (Figure 4). The MLM objective presents
several positive LCA values occurring at much later
stages of training. We interpret this as evidence of a
comparatively noisier optimization process for the
MLM objective. This is consistent with section 4.2,
where we see that the MLM parameters converge
much later. We depict the positive LCA values
from different layers of MLM in Figure 4 to under-
stand if such harmful contributions are specific to
single layers, or are distributed over the entire net-
work. The results show fairly clear localization to
certain components of the lower layers especially
for the later stages of training.

We emphasize that, contrary to findings in Lan
et al. (2019), in none of our experiments do we ob-
serve a full layer or sub-layer damaging the training
process. This might be due to the nature of the dif-
ference in the task, architectures, and the size of
the networks used in their analysis. 3

4.5 Effect of data size and distribution

To see the robustness of our findings against vary-
ing training datasets, we replicated the experiments
presented so far using training data of different
sizes (700k, 2M and 5M), domains (Europarl and
WMT) and languages (English, German, Finnish
and Estonian).* A summary of results is presented
in Figure 5, with detailed plots for each setting
available in the appendix B.2, Figure 6.

These additional experiments show consistent
training-dynamic trends, regardless of the immedi-
ate training data properties. We observe two differ-
ences. First, the learning dynamics of the Estonian
MLM system, based on smaller data, are the most
different.> We do not observe a clear concave shape
in the attention block components as for the other
languages. Also, we see that the initial layers are
more heavily responsible for the loss optimization.
Trained with smaller data, the Estonian MLM still
presents small contributions of the parameters in

3The authors analyze networks trained for image process-
ing, using convolutional NNs with 5, 9 and 20 layers.

*For all the experiments, we use the same models and
hyper-parameters (see Appendix A)

SWe mark it with a dashed line and Figure 6 in the appendix
shows the individual plots
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Figure 5: LCA aggregated over all training steps results for individual components of different layers. Each color
corresponds to a loss function and each shade to a different model.

the middle layers, a characterizing behavior seen
in all of the MLM systems we trained. Second, we
observe that the CLM objective for English and
German have a higher response in relatively early
layers of the attention components, when compared
to Finnish and Estonian. However note that the
general CLM trend towards peaking contribution
in penultimate layers exists for all four languages.
The other cases seem very robust in their trends to
the different settings, and do not present qualita-
tively differences in their behavior.

We interpret the observed stability of the results
not only as a way to verify their validity, but also
as an indication that the parameters’ contributions
to the optimization process are determined mainly
by the choice of architecture and objective function
and not so much by the training signal in the data.
In particular, we argue that the training dynamics
we observe are independent of the particular syntac-
tic structure of different languages. On top of this,
variations on data domains and size of the train-
ing data, show how the parameters’ contributions
to the change in loss are not tied to the semantic
information of the training data. On the contrary,
changes in the trends consistently correlate with the
objective functions, over all those different settings.

5 Related work

The role of the inner representations, and internal
behaviors of neural models in NLP have been exten-
sively studied (Rogers et al., 2021; Pavlick, 2022).
Relevant directions investigate, for instance, the
geometry of the learned representational spaces
(Ethayarajh, 2019; Vazquez et al., 2021), prob-
ing the learned representations with simple classi-
fiers (Vulic et al., 2020; Apidianaki and Gari Soler,
2021), and the attention patterns at each step in the

sequence (Voita and Titov, 2020; Raganato et al.,
2020). Regarding the attention mechanism, while
in the past, analyses have tended to focus on the
role of the self-attention mechanism as an explana-
tory mechanism (Jain and Wallace, 2019; Serrano
and Smith, 2019), recent work has been more nu-
anced about whether this is even necessary (Bast-
ings and Filippova, 2020). Wiegreffe and Pinter
(2019) argue that the attentive components are not
inherently separable from the rest of the model;
this has sparked analyses of attention models not di-
rectly involving attention weights. Kobayashi et al.
(2020) analyse vector norms and find reasonable
word alignment, while Geva et al. (2021) show that
feed-forward components act as key-value stores.
Ravishankar et al. (2021) analyse the effect of freez-
ing different components on the interpretability of
the attention mechanism, and Mickus et al. (2022)
use a novel decomposition of Transformer embed-
dings to isolate the impact of the network compo-
nents, showing that multi-head attention accounts
for a small proportion of the embeddings.

