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Abstract

A shift in data distribution can have a signifi-
cant impact on performance of a text classifi-
cation model. Recent methods addressing un-
supervised domain adaptation for textual tasks
typically extracted domain-invariant represen-
tations through balancing between multiple ob-
jectives to align feature spaces between source
and target domains. While effective, these
methods induce various new domain-sensitive
hyperparameters, thus are impractical as large-
scale language models are drastically growing
bigger to achieve optimal performance. To
this end, we propose to leverage meta-learning
framework to train a neural network-based
self-paced learning procedure in an end-to-
end manner. Our method, called Meta Self-
Paced Domain Adaption (MSP-DA), follows
a novel but intuitive domain-shift variation of
cluster assumption to derive the meta train-test
dataset split based on the self-pacing difficul-
ties of source domain’s examples. As a result,
MSP-DA effectively leverages self-training and
self-tuning domain-specific hyperparameters
simultaneously throughout the learning pro-
cess. Extensive experiments demonstrate our
framework substantially improves performance
on target domains, surpassing state-of-the-art
approaches. Detailed analyses validate our
method and provide insight into how each do-
main affects the learned hyperparameters.

1 Introduction

Given enough supervision, modern deep learning
models can learn a new task with great accuracy.
However, in many practical settings, the goal is to
adapt to a new domain in which there is a differ-
ent in data distribution between training and test-
ing processes. This poses a major challenge for
standard natural language systems due to both the
intrinsic variation of linguistics (e.g., lexical shift,
semantic shift) as well as the extrinsic factors such
as how textual datasets are collected and annotated.
For example, a model trained to predict news events

Figure 1: An example where domain shift between source
domain (grey colors) and target domain (deep color) results
in significant overlaps between high-loss regions of source
decision boundary (lime) with high-density target clusters.

may easily recognize, from medical domain, "died"
as an event, but would not be able to detect obvi-
ous events such as "mutation" or "cancer". Such a
model may even fail to generalize to closer adap-
tation settings (e.g. news from different times and
sources).

The majority of existing unsupervised domain
adaptatiopn (UDA) approaches combined various
training objectives to align different aspects of
domain-specific extracted features. In particular,
the most prominent approach is domain-adversarial
neural network (DANN) (Ganin et al., 2016) that
employs a domain-adversarial training procedure
between a domain classifier and the network’s fea-
ture extractor to learn a discriminative and domain-
invariant joint feature representation. The sim-
plicity of DANN allows researchers to incorpo-
rate it with multiple other objectives such as semi-
supervised learning (SSL) regularizers (Shu et al.,
2018), discrepancy metrics (Long et al., 2015), co-
training (Kumar et al., 2018), and auxiliary tasks
(Bousmalis et al., 2016). Each of them plays an im-
portant role in enhancing domain adaptation ability
of models in the current state-of-the-art methods.
However, it is not trivial to apply these techniques
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to textual tasks, where large transformer-based lan-
guage models are essential to achieve top perfor-
mance, because of the time and resource required
to fine-tune and balance the effects of these terms
for multiple different adaptation scenarios.

Meta-learning (ML) framework is an effective
solution for the problem of hyperparameter opti-
mization (Franceschi et al., 2018; Behl et al., 2019).
Furthermore, it has been widely applied by recent
works on Domain Generalization (DG) (Li et al.,
2018; Dou et al., 2019), in which a learning pro-
cedure similar to that of Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) is leveraged
to simulate the domain shift in train-test datasets
by a virtual meta train-test set created from data
drawn only from source domains. Though DG and
UDA share close similarities, the final goal of each
learning setting is different. More importantly, the
MAML procedure is not applicable for UDA prob-
lem because of the lack of a clean validation dataset
for meta-test step.

To this end, we propose to dynamically partition
the training source data into a low-loss meta-source
domain and a high-loss meta-target domain, in-
spired by self-paced learning (SPL) approach (Ku-
mar et al., 2010). Our framework, called Meta Self-
Paced Domain Adaptation (MSP-DA), employs a
neural-SPL module to control the data selection
process for meta train-test set using a learnable
age hyperparameter as threshold while also intro-
ducing optimized weighting mechanisms for each
of the combined loss’ terms, including instance-
wise weighting for the main classification task and
layer-wise weighting for domain alignment losses.
The weighted objectives on meta-source domain
are minimized in meta-train step in a direction such
that also leading to improvement in model’s pre-
dictions on meta-target domain. During the learn-
ing process, parameters and age threshold of the
neural-SPL module are updated based on model’s
evaluation performance in meta-test step, resulting
in tuned weighting coefficients and learning sched-
ules similar to that of a standard hyperparameter
tuning process. To our knowledge, this is the first
work to devise a neural network-based SPL method,
in which both the sample weightings/selections and
the age hyperparameter are dynamically optimized,
generalizing previous works which require heuris-
tic age schedule and complicated mathematical
derivation for the corresponding instance weight-
ing.

