DOUBLEMIX: Simple Interpolation-Based Data Augmentation
for Text Classification

Hui Chen* Wei Han* Diyi Yang® Soujanya Poria*
* Singapore University of Technology and Design
¢ Georgia Institute of Technology

{hui_chen,

weli_han}@mymail.sutd.edu.sg

diyi.yanglcc.gatech.edu
sporia@sutd.edu.sg

Abstract

This paper proposes a simple yet effec-
tive interpolation-based data augmentation ap-
proach termed DOUBLEMIX, to improve the ro-
bustness of models in text classification. DOU-
BLEMIX first leverages a couple of simple aug-
mentation operations to generate several per-
turbed samples for each training data, and then
uses the perturbed data and original data to
carry out a two-step interpolation in the hid-
den space of neural models. Concretely, it first
mixes up the perturbed data to a synthetic sam-
ple and then mixes up the original data and
the synthetic perturbed data. DOUBLEMIX
enhances models’ robustness by learning the
“shifted” features in hidden space. On six text
classification benchmark datasets, our approach
outperforms several popular text augmenta-
tion methods including token-level, sentence-
level, and hidden-level data augmentation tech-
niques. Also, experiments in low-resource
settings show our approach consistently im-
proves models’ performance when the train-
ing data is scarce. Extensive ablation studies
and case studies confirm that each component
of our approach contributes to the final perfor-
mance and show that our approach exhibits su-
perior performance on challenging counterex-
amples. Additionally, visual analysis shows
that text features generated by our approach
are highly interpretable. Our code for this pa-
per can be found at https://github.com/
declare-lab/DoubleMix.git.

1 Introduction

Deep neural networks have enabled breakthroughs
in most supervised settings in natural language pro-
cessing (NLP) tasks. However, labeled data in
NLP is often scarce, as linguistic annotation usu-
ally costs large amounts of time, money, and exper-
tise. With limited training data, neural models will
be vulnerable to overfitting and can only capture
shallow heuristics that succeed in limited scenarios,
which will lead to severe performance degradation
when applied to challenging situations.

In order to improve the robustness of models,
various data augmentation methods have been pro-
posed. Generally, there are three types of augmen-
tation techniques: token-, sentence-, and hidden-
level transformation. Wei and Zou (2019) summa-
rized several common token-level transformations,
including word insertion, deletion, replacement,
and swap. Sentence-level transformation is to para-
phrase a sentence through specific grammatical or
syntactic rules. Back-translation (Sennrich et al.,
2016; Edunov et al., 2018) is a typical sentence-
level augmentation method where a sentence is
translated to an intermediate language and then
translated back to obtain augmented samples. Addi-
tionally, for natural language inference (NLI) tasks
that identify whether a premise entails, contradicts,
or is neutral with a hypothesis, Min et al. (2020)
studied syntactic rules of sentences in inference
tasks and proposed several syntactic transformation
techniques such as Inversion and Passivization to
construct syntactically informative examples. How-
ever, these methods often have high requirements
for sentence structures. It is hard to obtain a large
number of augmented samples by this method.

In recent years, several hidden-level augmenta-
tion methods are proposed and they have exhibited
superior performance in a number of popular text
classification tasks. TMix (Chen et al., 2020) is
a typical approach where a linear interpolation is
performed in the hidden space of transformer mod-
els such as BERT (Devlin et al., 2019). The main
idea of TMix (Verma et al., 2019) comes from
Mixup, a method that is based on the principle
of Vicinal Risk Minimization (VRM) (Chapelle
et al., 2001) and has achieved substantial improve-
ments in computer vision tasks (Verma et al., 2019;
Hendrycks et al., 2020; Kim et al., 2020; Ramé
et al., 2021) and natural language tasks (Guo et al.,
2019; Chen et al., 2020; Kim et al., 2021; Park
and Caragea, 2022). Recently, SSMix (Yoon et al.,
2021) which interpolates text based on the saliency

4622

Proceedings of the 29th International Conference on Computational Linguistics, pages 4622-4632
October 12-17, 2022.

https://github.com/declare-lab/DoubleMix.git
https://github.com/declare-lab/DoubleMix.git

of tokens (Simonyan et al., 2014) in hidden space
has been introduced. These methods make mod-
els learn a mapping from a mixed text represen-
tation to an intermediate label which is generated
by linearly combining two different source labels.
However, the intermediate soft label cannot always
accurately describe the true probability of classes
that the mixed text representations belong to, which
limit the effectiveness of augmentation.