Most such works tend to test and analyse fixed
model checkpoints While there is value to analyz-
ing these models over the course of the training
process, much work in this direction emerged from
outside the NLP community; e.g., LCA was first
proposed and tested using only vision classification
datasets (Lan et al., 2019), and it has been used
since in NLP to analyze NMT training dynamics
(Zhu et al., 2020). Saphra and Lopez (2019) present
another early work on the analysis of the training
dynamics of LMs; Kaplan et al. (2020) investi-
gate the language modeling loss on model architec-
ture, size, amount of training data and computing
power. Their work was key for the development of
large-scale pretrained models like GPT-3 (Brown
et al., 2020) and Switch-Transformers (Fedus et al.,
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2021). Liu et al. (2020a) analyze the training dy-
namics of Transformer-based models based on the
stability of the gradients, leading them to propose
an adaptive model initialization method.

6 Conclusions

In this work, we take a closer look at the learn-
ing dynamics of Transformer-based models using
the loss change allocation (LCA) indicator. Specif-
ically, we analyze the training dynamics for (1)
masked language modeling, (2) causal language
modeling, and (3) machine translation training ob-
jectives. We find that the training dynamics seem to
be delimited by the training objective being either
a gap-filling task or an auto-regressive prediction
task, despite the similarities that the models present.
In particular, the different layers of each model be-
have accordingly to the training objective used. We
also show that the feed-forward blocks contribute
more than the attention blocks to the decrease in
loss during training, a finding that strengthens the
relative importance of the former, and invites more
research to understand this currently more obscure
component.

We also show that these dynamics are robust
against changes in the size and distribution of the
training data. The overall trends stay the same with
different domains and languages reassuring that
our findings are not just an artefact of a specific
setup. In future work, we would like to study the
training dynamics of systems trained with differ-
ent optimizers and regularization techniques, such
as, attention dropout or data augmentation. We
would also like to investigate the influence of noisy
training data on the training process. For this, we
can apply controlled shuffling to the training data
to influence the noise level and gradually remove
syntactic information from the training signal.
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A Model hyper-parameters

We train all our models using the fairseq-toolkit
6 using a single Nvidia V100 GPU for 48 hours.
In Table 2, we present a summmary of the set of

hyper-parameters used in all cases.

Parameter Value
num. layers 127
att. heads 8
embeddings dim. 512
ffwd hidden dim. 2048
update-freq 16
precision fpl6
total-num-update 125000
warmup-updates 8000

Ir-scheduler

polynomial decay

Ir 0.0005
optimizer adam (2015)
adam-betas (0.9, 0.98)
adam-eps 1e-06
weight-decay 0.01
clip-norm 0.0
dropout 0.1
attention dropout 0.0
activation-fn relu
tokens-per-sample 512
max-tokens-per-sample 2048

Table 2: Set of hyper-parameters shared across all our

models

B Additional experiments

B.1 Data

In Table 3 we summarize the size of the datasets
used in our all experiments. We use the parallel
datasets when training MT systems, while for the
monolingual LM objective, we use only the target
side of the corpus. Specifically for English, we use
the source sentences of the En-De datasets.

In a nutshell, the experiments presented in sec-
tion 4 use the En-De portion of the Europarl dataset,
and we test the performance with that test split and
the newstest2018. For the experiments referred in
section 4.5 we train monolingual LMs in English,
German, Finnish and Estonian and bilingual MT
systems for En-De, En-Fi, and En-Et, as well as

*https://github.com/pytorch/fairseq
"For the MT models we use 6 layers for each, encoder and
decoder

the inverse translation directions De-En, Fi-En and
Et-En using the respective Europarl data B.2

# Sentences

Dataset Languages

Train Val.  Test
En-De 1.92M 25K 25K
Europarl En-Fi 19IM 25K 25K
En-Et 0.7M 25K 25K

WMT-2018 En-De M 3K -
En-De - - 2.9K
newstest2018 En-Fi - - 3.0K
En-Et - - 2.0K

Table 3: Size of the train, validation and test splits for
the datasets used in all experiments.

B.2 Results

Figure 6 shows the aggregated LCA values in addi-
tional experiments using four different languages
and language pairs.
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Figure 6: LCA aggregated over all training steps for the individual components of each Transformer layer. Results
for all monolingual LMs and MT experiments en-de (with WMT data), de-en, et-en, fi-en.
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