While the meta-target set does not contain sam-
ples from the true target domain, we argue that our
formulation is beneficial for UDA because of the
two following reasons. First, the proposed partition
can result in two virtual domains with a signifi-
cant discrepancy, and through learning to address
in this hard setting that the model would gain the
ability to adapt to other, possibly easier, domains.
Another reason is based on the cluster assumption
from SSL methods (Chapelle et al., 2006), which
states that data points of the same class should
concentrate around the same cluster, effectively
forming a high-density low-loss region. In case of
adapting between two highly dissimilar domains,
these regions may get shifted significantly, as a con-
sequence low-loss regions of target domain may
contain considerable intersection with high-loss re-
gions of source domain, as illustrated in Fig. 1.
In other words, by learning to adapt the high-loss
meta-target domain, the model would also be able
to generalize to a significant portion of the true
target domain.

We provide extensively evaluation of the pro-
posed framework on the standard UDA benchmarks
- FDU-MTL dataset for sentiment analysis task,
along with additional results for event detection
task on ACE-05 dataset, which is a much harder
adaptation setting. Ablation studies and detailed
analyses are conducted to validate each main com-
ponent of our model and provide insights for future
researches.

2 Related Work

Unsupervised Domain Adaptation for Text Clas-
sification The main line of research on UDA fo-
cuses on learning domain-invariant, which is either
achieved by explicitly reducing the distance be-
tween source and target feature space measured by
some distribution discrepancy metric (Long et al.,
2015; Zellinger et al., 2017), or by adversarial train-
ing in which the feature extractor is trained to fool
a domain classifier, both are jointly optimized to ar-
rive at an aligned feature space (Ganin et al., 2016).
We focus on applying the latter in transformer-
based model (BERT) (Devlin et al., 2019) for tex-
tual tasks. Previous works have provided empirical
results on different domains (Wright and Augen-
stein, 2020; Lin et al., 2020), different tasks (Naik
and Rosé, 2020; Du et al., 2020), most of which
presented little to no improvement following the
standard domain adversarial training framework.
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We further verify this point in our baseline perfor-
mances.

Sample Weighting There are two main research
directions to adaptively output weight of a sample
during training process: addressing class imbal-
ance by monotonically increasing function that im-
poses larger weights to ones with larger loss values
(Sun et al., 2007; Lin et al., 2017), and suppress-
ing the effect of noisy labels using monotonically
decreasing function which focus on low-loss easy
samples (Kumar et al., 2010; Jiang et al., 2014).
Although straightforward to apply, the above meth-
ods are limited in that they all need a pre-specified
closed-form weighting function, while their respec-
tive hyperparameters are sensitive to the change of
training data such that careful tuning is required.

Meta-Learning There are three main categories
of modern ML algorithms: learning a metric
space to measure distance or similarity among data
(Vinyals et al., 2016; Sung et al., 2018), learning an
optimizer which updates all of model’s parameters
in a latent parameter space (Andrychowicz et al.,
2016; Chen et al., 2018), and learning an initializa-
tion that is good for all tasks and able to fast adapt
to unseen tasks (Finn et al., 2017; Jamal and Qi,
2019). Our approach falls into the last category,
where the learning process follows MAML, more
specifically its variant for DG problem in (Li et al.,
2018).

Figure 2: Architecture overview. (gray) Fixed BERT layers.
(green) Adapter layers, bottleneck outputs of which are then
fed into domain classifier heads (red). The neural-SPL module
consists of instance-wise weighting head (purple) for main
task classification (orange) and a layer-wise balancing head
(blue) for domain adversarial training.

3 Model

We denote the source dataset S = {(xsi , ysi )}
Ns

i=1

consisted of N s samples and an unlabeled set of N t

samples T =
{
xti
}Nt

i=1
drawn from target domain.

Label space Y = {1, 2, · · · ,K} of K classes is
shared across domains.