To overcome these limitations, this work pro-
poses a simple yet effective interpolation-based
data augmentation method termed DOUBLEMIX,
which performs interpolation in the hidden space
and does not require label mixing. Firstly, we lever-
age a collection of simple augmentation operations
to generate several perturbed samples from the raw
data and then mix up these perturbed samples. Sec-
ondly, we mix up the original data with the syn-
thesized perturbed data. We constrain the mixing
weight of the original to be larger than the syn-
thesized perturbed data to balance the trade-off
between proper perturbations and the potential in-
jected noise. To stabilize the training process, we
add a Jensen-Shannon divergence regularization
term to our training objective to minimize the dis-
tance between the predicted distributions of the
original data and the perturbed variants.

To demonstrate the effectiveness of our ap-
proach, we conduct extensive experiments by com-
paring our DOUBLEMIX with previous state-of-the-
art data augmentation methods on six popular text
classification benchmark datasets. Additionally,
we reduce and vary the amount of training data, to
observe if DOUBLEMIX can consistently improve
over the baselines. We further conduct ablation
studies and case studies to investigate the impact
of different training strategies on DOUBLEMIX’s
effectiveness and whether our method works on
challenging counterexamples. Moreover, we Vi-
sualize the features generated by DOUBLEMIX to
interpret why our method works. Experimental
results and analyses confirm the efficacy of our
proposed approach and every component in DOU-
BLEMIX contributes to the performance. To sum
up, our contributions are:

* We propose a simple interpolation-based data
augmentation approach DOUBLEMIX to im-
prove the robustness of neural models in text
classification by mixing up the original text
with its perturbed variants in hidden space.

¢ We demonstrate the effectiveness of DOU-

BLEMIX through extensive experiments and
analyses on six text classification benchmarks
as well as three low-resource datasets.

* We qualitatively analyze why our method
works by visualizing its data manifold and
quantitatively analyze how our method works
by conducting several ablation studies and
case studies.

2 Related Work

Data augmentation techniques are widely em-
ployed in NLP tasks to improve the robustness of
models (Sun et al., 2020; Xie et al., 2020; Cheng
et al., 2020; Guo et al., 2020; Kwon and Lee, 2022).
One way to enrich the original training set is to per-
turb the tokens in each sentence. For example,
Wei and Zou (2019) introduced a set of simple
data augmentation operations such as synonym re-
placement, random insertion, swap, and deletion.
However, token-level perturbation sometimes does
not guarantee that the augmented sentences are
grammatically correct.

Thus, sentence-level augmentation methods are
introduced, where people paraphrase the sentence
by some specific rules. Minervini and Riedel
(2018); McCoy et al. (2019) leveraged syntactic
rules to generate adversarial examples in inference
tasks. Moreover, Andreas (2020) investigated the
compositional inductive bias in sequence models
and augmented data by compositional rules. How-
ever, these methods require careful design, and
they are often customized for a specific task, which
makes them hard to generalize to different datasets.

Recently, a couple of hidden-level augmentation
techniques which perform interpolation in hidden
space have been studied (Guo et al., 2019; Verma
et al., 2019; Hendrycks et al., 2020). Inspired by
PuzzleMix (Kim et al., 2020) and SaliencyMix (Ud-
din et al., 2020) which is popular in computer vi-
sion, Yoon et al. (2021) proposed SSMix which uti-
lizes the saliency information of spans (Simonyan
et al., 2014) in each sentence to interpolate in hid-
den space to create informative examples. Yin et al.
(2021) interpolate hidden states of the entire mini-
batch to obtain better representations. Inspired by
the prior work, our DOUBLEMIX aims at improv-
ing models’ robustness by mixing up text features
and their perturbed samples in hidden space.

4623

3 Proposed Method: DOUBLEMIX

To regularize NLP models in a more efficient man-
ner, we introduce a simple yet effective data aug-
mentation approach, DOUBLEMIX, that enhances
the representation of each training data by learning
the features sampled from a region constructed by
the original sample itself and its perturbed samples.
The perturbed samples are generated by simple
token- or sentence-level augmentation operations.
DOUBLEMIX is a hidden-level regularization tech-
nique and our base model is a pre-trained trans-
former network, as they have achieved great perfor-
mance in various NLP tasks. Algorithm 1 shows
the training process of our approach.

