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Abstract

Knowledge distillation (KD) is an efficient
framework for compressing large-scale pre-
trained language models. Recent years have
seen a surge of research aiming to im-
prove KD by leveraging Contrastive Learning,
Intermediate Layer Distillation, Data Aug-
mentation, and Adversarial Training. In this
work, we propose a learning based data aug-
mentation technique tailored for knowledge
distillation, called CILDA. To the best of our
knowledge, this is the first time that intermedi-
ate layer representations of the main task are
used in improving the quality of augmented
samples. More precisely, we introduce an aug-
mentation technique for KD based on inter-
mediate layer matching using contrastive loss
to improve masked adversarial data augmenta-
tion. CILDA outperforms existing state-of-the-
art KD approaches on the GLUE benchmark,
as well as in an out-of-domain evaluation.

1 Introduction

The exponentially increasing size of pre-trained
large language models (Devlin et al., 2019; Liu
et al., 2020; Raffel et al., 2020; Brown et al., 2020)
has been a persistent concern regarding the effi-
ciency and scalability of Natural Language Under-
standing (NLU) in real world applications. Knowl-
edge Distillation (KD) (Buciluǎ et al., 2006; Hin-
ton et al., 2014) is a technique for transferring
the knowledge from a large-scale model (called
teacher) to a smaller one (called student), so that the
latter model can be employed on edge device (Sanh
et al., 2019a; Tang et al., 2019; Mukherjee and
Awadallah, 2020; Li et al., 2021). This is done by
minimizing the KL divergence between the teacher
and student probabilistic outputs.
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Numerous techniques have been exploited re-
cently to increase the knowledge transfer beyond
logits matching. For instance, it has been found
beneficial to perform distillation on the internal
components (parameters) of the teacher and stu-
dent, which is known as Intermediate Layer Dis-
tillation (Sun et al., 2019, 2020b; Passban et al.,
2021; Wang et al., 2020a,b; Fu et al., 2021; Wu
et al., 2021).

Data Augmentation has also been successful for
KD (Jiao et al., 2019; Shen et al., 2020; Qu et al.,
2021), as researchers have found that the student
has less opportunity to acquire useful information
from the teacher when limited data are available for
training (Kamalloo et al., 2021, 2022; Jafari et al.,
2021a). Adversarial Training was also employed
in KD (Zhu et al., 2019; Rashid et al., 2020, 2021;
He et al., 2021) to improve the robustness and gen-
eralization, as the student may predict inconsistent
outputs with slight distortion to the data distribu-
tions (Li et al., 2021). Recently, Contrastive Learn-
ing (Gutmann and Hyvärinen, 2010; Hjelm et al.,
2018; Arora et al., 2019) has been exploited for
improving knowledge transfer (Tian et al., 2019),
and to optimize the intermediate layer mapping
scheme (Sun et al., 2020a).

Each of the aforementioned techniques has
proven effective in addressing a specific challenge
in KD. Yet, we are not aware of a single method
that takes advantage of all of them. In this paper,
we propose CILDA, a KD method that incorporate
Contrasting Learning, Intermediate Layer Distilla-
tion, Data Augmentation, and Adversarial Training.
Distilling into a 6-layer BERT model, CILDA deliv-
ers new state-of-the-art results on the GLUE bench-
mark (Wang et al., 2018), as well as outperforming
other KD methods in out-of-domain evaluations.



4708

2 Related Work

Many studies (Jawahar et al., 2019; Tenney et al.,
2019; Kovaleva et al., 2019) have noticed that im-
portant structural linguistic information are hid-
den in the intermediate layers of Transformer mod-
els (Vaswani et al., 2017). Recent KD methods
propose to match teacher and student: intermedi-
ate layers representations (Jiao et al., 2019; Sun
et al., 2019, 2020b; Wu et al., 2020), embed-
ding matrix (Sanh et al., 2019a), and self-attention
distributions (Wang et al., 2020a,b). Other vari-
ants of KD methods have been proposed such
as Annealing-KD (Jafari et al., 2021b) and Pro-
KD (Rezagholizadeh et al., 2021), two stage distil-
lation methods where a smooth and gradual training
of the student is controlled by a dynamic tempera-
ture factor, followed by a simple cross entropy loss
for a few epochs.