Our model’s feature encoder is a fixed pre-
trained BERT encoder with hidden dimension Rdh ,
augmented by adapters with bottleneck representa-
tion of size Rda . We refer to the main model learn-
able parameters as θ = (θa, θc, θd), which includes
the parameters of adapters, the main classification
head, and the DANN heads. Following prior work
(Ngo et al., 2021), low dimensional output from
each layer’s adapter is used by a separate DANN
head for domain adversarial training. Our neural-
SPL module consists of two weighting mecha-
nisms: an instance-wise fv(θv) : R → R which
weighs the contribution vi of each example based
on the its classification loss and a learnable age
parameter λa; and a layer-wise fw(θw) : Rda → 1
that takes adapter representation of each layer and
outputs the relative "magnitude" wl of which the
corresponding layer l should be aligned. We re-
fer to the set of source samples whose losses are
less than λa as meta-source domain Str while the
rest is meta-target domain Sts. The latter acts, in
meta-test step, as a validation set used to evaluate
the model after meta-train step and provide learn-
ing signals to tune the "hyperparameters" from the
neural-SPL module. The overall architecture is
presented in Fig. 2.

3.1 Meta Self-Paced Learning

Self-Paced Learning Kumar et al. (2010)
devised Self-Paced Learning method that extends
Curriculum Learning (Bengio et al., 2009)
to jointly learn the model and its curriculum,
circumventing the need for an ad-hoc implemen-
tation of easiness based on some predetermined
heuristics. Specifically, SPL employs an age
hyperparameter λa that represents the current
learning pace of the model. The objective is then
reformulated as a weighted loss where each in-
stance’s contribution is thresholded by λa as follow:

L =

n∑
i=1

vi(li;λa)li ; vi =

{
1, if li < λa

0, otherwise.
(1)

where li is the corresponding loss of i-th
training sample. Intuitively, λa is the "age" of the
model which is set to gradually grow as training
proceed. Thus, only easy samples are considered
at the initial learning stage while samples with
larger losses will be slowly added to the model’s
curriculum as it progresses.

Adaptive SPL via Meta-Learning The advan-
tage of incorporating SPL into a ML framework is
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two-fold. First, ML provides a way to adaptively
tune the highly sensitive λa, alleviating the need
for manually devising an age scheduler. At the
same time, SPL helps address the lack of clean
validation data, by splitting the source domain
instances of the current mini-batch into two
disjoint sets based on the age value λa. The
easy samples are used for meta-train step, in
which the objective consists of a domain adver-
sarial loss and a SPL-weighted classification loss:

Ltr (Str,T; θ) = Lce (Str; θa, θc) + Ld (Str,T; θa, θd) (2)

vi = fv ◦max(0,
−li
λa

+ 1); Lce (Str) =
∑

xi,yi∈Str

vili (3)

where li = l(xi, yi; θ) is the loss of each
sample and Ld is the weighted domain adversarial
objective that is explained in the following section.
fv is a small feed-forward network with sigmoid as
final activation function to guarantee the resulting
weights located in the interval of [0, 1], and
with no bias so that the 0-valued inputs will also
correspond to outputs of the same value.

Typically, k gradient steps are applied to
approximate the optimal solution that mini-
mizes the current meta-train objective. Because
of the sizeable transformer encoder, a high
value of k will cost serious computation over-
head. Thus, we decide to use k = 1, from
which we observe no significant performance loss:

θ̄ = θ − α∇θ(Lce (θa, θc) + Ld (θa, θd)) (4)

where α is meta-train learning rate. Next,
the meta-test objective is the standard cross-
entropy loss on samples in meta-target do-
main Sts with loss values higher than λa:

Lts

(
Sts; θ̄

)
=

∑
xi,yi∈Sts

(xi, yi; θ̄) (5)

This acts as a hard, distinct domain that provides
tuning signals for guiding model updates of both
model’s parameters in θ and hyperparameters vi
and λa.

3.2 Balancing domain adversarial objectives
The survey presented by (Rogers et al., 2020) pro-
vides a detailed probing and understanding of how
the different layer-block of BERT encodes differ-
ent types of information. Accordingly, each layer
should contain a different amount of discrepancy
between source and target domains.