3.1 Robust Interpolation in Hidden Space

For an input sequence x = {wg, w1, ..., wg} with
S tokens associated with a label y, our goal is
to predict a label of this sequence. At the be-
ginning of this approach, we prepare a perturba-
tion operation set containing simple token- and
sentence-level data augmentation techniques such
as back-translation (sentence-level), synonym re-
placement (token-level), and Gaussian noise pertur-
bation (sentence-level). Thereafter, we randomly
sample the operations /V times and use the selected
augmentation operations to generate N perturbed
samples of each training instance. Note that each
type of operation can be selected multiple times.
We generated different perturbed samples by ad-
justing the hyper-parameters. For example, if we
select synonym replacement, we can produce dif-
ferent perturbations by adjusting the proportion of
tokens to be substituted. For back-translation, we
can use different intermediate languages.

Our approach is performed in hidden space, so
as to encourage the model to fully utilize the hid-
den information within the multi-layer networks.
We employ a pre-trained model f(; §) containing L
layers to encode the text to hidden representations.
Then we select a layer ¢ which ranges in [0, L] to
interpolate. At the i-th layer of f(;0), a two-step
interpolation is performed where the first step is
to mix up all the perturbed samples by a group of
weights sampled from Dirichlet distribution, and
the second step is to mix up the synthesized per-
turbed sample and the original sample by some
weights € [0, 1] sampled from Beta distribution.
We follow Zhang et al. (2018) to use Beta distribu-
tion for weight sampling, and Dirichlet distribution
is a multi-variate Beta distribution. Note that when

we mix up the original data and the synthesized
perturbed data, we constrain the mixing weight of
the original data to be larger, so as to make the final
perturbed representation to be close to the original
one. This balances the trade-off between proper
perturbation and potential injected noise. After the
two-step interpolation, the synthesized hidden pre-
sentation is fed to the remaining layers f;.1)(;0)
and a classifier.

3.2 Training Objectives

During the training period, we do not directly min-
imize the Cross-Entropy loss of the probability dis-
tribution of the synthesized sample, as it may in-
troduce too much noise. We employ a consistency
regularization term, Jensen-Shannon Divergence
(JSD) loss (Bachman et al., 2014; Zheng et al.,
2016; Hendrycks et al., 2020), to minimize the
difference between the prediction distribution of
synthetic data and original data, and meanwhile,
we minimize the Cross-Entropy loss of the model
output of original data and the gold label. The
training objective can be written as:

an) = Ler(y|r)
+’Y['JSD(?/|CC7$a7-~-7$N) (1)

E(y|l‘,l‘a, seey

where + is a hyper-parameter.

In the consistency regularization, we do not em-
ploy Kullback-Leibler divergence (KL) because
it is not symmetric, i.e., KL(P||Q) # KL(Q||P)
when P # (. It is not a promising choice to
measure the similarity of p,,;; and por;g using KL,
as neither py,;; NOT porig are true predictions and
we deem that they share equal status. JSD pro-
vides a smoothed and normalized version of KL
divergence, with scores between 0 (identical) and
1 (maximally different). We believe using such
a symmetric metric can make the training more
stable.

3.3 Why does DOUBLEMIX work?

To further discuss why our method works, we visu-
alize the original data and the sample space of syn-
thesized data in Mixup and DOUBLEMIX in Fig. 1.
For brevity, we assume the number of perturbed
samples in Step I is two. As shown in Fig. 1, blue
dots indicate training data, and orange dots are per-
turbed data generated by our selected operations.
Synthesized data in Mixup (Zhang et al., 2018) can
only be created along a line, such as the blue full
line connecting the two points X and X' since it

4624

Algorithm 1: DOUBLEMIX

Input: Model f(;) containing L layers, the [-th
layer of the model f;(;), classifier p(; ¢),
training set X = {(z1,y1), -, (Tn, Yn)},
perturbation operation set O =
{back-translation (BT), synonym replacement
(SR), ..., Gaussian noise (GN)}, interpolation
layer set I = {i1, ..., i }, number of
augmented samples N, number of training
epochs K, the global learning rate), Beta
distribution hyper-parameter «, Dirichlet
distribution hyper-parameter 7, loss
hyper-parameter y

Output: Updated network weights 6, ¢

—

{01, ...,0n} < O 1 Select N operations. Each type
of operation can be selected multiple times.