Augmented adversarial examples (Miyato et al.,
2016) are label-preserving transformations in the
embedding space that are used to improve gener-
alizability of models. FreeLB (Zhu et al., 2019)
is an adversarial algorithm which creates virtual
adversarial examples from word embeddings, and
then performs the parameter updates on these ad-
versarial embeddings. MATE-KD (Rashid et al.,
2021) is a min-max adversarial data augmentation
approach for KD, where an extra generator model
is trained to generate adversarial text by maximiz-
ing the logit output margins between the teacher
and the student.

Contrastive learning is a self-supervised rep-
resentation learning method (Chen et al., 2020;
Qu et al., 2021; van den Oord et al., 2018)
which learns the feature representation of the sam-
ples by contrasting positive and negative samples.
CODIR (Sun et al., 2020a) is a contrast-enhanced
diversity promoting method between teacher and
student intermediate representations of data sam-
ples from the same class. MATE-KD is the most
related to our solution, with one notable difference:
we believe our technique is the first to deploy in-
termediate layers distillation with the contrastive
objective in the data augmentation process.

3 CILDA

In this section, we introduce CILDA, our con-
trastive approach for masked adversarial text aug-
mentation for knowledge distillation using interme-
diate layer matching. Inspired by (Rashid et al.,
2021), we deploy a generator (e.g. BERT) which

will be trained to map masked inputs, X̃ , to aug-
mented samples,X ′. The objective of this mapping
is to perturb the inputs (in their vicinity) such that
their corresponding output and intermediate layer
representations of the teacher and student networks
diverge to their maximum. Generating such maxi-
mum divergence augmented samples aims to fill the
existing major gaps in the training data. We mask
input tokens with a certain pre-defined probability,
p. The architecture of our model is depicted in Fig-
ure 1. Our training is comprised of two alternating
steps we describe hereafter.

Figure 1: Illustration of maximization and minimiza-
tion steps of CILDA.

Maximization Step: Generating Augmented
Samples In the maximization step, the genera-
tor is trained in a way that the difference between
the teacher and the student are maximized. As
opposed to MATE-KD which only evaluates the di-
vergence of the student and teacher networks based
on their output, our technique takes intermediate
layer matching into account as well. To the best of
our knowledge this is the first time that the distance
of intermediate layer representations are consid-
ered in the data-augmentation generation process.
To be concise, MATE-KD only pays attention to
the distance of samples in the output space, while
our technique concerns the distance of samples in
the input space as well. We hypothesize that to
identify maximum divergence augmented samples,
both input feature distances and output predictions
are important. Our CILDA loss function to train
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the generator can be described as:

LGφ
= α1LG + α2LCRD

LG = KL
(
σ(
T (X ′)

τ1
), σ(

Sθ(X
′)

τ1
)
) (1)

where LG is the KL-divergence loss between the
teacher and the student logits, T and Sθ represent
the teacher model and the student model with θ
parameters respectively, σ is the softmax function
and τ1 is the temperature parameter that controls
the softness of the output distributions, α1 and α2

are hyper-parameters. X ′ is the adversarial text
output obtained by applying argmax to the gener-
ator output in the forward pass. Due to the non-
differentiability issue of argmax in the backward
pass, we use Gumbel-Softmax (Jang et al., 2016)
at the output of the generator. More details can be
found in (Rashid et al., 2021). LCRD is the con-
trastive distillation loss that we introduced to the
maximization step of MATE-KD. This contrastive
loss is obtained by using the intermediate represen-
tation outputs of the teacher and the student models:

LCRD = − log
exp(< h̄Tk , h̄

Sθ
k > /τ2)∑K

j=0 exp(< h̄Tk , h̄
Sθ
j > /τ2)