To align these representation spaces between
the two domains, we employ multiple do-

main classifiers at the bottleneck of every adapter:

Ld =

L∑
l=1

wlLl
d(z

l
d,yd; θ

l
d) (6)

where each Ll
d is an adversarial term of a

different DANN , taking adapter representations
zld of layer lth and domain labels yd as inputs.
These losses are weighted by a set of coefficients
{wl} that corresponds to how important it is
for the representations at the respective layer
to be aligned. Following standard learning
procedure, they would be hyperparameters that
required careful tuning for each specific domain,
which would be impractical (in our setting, there
would be a total of 12 hyperparameters). To
address the above issue, we employ a small
feed-forward network fw with a final softmax
layer to output the relative layer-wise weights:

W = [w0, · · · , wL−1] = fw(Zd; θw) (7)

where Zd ∈ RL×da is a set of layer repre-
sentations, each element of which is the sum of
all adapter representations of the corresponding
layer with respect to the current mini-batch. As
θw is updated throughout the ML process, W
is dynamically tuned to maintain high perfor-
mance on meta-test set while domain-adversarial
training makes representations across layers
domain-invariant.

Meta Optimization Following MLDG,
meta-train and meta-test losses are com-
bined in the final objective as follow:

argmin
θ

βLts

(
θ̄
)
+ Ltr (θ) , (8)

argmin
θw,θv ,λa

Lts

(
θ̄
)

(9)

where β is meta-test balancing term. The
second term in Eq. 9 is the result of passing the
weights computed by neural-SPL module in Eq.
3 and 7 into Eq. 2 as pre-determined values, not
learnable variables.

3.3 Self-training by incorporating Pseudo
Label

Pseudo-labeling is an effective method to improve
target domain performance by leveraging the pre-
dictions of previous step on unlabeled target data
as additional learning signals for the main down-
stream task. We use the pseudo-labeled target
data only for Lce from Eq. 2 in meta-train step,



4745

in which they are weighted and thresholded by
neural-SPL module using the same λa as source
data: Lce

(
Str,T

)
=

∑
xi,yi∈Str∪T

vili, where T is

the set of target samples with losses lower than
λa. To alleviate the confirmation bias in pseudo-
labeling, (Xie et al., 2019) provided strong regular-
izations and data augmentations to prevent model
from propagating its own inaccuracy throughout
the training process. In our case, neural-SPL mod-
ule would ensure that only high confident pseudo
labels are used, while meta-test step explicitly im-
proves model’s performance in low-density neigh-
borhood of target domain. This is consistent with
the expansion assumption proposed by Wei et al.
(2021) on how self-training denoises pseudo-labels
by bootstrapping an incorrectly pseudo-labeled ex-
ample with its correctly pseudo-labeled neighbors.
Thus, our framework is able to effectively leverage
self-training by suppressing the noises and provid-
ing a robust training for the model. In addition, as
we will discuss later section, the gradient updates
of these pseudo-labeled samples are also regular-
ized by the ML framework, forcing them to be
consistent with meta-target domain.

Domains Train Unlabeled Test
bn+nw 38644 N/A 9661
bc N/A 3130 12520
cts N/A 2885 10972
wl N/A 3424 12767

Table 1: Statistics of ACE-05’s domains in UDA setting.

Domains Train Unlabeled Test
Books 1400 2000 400
Elec. 1398 2000 400
DVD 1400 2000 400
Kitchen 1400 2000 400
Apparel 1400 2000 400
Camera 1397 2000 400
Health 1400 2000 400
Music 1400 2000 400
Toys 1400 2000 400
Video 1400 2000 400
Baby 1300 2000 400
Magaz. 1370 2000 400
Soft. 1315 475 400
Sport 1400 2000 400
IMDb 1400 2000 400
MR 1400 2000 400

Table 2: Statistics of the 16 domains in FDU-MTL

4 Experiments

4.1 Datasets, Settings, and Baselines
We evaluate the proposed model on the standard
multi-domain sentiment analysis (SA) task. In ad-

dition, we also demonstrate the effectiveness of our
framework when addressing the label-shift by ap-
plying MSP-DA to ED task with significant more
classes in UDA setting.

FDU-MTL (Liu et al., 2017) A dataset included
reviews from 16 domains for binary sentiment clas-
sification task. In each adaptation setting, a single
domain is assigned as the target with unlabeled data
while the other 15 are labeled source. Given the
contextual sequence computed by models from a
review, we use the first token [CLS] as the feature
to predict its positive or negative sentiment.

ACE-05 (Walker et al., 2005) A densely anno-
tated corpus collected from 5 different domains.
Two of which are used as source data, while each
of the rest is a target domain for an adaptation set-
ting. Given a trigger word in the context of an
event mention, the model is required to perform
a multi-class classification task that assigns a pre-
dicted label into one of the pre-defined 34 event
types (including 1 negative type).