2 for k + Oto K do
3 for (z,y) € X do

4 {za,...,xn} + {01,...,on}(x) > Apply
the selected operations to generate N
different augmented samples of x.

5 i < I ={i1,...,ix} > Randomly select an
interpolation layer from Set /

6 hérig — f[Oz] (ZE, 6)

7 {h’;,,hﬁ\]} (—f[OZi]({l‘a,...,IN};e) >

Encode {z, zq, ..
the ¢-th layer.

., N}, and interpolate at

8 Sample (w1, ..., wy) ~ Dirichlet(r, ..., 7)

9 hflug<—w1~hf1+,..+wn~h§v > First
mixup (Step I).

10 Sample A ~ Beta(a,)

11 A+ max(A,1—A) > Constrain the

synthetic data to a region closer to the
original example.

12 Riniz <= X Mg + (1= A) - hiug B
Second mixup (Step II).

13 Bmiz < flit1:0)(Rinia; 0)

14 Pmiz < P(Ylhmiz; D)

15 Porig <+ (Yl f(z;0); ¢)

16 P 2 (Pmic + Porig)

17 Lispylx,Tay ..., xN)
3 (KL(Pmiz||P) + KL(Porig|[p))

18 L+ Lce(ylz)+vLssp Y|z, Za, ..., TN)

19 0+ 0—nVogsL;p < ¢—nVo oLl >

Update the network weight 6 of the base
model f and ¢ of the classifier ¢.

20 end
21 end

is a simple linear combination. Hence, Mixup en-
forces the regularization to behave linearly among
the training data. In contrast to Mixup, the sam-
ple space of synthesized data of DOUBLEMIX is
a polygon. In this example, AX AB is the sam-
ple space of the synthesized data in DOUBLEMIX.
Firstly, Step I samples a point P on the line con-

necting X, and Xj. Secondly, Step II finds a point
Q on the line connecting X and P. Note that)
should be closer to X or at the middle of Line X P,
as in Step II, we constrain the mixing weight of
original data to be larger than that of synthesized
perturbed data. Taken together, our approach en-
forces the model to learn nearby features for each
training data so that it is robust to representation
shifts.

Figure 1: Visualization of the sample space of synthe-
sized data in Mixup and DOUBLEMIX. Blue dots X and
X' indicate two data points in the training set. Orange
dots X, and X, are perturbed data of X. Grey dots A,
B, P and @ are sampled points.

4 Experimental Setup
4.1 Datasets

We compare our approach with several data
augmentation baselines on six text classification
datasets, covering sentiment polarity classification,
question type classification, humor detection, and
natural language inference: IMDB (Maas et al.,
2011) and SST-2 (Socher et al., 2013) which pre-
dict the sentiment of movie reviews to be positive
or negative, 6-class open-domain question classifi-
cation TREC (Li and Roth, 2002), Pun of the day
(Puns) (Yang et al., 2015) which detects humor
in a single sentence, and two inference datasets
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) which identify whether a premise en-
tails, contradicts or is neutral with a hypothesis.
Statistics of the six text classification datasets can
be found in Appendix A. As the test set of MNLI
is not publicly available, we used the matched de-
velopment set as our development set and the mis-
matched development set as our test set in our ex-
periments.

4.2 Baselines

We compare our approach with several widely-used
baseline models, including token-, sentence-, and

4625

SST-2 TREC Puns
Method Acc. F1. Acc. F1. Acc. F1.
BERT (Devlin et al., 2019) 91.080.1 91.099.1 | 96.9004 96.2197 | 94.20p2 94.380.2
+ Easy Data Augmentation (Wei and Zou, 2019) 91.66pgo 91.7509.1 | 97.1003 96.7492 | 93.71p6 93.830p.5
+ Back Translation (Edunov et al., 2018) 91.330.2 91.2991 | 96.9004 96.720.1 | 93.279.4 93.340.4
+ Manifold Mixup (Verma et al., 2019) 91.3304 914403 | 97.0003 96.2905 | 94.37009 94.4419
+ TMix (Chen et al., 2020) 91.13p05 91.2993 | 96.9001 96.3293 | 94.21p7 94.28)3
+ SSMix (Yoon et al., 2021) 91.4505 91.5002 | 97.0002 96.4402 | 94.330.7 94.460.6
+ DOUBLEMIX (Ours) 922191 921171 | 974001 973246 | 94.5901 94.66(1