(2)
where τ2 is the temperature parameter that controls
the concentration level (Sun et al., 2020a). h̄Tk
and h̄Sθ

k are the intermediate layer representation
of the teacher and student networks respectively,
and < ., . > is the cosine similarity between two
feature vectors. k and j are indices of the samples
of a mini-batch: k is the index of positive samples
(i.e. the kth sample of the mini-batch is sent to both
of the student and teacher networks to obtain their
representations) and when j 6= k, we get negative
samples (i.e. any other sample in the mini-batch
excluding the kth sample) in a batch of K samples.
The goal of this objective function is to map the
student representations h̄Sθ

k of the positive sample
k to h̄Tk , as well as the negative representations
{h̄Sθ

j }Kj 6=k far apart from h̄Tk .
For an arbitrary sample l in a mini-batch, the

entire intermediate layer representations of the
teacher and the student models (e.g. the < CLS >
representation of each layer of the networks) are
concatenated to form ĥTl = [h̄T1,l, · · · , h̄Tn,l], ĥ

Sθ
l =

[h̄Sθ
1,l, · · · , h̄

Sθ
m,l]. Then these concatenated repre-

sentations are further mapped into the same-size

lower-dimensional spaces using linear projections
h̄Tl , h̄

Sθ
l ∈ Ru to calculate the distillation loss

LCRD. Here, n and m denote the number of in-
termediate layers of the teacher and the student
networks respectively.

Minimization Step: Deploying Augmented
Samples In the minimization step, the aug-
mented adversarial samples produced by the gener-
ator and the training samples are used to minimize
the difference between the teacher and the student.
For this step, in the very general form, one can con-
sider to match the student and teacher networks on
their outputs and intermediate layer representations
(e.g. using the contrastive loss) and the CE loss to
match the output of the student with the labels:

LSθ
= λ1LCE + λ2LKD (3)

where, LCE describes the cross-entropy loss be-
tween the true label.

4 Experiments

4.1 Datasets and Evaluation
We experiment on 7 tasks from the GLUE bench-
mark (Wang et al., 2018): 2 single-sentence (CoLA
and SST-2) and 5 sentence-pair (MRPC, RTE, QQP,
QNLI, and MNLI) classification tasks. Following
prior works, we report Pearson correlation on STS-
B, Matthews correlation on CoLA, F1 score on
MRPC, and use the accuracy otherwise. For out-of-
domain evaluation, we report the performances on
HANS (McCoy et al., 2019), SciTail (Khot et al.,
2018), and IMDB using the models finetuned on
MNLI, QQP, and SST-2 respectively.

4.2 Implementation Details
We use the 24-layer RoBERTa-large (Liu et al.,
2020) and the 6-layer DistilRoBERTa (Sanh et al.,
2019b) as the backbone for the teacher and the
student models respectively. We perform hyperpa-
rameter tuning, and select best performing models
using early stopping on dev sets. We use a lin-
ear transformation to map the intermediate repre-
sentations into a 128-dimensional space and nor-
malized them before computing the loss LCRD.
For each batch of data, we train the generator for
nG steps and the student model for nS = 100
steps. We use nG = 20 for CoLA, MRPC, RTE
tasks and nG=10 for the rest of the tasks. Fol-
lowing (Rashid et al., 2021), we set pth = 0.3,
α1 = 1, α2 = 1, τ1 = 1.0, τ2 = 2.0 for all of our



4710

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

DEV

Teacher 68.1 96.4 91.9 92.3 91.5 90.2 94.6 86.3 88.9
Vanilla-KD 60.9 92.5 90.2 89.0 91.6 84.1 91.3 71.1 83.8
Annealing-KD 61.7 93.1 90.6 89.0 91.5 85.3 92.5 73.6 84.7
MATE-KD 65.9 94.1 91.9 90.4 91.9 85.8 94.6 75.0 86.2
CILDA 67.1 94.7 92.0 90.5 92.1 86.8 92.9 76.2 86.5

TEST

Teacher 68.6 97.1 93.0 92.4 90.2 90.7 95.5 87.9 89.4
Vanilla-KD 54.3 93.1 86.0 85.7 89.5 83.6 90.8 74.1 82.1
Annealing-KD 54.0 93.6 86.0 86.8 89.7 84.4 90.8 73.7 82.4
MATE-KD 56.0 94.9 90.2 88.0 89.7 85.2 92.1 75.0 83.9
CILDA 56.2 94.9 90.5 89.0 89.9 86.1 92.5 77.0 84.5

Table 1: DEV and TEST performances on GLUE benchmark when RoBERTa24 and DistillRoberta6 are used as
backbone for the teacher and student variants respectively. Bold mark describes the best results.

experiments. We set λ1 and λ2 to 1/3 for the origi-
nal training samples. For the augmented samples,
we use λ2 = 2/9, λ3 = 1/9 for all tasks. The learn-
ing rate and the batch size are tuned from the set of
{1e-5, 2e-5, 4e-6} and {8, 16, 32} respectively.