Data Settings We provide statistics of each do-
main in UDA setting for ACE-05 and FDU-MTL
in Table 1 and Table 2, respectively. For ACE-05
dataset, we gather data from two closely related
domains, bn and nw, to create a sizable source
domain dataset, 80% of which are used for train-
ing whilst the rest are used as test target domain
for in-domain setting. For out-of-domain settings,
each of the other domains is considered the target
domain of a single adaptation scenario, where 20%
of its documents are unlabeled training target data
and the remainders are utilized as the test dataset.
For FDU-MTL dataset, each of the 16 domains has
a test set of 400 samples. The amount of training
labeled and unlabeled data vary across domains,
ranging from 1400 to 2000 samples. In each adap-
tation setting, a single domain is designated as the
target domain while its unlabeled data are used
in training set together with labeled data from the
other 15 domains.

SA baselines We provide a comprehensive com-
parison of our proposed method with multiple
baselines: ASP-MTL (Liu et al., 2017) and
DAEA (Cai and Wan, 2019) are LSTM-based ap-
proaches. Transformer-based approaches include
BERT, which is only fine-tuned on only labeled
source domain, and BERT+DANN follows the
standard adversarial training. Finally, BertMasker
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System MR Appr. Baby Books Cam. DVD Elec. Hlth. IMDB Kitc. Magz. Musics Softw. Sport Toys Video aAcc
ASP-MTL 76.7 87.0 88.2 84.0 89.2 85.5 86.8 88.2 85.5 86.2 92.2 82.5 87.2 85.7 88.0 84.5 86.1
DAEA 77.0 89.0 92.3 89.0 92.0 88.3 91.8 89.8 90.8 90.3 96.5 88.0 92.8 90.8 91.8 92.3 90.2
BERT 90.5 90.8 90.3 91.3 91.5 89.0 91.3 91.3 91.3 90.0 88.5 90.3 90.5 92.0 90.8 92.0 90.7
BERT+DANN 90.5 91.8 92.5 90.8 90.0 91.3 90.5 90.8 91.0 91.8 91.0 90.5 91.0 90.5 90.3 90.3 90.9
BertMasker 83.8 92.3 92.8 93.0 92.8 89.3 93.3 95.3 86.0 90.8 94.5 89.5 93.0 92.5 93.8 91.3 91.5
MSP-DA 93.3 93.1 92.5 93.2 93.3 92.4 93.1 93.2 93.4 93.0 93.1 92.7 93.1 93.3 93.5 92.8 93.0

Table 3: UDA performances for SA task on FDU-MTL test datasets. aAcc is the average accuracy score across all domains.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl)
P R F P R F P R F P R F aF1

BERT 75.8 72.5 74.1 73.5 68.9 71.1 73.7 69.5 71.5 62.2 51.6 56.4 66.3
BERT+DANN 73.4 76.0 74.7 73.9 69.4 71.5 76.4 53.0 62.5 59.9 53.2 56.3 63.4
Uniform 76.8 79.4 78.1 75.4 66.3 70.5 80.4 21.0 33.3 61.8 45.7 52.6 52.1
Focal 78.2 77.6 77.9 71.7 72.9 72.2 72.9 68.5 70.1 64.8 54.2 59.0 67.1
Class-Balanced 79.3 78.3 78.7 77.8 68.0 72.5 78.0 44.0 56.2 59.0 50.3 54.3 61.0
MSP-DA 75.4 80.0 77.7 76.2 75.5 75.8 75.3 76.8 76.1 70.8 59.9 64.8 72.2

Table 4: UDA performances for ED task on ACE-05 test datasets. aF1 is the average out-of-domain F1 score.

(Yuan et al., 2021) is the state-of-the-art approach
that learns to explicitly mask domain-related words
from text, resulting in domain-agnostic sentences.

ED baselines For ED task, we also compare
MSP-DA to other functional weighting schemes
that trying to balance the learning process to ad-
dress the label shift. In particular, Uniform treats
each sample’s loss equally, Focal Loss down-
weights well-classified instance exponentially (Lin
et al., 2017), and Class-Balanced uses a weighting
factor that is inversely proportional to the num-
ber of samples (Cui et al., 2019) Noted that these
model employ both adapter-based fine-tuning and
adversarial training procedure.