IMDB SNLI MNLI
Method Acc. FL. Acc. FI. Acc. FI.
BERT (Devlin et al., 2019) 83.520.1 83.650.4 | 90.31p5 90.28y5 | 84.16p.2 84.05¢0.2
+ Easy Data Augmentation (Wei and Zou, 2019) | 83.43p1 83.850.1 | 90.2704 90.28p4 | 84.0491 83.9792
+ Back Translation (Edunov et al., 2018) 83.690.1 84.11g2 | 90.21p5 90.23g94 | 84.50¢3 84.44¢3
+ Syntactic Data Augmentation (Min et al., 2020) - 90.3503 90.31p.4 | 84.1903 84.080.2
+ Manifold Mixup (Zhang et al., 2018) 83.63p9.1 83.81g2 | 90.04p92 90.02¢92 | 83.3702 83.310.1
+ TMix (Chen et al., 2020) 83.4703 83.91p2 | 90.1291 90.099.1 | 83.43p1 83.380.1
+ SSMix (Yoon et al., 2021) 83.550.3 83.88p.2 | 90.2192 90.14g3 | 83.66p2 83.54¢.2
+ DOUBLEMIX (Ours) 84.1455 84.399- | 91.03p; 91.02,; | 84.72¢> 84.64¢

Table 1: Test accuracy (%) and F1 scores (%) for BERT when comparing our proposed DOUBLEMIX with baseline
methods on six text classification datasets. We randomly select two augmented samples to mix up in Step 1. Best
scores are marked in bold. As syntactic transformations (Min et al., 2020) are rule-based data augmentation
techniques customized for inference tasks, we only show their performances on SNLI and MNLI. We report the
mean accuracy and F1 scores across five different runs with the standard deviation shown in subscript (e.g., 91.08¢ 1

indicates 91.08 + 0.1).

hidden-level augmentation techniques. Token-level
baselines contain the operations in Easy Data Aug-
mentation (EDA) (Wei and Zou, 2019) where they
randomly insert, swap, and delete tokens in each
sentence. Sentence-level baselines include para-
phrasing sentences such as back-translation (Sen-
nrich et al., 2016) and applying some syntactic
rules to create augmented sentences such as syntac-
tic transformation (Min et al., 2020). Hidden-level
baselines include Manifold Mixup (Verma et al.,
2019), TMix (Chen et al., 2020), and SSMix (Yoon
et al., 2021), where they mix up two different train-
ing samples in hidden space and learn a mapping
from the intermediate representation to an interme-
diate label. Details of the implementation of the
baselines can be found in Appendix B.

5 Results and Analysis

We evaluate our baselines and proposed approach
on six text classification benchmark datasets. We
also show the performance of our approach in low-
resource settings to confirm DOUBLEMIX is ef-
ficient and robust when the training samples are
scarce. This section will discuss the performance
of models in detail and quantitatively analyze how
and why DOUBLEMIX works.

5.1 Main Results

Table 1 shows the performance of DOUBLEMIX
and the relevant baselines on six text classifica-
tion datasets. Our base model is the BERT-base-
uncased model. We observe that DOUBLEMIX
achieves the best average results compared to pre-
vious state-of-the-art baselines across six datasets,
where DOUBLEMIX shows the greatest improve-
ments over BERT on SST-2, increasing the test
accuracy and binary F1 score by 1.13% and 1.02%.

In addition, we find token-level Easy Data Aug-
mentation and sentence-level Back Translation are
not able to improve the BERT baseline on Puns
and SNLI. Especially on Puns, Back Translation’s
test accuracy and F1 score are about 1% lower
than BERT. This might be that labels in humor de-
tection and inference tasks are closely related to
the presence of some important words, and Easy
Data Augmentation and Back Translation may per-
turb these words, making the true label flip, but
the label learned by the model does not change
accordingly, which leads to an inefficient learning
process. Moreover, hidden-level augmentations
such as Manifold Mixup, TMix, and SSMix fail to
improve the base model on SNLI and MNLI. As
subtle changes in the sentences in inference tasks

4626

SNLI MNLI

Method 1K 2.5K 5K 10K 1K 2.5K 5K 10K Avg.

(Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.)
BERT 69.77/69.59 76.10/75.92 79.28/79.25 82.36/82.28 | 55.81/54.61 65.63/65.15 71.24/71.01 74.24/74.14 | 71.80/71.49
+BT 70.23/69.96 76.51/76.54 79.57/79.57 82.68/82.65 | 57.28/55.53 66.97/66.95 72.28/72.01 = 74.49/74.44 | 72.50/72.21
+M-Mix | 71.45/71.34 76.48/76.42 79.91/79.83 82.14/82.13 | 57.01/56.70 67.08/66.96 71.76/71.68 74.68/74.54 | 72.56/72.45
+ TMix 71.04/71.12 76.38/76.10 79.85/79.81 82.09/82.09 | 57.31/56.99 67.10/67.01 71.66/71.59 74.86/74.70 | 72.54/72.43
+ SSMix 71.32/71.21 76.87/76.72 80.02/79.93 82.41/82.20 | 57.25/57.10 67.13/67.05 71.70/71.63 74.77/74.62 | 72.68/72.56
+ Ours 71.82/71.72 77.43/77.42 80.75/80.72 83.18/83.26 | 56.15/5591 67.57/67.33 72.35/72.15 75.07/74.97 | 73.04/72.94
RoBERTa | 78.11/77.95 82.47/82.30 83.17/83.36 85.58/85.50 | 70.23/70.45 75.50/75.53 79.01/79.04 81.00/80.98 | 79.38/79.39
+BT 78.32/78.25 82.47/82.61 84.23/84.08 86.07/86.05 | 70.67/70.52 77.58/77.39 79.17/79.07 81.26/81.08 | 79.97/79.83
+M-Mix | 79.32/78.73 82.71/82.63 84.60/84.63 86.00/85.95 | 71.78/71.04 76.00/75.96 79.43/79.34 81.40/81.28 | 80.16/79.95
+ TMix 79.17/79.11 82.84/82.91 85.09/85.13 86.16/86.13 | 72.05/72.18 76.57/76.44 79.92/79.80 81.30/81.17 | 80.39/80.36
+ SSMix 79.43/79.35 82.91/82.88 85.33/85.36 86.32/86.28 | 71.96/71.88 76.44/76.38 79.86/79.77 81.25/81.22 | 80.44/80.39
+ Ours 80.41/80.31 83.96/83.92 85.42/85.42 86.91/86.88 | 71.20/71.15 77.12/76.96 80.43/80.28 82.46/82.24 | 80.99/80.90

Table 2: Test accuracy (%) and F1 score (%) comparison on the SNLI and MNLI datasets training with varying
amounts of training data (1000, 2500, 5000, and 10000). Best scores are marked in bold in yellow background. BT
and M-Mix represent Back Translation and Manifold Mixup. We only use BT operations in DOUBLEMIX in this

experiment.

will flip the true label, mixing up two different sam-
ples and learning an intermediate representation in
hidden space cannot ensure the learned soft label
is the true label of the intermediate representation.

In contrast, our model shows consistent improve-
ments over BERT on these datasets. The consis-
tent improvements indicate that, by strategically
mixing up samples with similar meanings in the
hidden space, DOUBLEMIX not only helps pre-
trained models to become insensitive to feature per-
turbations in an effective way but also injects less
potential noise during the augmentation process
compared to other baselines.

5.2 Performance in Low-Resource Settings

To investigate the performance of our approach in
low-resource settings, we randomly sample 1000,
2500, 5000, and 10000 examples from the origi-
nal training data of SNLI and MNLI to construct
our training sets for low-data setting evaluations,
while the size of the development and test sets is
unchanged. Apart from the BERT-base-uncased
model (Devlin et al., 2019), we also conduct ex-
periments on the RoOBERTa-base model (Liu et al.,
2019).

Table 2 presents the results in low-data settings.
Compared with the BERT baseline in Table 1, we
can observe that although pre-trained language
models are powerful across text classification tasks,
the test accuracy and F1 scores might decrease a lot
when the training data is very scarce. DOUBLEMIX
consistently improves the base model with no data
augmentation on both SNLI and MNLI and out-
performs all the baselines on the SNLI dataset.
On MNLI, we observe that our method always

achieves the top performance except in the 1K train-
ing samples. As the training set grows larger, our
model gradually outperforms the baselines and the
leading gap keeps expanding—when the number
of training samples reaches 10K, our model can
achieve at least 1% higher accuracy and F1 score
than RoBERTa on both SNLI and MNLI.