4.3 Results and Analysis

Table 1 shows the performances of the teacher,
baselines, and our method on the GLUE dev and
test sets. We compared CILDA to the Vanilla-
KD (Hinton et al., 2014) baseline, and against 2
strong recently proposed methods 1: Annealing-
KD (Jafari et al., 2021b) and MATE-KD (Rashid
et al., 2021). We observe that CILDA outperforms
these models on all GLUE tasks, except on QNLI
dev where MATE-KD performs better and SST-2
test where CILDA is on par with MATE-KD. On
average over test sets, CILDA outperforms MATE-
KD and Annealing-KD by a margin of 0.6% and
2.1% respectively.

Figure 2: Divergence (lower is better) between the
teacher and student logits on GLUE dev sets.

1We compare with these models because we have pub-
lished results on GLUE leaderboard using the same teacher
and student backbone models.

We investigate the logits generated by different
methods to better understand why CILDA performs
better. Figure 2 shows the divergence (lower is
better) between the teacher and student logits on
GLUE dev sets (except STS-B since it is a regres-
sion task) for 4 KD methods. Expectedly, Vanilla-
KD (no enhancement) had the maximum diver-
gence with teacher logits (which can be easily dis-
tinguished from other methods). We observe that
CILDA mimic the teacher better than other meth-
ods on all tasks, which may partially explain the
performance gains obtained by CILDA.

Model HANS PAWS IMDB

Teacher 78.2 43.3 88.9

w/o KD 58.6 34.7 83.7
Vanilla-KD 58.9 36.5 84.0
Annealing-KD 61.2 35.8 84.6
MATE-KD 66.6 38.3 85.0

CILDA 68.1 40.5 85.2

Table 2: Out-of-domain performances of models
trained on MNLI, QQP, SST-2 and evaluated on HANS,
PAWS, and IMDB respectively.

Furthermore, we measure the robustness and
generalization ability of the tested methods by
evaluating them on out-of-domain test sets. Ta-
ble 2 shows performances of models fine-tuned on
MNLI, QQP, SST-2 and tested on HANS, PAWS,
and IMDB respectively. CILDA significantly out-
performs the second best method (MATE-KD) by
1.6% and 2.2% on HANS and PAWS respectively,
and by a margin of 0.2% on IMDB.
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5 Conclusion and Future Work

We proposed a min-max adversarial data augmen-
tation framework for KD, which is powered by
contrastive distillation loss for intermediate layer
matching. Our algorithm maximizes the interme-
diate and logit representation margin between the
teacher and the student models. In future works, we
would like to investigate the distillation from super-
large models such as Megatron (Shoeybi et al.,
2019) and T5 (Raffel et al., 2020). Also, we would
like to improve the generator output quality via dis-
tillation from generative models like GPT-2 (Rad-
ford et al., 2019).
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Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. https://arxiv.org/abs/1810.04805.

Hao Fu, Shaojun Zhou an Qihong Yang, Junjie Tang
an Guiquan Liu, Kaikui Liu, and Xiaolong Li. 2021.
Lrc-bert: Latent-representation contrastive knowl-
edge distillation for natural language understanding.
In AAAI.

2A new deep learning computing framework https://
www.mindspore.cn/

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceed-
ings of the thirteenth international conference on
artificial intelligence and statistics, pages 297–304.
JMLR Workshop and Conference Proceedings.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza
Haffari, and Mohammad Norouzi. 2021. Generate,
annotate, and learn: Generative models advance self-
training and knowledge distillation. arXiv preprint
arXiv:2106.06168.

Geoffrey Hinton, Oriol Vinyals, and Jeff. Dean. 2014.
Distilling the knowledge in a neural network. NIPS
Workshop, https://arxiv.org/abs/1503.02531.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. 2018. Learn-
ing deep representations by mutual information
estimation and maximization. arXiv preprint
arXiv:1808.06670.