Implementation details All models are imple-
mented in Pytorch. We leverage pre-trained BERT-
base models and checkpoints from Huggingface
repository. (Wolf et al., 2020). We inject adapter
layers after every feed-forward sub-blocks have
bottleneck feed-forward architecture with down-
sampled dimension chosen among [48, 96, 128].
All of the downstream heads are implemented as
feed-forward networks with activation functions
between layers. Each weighting net of neural-SPL
module is a feed-forward network with 2 or 3 lay-
ers with hidden vectors of size [100, 50] or [200,
100, 50], respectively To train the proposed model,
we use Adam optimizer with meta-train and meta-
test learning rates α and γ both chosen from [5e-5,
1e-4, 5e-4, 1e-3, 5e-3], the mini-batch size from
[50, 100, 150] of which 20% or 40% are unla-
beled target data, and the meta-test balancing term
β from [5, 2, 1, 0.5, 0.1]. We tune the hyperpa-
rameters for the proposed model using a random
search. All hyperparameters are selected based
on the F1 scores on the development set of a sin-
gle domain. The same hyperparameters from this
fine-tuning are then applied for other domains to

demonstrate the domain-specificity problem. In
the best model, fixed pre-train BERT-base layers
augmented by adapters with bottleneck size 96 are
used as our feature encoder. All objective heads
have 2 hidden layers. We use Adam optimizer with
a learning rate of 1e-4 for both meta-train and meta-
test step, 100 for mini-batch size with 20% target
data, and the meta-test balancing term is 2. Our
reported results are averages of five runs using the
best hyperparameter configuration with different
random seeds.

4.2 Main Results

Sentiment Analysis SA results are presented in
Table 3. While simple model using contextual em-
bedding BERT outperforms all previous LSTM-
based methods, we observe little to no improve-
ment applying domain adversarial training naively
with it. In particular, BERT+DANN actually has
negative effect on about half of the domains, indi-
cating that the standard baseline approach being
unable to adjust to each specific adaptation setting.
In contrast, our framework achieves the best perfor-
mance for 11 review domains overall, surpassing
the current state-of-the-art method BertMasker
by 1.5 points on average. This demonstrates both
the effectiveness and the robustness of MSP-DA to
each domain.

Event Dectection UDA performances for ED
task are presented in Table 4. Again, we observe
that BERT+DANN only provides slight improve-
ment for domain bc compare to BERT, while sig-
nificantly degrades model’s performances on the
other two resulting in almost 3 points drop in av-
erage out-of-domain F1 score. Similarly, applying
DANN for the adapter-based model without any
weighting mechanism, as in Uniform, also has
adverse effects on out-of-domain performances.
Class-Balanced’s in-domain results are slightly
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higher than other models due to its ability to bal-
ance the training process, which addresses the ex-
treme negative-skewed label distribution of the
given source data. In contrast, its domain adap-
tation ability is actually the lowest because of the
change in data distribution across domains. Focal
Loss performs generally better in out-of-domain
settings as they generate weighting coefficients
adaptively based on the current losses, without
involving any domain-specific statistics. Finally,
MSP-DA provides consistent improvements when
adapting to any new domain, even achieving on
average 5 points higher in F1 score compared to
the best baseline method.

4.3 Ablation Study

In the first row-block of Table 5, we conduct an
ablation study to validate the effectiveness of each
of our main components by investigating the per-
formance of the following variations of our model:
MSP-DA–mSPL follows the normal SPL process
to produce the weighting coefficients and train-test
datasets for ML; MSP-DA–DANN trains only on
source domain without utilizing unlabeled target
data for domain adversarial objective; and MSP-
DA–PL in which no pseudo-labels are leveraged
for training. In general, our full model outperforms
all variants across domains, even in the in-domain
setting, which confirms the superiority and flex-
ibility provided by the jointly optimized pacing
and weights from our neural-SPL module. Espe-
cially for wl domain, domain adversarial training
in MSP-DA manages to improve more than 8 F1
points.

Meta-test Selection To examine the correctness
of our assumption, we augment the data selection
process for meta domains in Random and Reverse
variants. The former randomly selects training sam-
ples for each meta domain, whereas the latter im-
plements the opposite hypothesis by choosing hard
and easy instances for meta-train and meta-test sets,
respectively. Both variants result in a considerable
decline in domain adaptation results as shown in
5. Notably, the significant performance drop in the
in-domain setting of Random indicates that simply
constructing train-test sets without any appropriate
condition can do more harm than good for the ML
process. These empirical observations further con-
firm our initial assumption on how domain shift
correlates well with the easy meta-train and hard
meta-test sets.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (wl)
P R F P R F P R F