Aref Jafari, Mehdi Rezagholizadeh, and Ali Ghodsi.
2021a. Knowledge distillation by utilizing back-
ward pass knowledge in neural networks. US Patent
App. 17/359,463.

Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma,
and Ali Ghodsi. 2021b. Annealing knowledge distil-
lation. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2493–2504.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What Does BERT Learn about the Structure
of Language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Ehsan Kamalloo, Mehdi Rezagholizadeh, and Ali
Ghodsi. 2022. When chosen wisely, more data
is what you need: A universal sample-efficient
strategy for data augmentation. arXiv preprint
arXiv:2203.09391.

Ehsan Kamalloo, Mehdi Rezagholizadeh, Peyman
Passban, and Ali Ghodsi. 2021. Not far away,
not so close: Sample efficient nearest neighbour
data augmentation via minimax. arXiv preprint
arXiv:2105.13608.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI.

https://www.mindspore.cn/
https://www.mindspore.cn/


4712

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593.

Tianda Li, Ahmad Rashid, Aref Jafari, Pranav Sharma,
Ali Ghodsi, and Mehdi Rezagholizadeh. 2021. How
to select one among all? an extensive empirical
study towards the robustness of knowledge distil-
lation in natural language understanding. arXiv
preprint arXiv:2109.05696.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized fbertg pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

Takeru Miyato, Andrew M Dai, and Ian Good-
fellow. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. Xtremedistil: Multi-stage distillation for mas-
sive multilingual models. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2221–2234.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. Alp-kd: Attention-based layer
projection for knowledge distillation. In AAAI.

Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev,
Jiawei Han, and Weizhu Chen. 2021. Coda:
Contrast-enhanced and diversity promoting data aug-
mentation for natural language understanding. In
ICLR.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. 2019. Language models are unsuper-
vised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Ahmad Rashid, Vasileios Lioutas, Abbas Ghaddar, and
Mehdi Rezagholizadeh. 2020. Towards zero-shot
knowledge distillation for natural language process-
ing. arXiv preprint arXiv:2012.15495.

Ahmad Rashid, Vasileios Lioutas, and Mehdi Reza-
gholizadeh. 2021. MATE-KD: Masked adversarial
TExt, a companion to knowledge distillation. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 1062–
1071, Online. Association for Computational Lin-
guistics.

Mehdi Rezagholizadeh, Aref Jafari, Puneeth Salad,
Pranav Sharma, Ali Saheb Pasand, and Ali Ghodsi.
2021. Pro-kd: Progressive distillation by follow-
ing the footsteps of the teacher. arXiv preprint
arXiv:2110.08532.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
2019a. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019b. Distilroberta, a dis-
tilled version of roberta: smaller, faster, cheaper
and lighter. https://huggingface.co/
distilroberta-base.

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru
Qu, and Weizhu Chen. 2020. A simple but tough-
to-beat data augmentation approach for natural lan-
guage understanding and generation. arXiv preprint
arXiv:2009.13818.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. https://arxiv.org/abs/1908.09355.

Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang
Wang, and Jingjing Liu. 2020a. Contrastive distil-
lation on intermediate representations for language
model compression. In EMNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020b. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Y. Tian, D. Krishnan, and P. Isola. 2019. Con-
trastive representation distillation. arXiv preprint
arXiv:1910.10699.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748.

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/2021.acl-long.86
https://doi.org/10.18653/v1/2021.acl-long.86
https://huggingface.co/distilroberta-base
https://huggingface.co/distilroberta-base


4713

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2020a. Minilmv2: Multi-
head self-attention relation distillation for com-
pressing pretrained transformers. arXiv preprint
arXiv:2012.15828.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

Yimeng Wu, Peyman Passban, Mehdi Rezagholizade,
and Qun Liu. 2020. Why skip if you can combine:
A simple knowledge distillation technique for inter-
mediate layers. arXiv preprint arXiv:2010.03034.

Yimeng Wu, Mehdi Rezagholizadeh, Abbas Ghaddar,
Md Akmal Haidar, and Ali Ghodsi. 2021. Universal-
kd: Attention-based output-grounded intermediate
layer knowledge distillation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7649–7661.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2019. Freelb: Enhanced ad-
versarial training for natural language understanding.
In ICLR.