MSP-DA – mSPL 74.5 79.7 77.0 77.5 72.0 74.6 64.1 51.9 57.4
MSP-DA – DANN 74.3 80.3 77.2 75.7 72.9 74.2 61.6 51.9 56.3
MSP-DA – PL 77.8 75.1 76.4 75.1 73.5 74.3 62.6 52.4 57.0
MSP-DA (Random) 73.0 76.4 74.7 75.6 73.3 74.4 61.0 50.3 55.0
MSP-DA (Reverse) 77.7 75.0 76.3 78.2 70.6 74.2 65.0 50.7 57.0
MSP-DA (Ours) 75.4 80.0 77.7 76.2 75.5 75.8 70.8 59.9 64.8

Table 5: Performances for Ablation Study

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Fixed (25) 79.3 68.9 73.7 65.8 50.0 56.8
Fixed (50) 75.0 73.7 74.3 66.3 49.5 56.6
Fixed (75) 76.4 72.0 74.1 65.9 52.7 58.6
Linear Incrs 74.9 71.7 73.3 61.6 54.7 57.9
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 6: Performances for Age Hyperparameter Analysis

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Constant 75.8 71.5 73.6 63.2 52.6 57.4
Anneal Up 75.4 71.0 73.1 63.5 52.6 57.4
Anneal Down 74.0 74.8 74.4 62.3 51.1 56.1
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 7: Performances for DANN Weighting Analysis

4.4 The Values of Age Hyperparameter

Age hyperparameter λa is usually the hardest to
tune in a SPL system due to the fact that aside
from the initial value, determining how λa changes
throughout the training process also has a major im-
pact on the final performance. Several prior works
(Li and Gong, 2017; Ren et al., 2017) have pro-
posed alternative age schedulers in place of the
naive strategy which adds/multiples λa with a con-
stant at each epoch. However, the value of λa in
these methods still follows a predefined sequence,
implying the need for a meticulous tuning process.
In contrast, our neural-SPL module updates λa

based on optimization signals from meta-test set,
thus always able to create an appropriate dynamic
curriculum regardless of different learning tasks
and datasets. In Table 6, we examine how different
values and schedules of age hyperparameter affect
performances on bc and wl domains. The Fixed
(p) settings with p ∈ [25, 50, 75] are variations
of our model with λa values always correspond-
ing to the unchanged p-th percentile of the current
mini-batch’s sample losses; or in other words, the
number of samples in meta-train set is always a
constant p percent that of the current mini-batch.
Additionally, we evaluate the case in which p is lin-
early increased as training proceeds, similar to the
standard SPL process, in Linear Incrs setting. The
results show that the lower p is, the worse model
performs, indicating that with too few meta-train
data, the model will not be able to adapt to the
hard meta-test domain. Surprisingly, the gradual
rising scheduler of Linear Incrs is not as effective
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Figure 3: Three columns in each subplot correspond to domain bc, cts, wl, respectively. (Left) Layer-wise DANN weights at
each training step. (Right) source and target age percentiles at each training step.

as the other Fixed variants. This means that the
easy-to-hard assumption of prior SPL systems is
not suitable for our ML framework.

λa Visualization To gain more insight into how
age hyperparameter changes throughout the train-
ing process of each domain, we plot the values of
λa in source-losses percentile against the number
of update steps for 10 epochs in the right subplot of
Fig. 3. While λa quickly follows the standard in-
cremental trend initially, it starts to plateau within
the 60-70 percentile range until eventually start-
ing to decrease. Notably, behavior of λa diverges
across domains in subsequent steps. Whereas λa

continues the to decline in bc and cts domains, it
experiences a complete trend reversal at the end of
the training of wl domain. We hypothesis that this
drastic change of λa is because of the gradients’
dot product term that the objective in Eq. 9 implies,
which we will delve deeper into in the discussion
section below. The

⋂
shape of λa correlates with

the term’s value as the model maximizes it to align
the gradient directions between the meta train-test
domains, going from negative initially as the train-
ing started, to 0 which causing the plateau, then
gradually becoming positive as the model was able
to adjust the updates of meta-train set to be consis-
tent with that of meta-test set. However, for hard
adaptation such as wl domain, too few data in meta-
train set can cause a major disparity between the
two meta domains again, thus the resulting trend
reversal at the last few steps.

We also visualize the same plot for target-
pseudo-losses percentile, which leads to an inter-
esting observation: Initially, the model followed
its own pseudo labels without any constraint and
the high value of λa percentile represents model’s
incorrect overconfidence. However, these pseudo-
label updates will cause discrepancies with meta-

test domain, thus the ML framework will gradually
fix the corresponding predictions, allowing only
quality pseudo samples to be included in meta-train
set. Eventually, the target trend converges with the
source ones, suggesting that model’s predictions
on pseudo labels are then as consistent as on clean
training labels.

4.5 Balancing Domain Adversarial Losses

Previous works have observed that the weight of
DANN in the combined objective has a significant
impact on the overall adaptation performance of
the model. We further validate this point by inves-
tigating how different domain adversarial weight-
ing schemes affect the results on bc and wl do-
mains. Specifically, we evaluate 3 types of layer-
wise weighting: (i) Constant - all layers share
the same wl value, (ii) Anneal Up - wl slowly
increases from lower to higher layers, and (iii) An-
neal Down - wl is highest for the first layer and
gradually declines for subsequent layers. The re-
sults are present in Table 5, in which none of the
schemes is better than the others in both domains.
In contrast, the meta-learned coefficients of our
framework manage to boost model’s performances
in every adaptation setting, especially for the hard
wl domain where domain adversarial training mat-
ters the most.

We further visualize how each layer’s weight
changes during the learning process across domains
in the left subplot of Fig. 3. In particular, we parti-
tion 12 layers of BERT-base model into 3 groups of
4 sequential layers, each of which is known to con-
tain a different type of information that is important
for a different type of task as described in the pre-
vious section. We can observe from the graphs a
certain pattern: the higher level the group is, the
more volatile its layers’ coefficients are. However,
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there is no specific rule shared among all domains
regarding the value of each layer’s weight. This
affirms the sensitivity of domain adversarial bal-
ancing term to each individual domain and further
justifies the effectiveness of the jointly optimized
weighting in our framework.

5 Discussion

Following the analysis of MLDG framework
presented in (Li et al., 2018), we decompose the
meta-test loss, given that θ̄ = θ − αL′

tr(θ),
using the first order Taylor expansion:

Lts

(
θ − αL′

tr(θ)
)
= Lts (θ) +

∂Lts (θ)

∂θ

(
−α

∂Ltr (θ)

∂θ

)
(10)

Denoting G = ∂Lts(θ)
∂θ · ∂Ltr(θ)

∂θ and plug-
ging Eq. 10 into the final objective to up-
date main model’s parameters from Eq. 8
results in the following optimization problem:

argmin
θ

Ltr (θ) + Lts (θ)− βαG (11)

The third term in Eq. 11 is a gradient-based
regularization that penalizes inconsistency between
parameter updates of meta-train and meta-test
domains. By enforcing loss gradients of the two
domains to follow a similar direction, Eq. 11
prevents the model from over-fitting to a single
domain, effectively improves model’s adaptation
capacity provided that meta-test set is ’close’ to
target domain.

We further examine how the ML framework
affects the values of neural-SPL module’s
parameters (θw, θv, λa) in our model. Plug-
ging Eq. 10 into the gradient of λa, we have:

∂Lts

(
θ̄
)

∂λa
= −α

∂Lts (θ)

∂θ
· ∂

2Ltr (θ)

∂θ∂λa
= −αG · ∂fv(λa)

∂λa
(12)

From Eq. 12, we see that the multiplicative
factor G also controls how the value of λa changes
throughout the ML process. When there is a
significant discrepancy between meta-train and
meta-test domain, G would have a negative
value, which would in effect push λa higher and
allow more samples into meta-train set for easier
adaptation to meta-test set. Conversely, a positive
G would imply that the model is good enough to
align the current meta domains, thus gradually
pulling λa down to make the task harder. This
behavior is clearly illustrated in Fig. 3. Similar
arguments can be made for the meta-learned
weighting coefficients, where G would encourage

samples whose gradients are similar across
domains while decreasing the contribution of those
whose gradients are not. These understanding are
also presented in (Shu et al., 2019) and closely
related to how MAML works (Nichol et al., 2018;
Raghu et al., 2019)

6 Conclusion

We present a novel ML framework for UDA set-
ting that achieves state-of-the-art performance on
ED task. In particular, a neural-SPL module is em-
ployed to adaptively partition source domain into
meta-train and meta-test set, while simultaneously
learns the instance-wise and layer-wise weights for
the loss terms of downstream task and domain ad-
versarial task respectively. The proposed model
significantly improves domain adaptation perfor-
mances against various baselines on every domain
without domain-specific hyperparameter tuning. In
the future, we intend to apply our approach to the
several direction: (1) We will extend our work to
multilingual problems (Pouran Ben Veyseh et al.,
2022), or other domains and tasks (Lu et al., 2021);
(2) We will incorporate different novel domain
adaptation regularization methods (Phung et al.,
2021); (3) We will adapt our framework to more
general multi-source domain adaptation setting.
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