5.3 Ablation Studies

5.3.1 Training Strategies in DOUBLEMIX

We also conduct a series of ablative experiments to
examine the contribution of individual components.
The results are displayed in Table 3, where our ex-
periments are conducted on the SNLI dataset with
only 1000 training samples. We find the perfor-
mance drops after changing the training strategies,
suggesting that the current interpolation method
trained with JSD loss in DOUBLEMIX contributes
to the final performance.

Concretely, we first remove the JSD loss in our
training objective to check if this loss contributes
to the performance. We observe that the accuracy
and F1 score drop approximately 0.7% and 0.9%
after removing the JSD loss, which manifests that
JSD loss is capable of stabilizing the training pro-
cess. Secondly, we merge the two steps and see
how the model performs, where we use a Dirich-
let distribution to sample N + 1 mixing weights
for the original example and other N augmented
examples, and mix up them at a time. In this case,
the test accuracy and F1 score drop to 71.11% and
70.96%, respectively. This indicates that the two-
step interpolation where we constrain the synthetic
data to a region closer to the original sample, as
mentioned in Line 11 in Algorithm 1 will inject less

4627

noise. Moreover, we have also tried different mix-
ing samples Step II. We find mixing up with another
randomly selected training sample in Line 12 in Al-
gorithm 1 results in a 0.59% accuracy decrease and
a 0.70% F1 score decrease. If the selected training
sample is restricted to the same category as the orig-
inal data, the performance degradation will be even
larger. This outcome may be caused by the larger
semantic difference between the selected example
and the original data compared to the augmented
examples of the original data.

Method | Ace. FL

DOUBLEMIX 71.82 71.72
- w/o JSD loss 71.15 70.87
- merge Step II and Step I 71.11 70.96
- mix with another training sample in Step II 71.23 71.02
- mix with another same-class sample in Step I | 70.98 70.74

Table 3: Test accuracy (%) and F1 scores (%) on the
SNLI dataset with 1000 training samples after changing
different parts of DOUBLEMIX.

Mixup layer set ‘ Ace. Ay FIL Ay
0 69.77 69.59
{0} 71.13 +1.36 71.02 +1.43
{0,1,2} 7095 +1.18 70.84 +1.25
(3,4} 71.56 +1.79 7148 +1.89
{3,6,9} 71.24 +147 71.16 +1.57
{7,9,12} 7130 +1.53 71.19 +1.60
{9,10,12} 71.82 +2.05 71.72 +2.13
{3,4,6,9,10,12} | 70.90 +1.13 7090 +1.31
{3,4,6,79,12} | 71.29 +1.52 71.16 +1.57

Table 4: Test accuracy (%) and F1 scores (%) on SNLI
with 1000 training data with different interpolation layer
sets.) means no interpolation, and {0} is the input
space. A indicates the gap to the baseline with no aug-
mentation.

5.3.2 Effect of Interpolation Layers

We believe the hidden layers in pre-trained lan-
guage models are powerful in representation learn-
ing, and interpolation in the hidden space can yield
a larger performance improvement than in the input
space. In this section, we will investigate which
interpolation option in terms of the set of layers in
pretrained models can obtain the best performance.
Previous work Jawahar et al. (2019) indicates that
BERT’s intermediate layers {3, 4} perform best in
encoding surface features and layers {6, 7, 9, 12}
contain the most syntactic features and semantic
features. We refer to Jawahar et al. (2019) to for-

mulate several sets of layers and have conducted a
couple of additional experiments on BERT + DOU-
BLEMIX with different sets of interpolation layers
on SNLI with 1000 training samples to see which
subsets give the optimal performance. The results
are shown in Table 4.

Model | Original and Counterfactual Examples | P. | T.

BERT P: Students are 1'n31de of a lecture hall. N E
H: Students are indoors.

P: Students are inside of a lecture hall.
Ours . E | E
H: Students are indoors.

BERT P: Students are inside of a lecture hall. clc
H: Students are on the soccer field.

Ours P: Students are inside of a lecture hall. clc
H: Students are on the soccer field.

P: Man in green jacket with baseball hat on.

BERT H: The man is not wearing a hat. c|c

Ours P: Man in green jacket Wlth baseball hat on. clc
H: The man is not wearing a hat.

BERT P: Man in green jacket with baseball hat on. ElN
H: The man is at a baseball game.

Ours P: Man in green jacket with baseball hat on. NN

H: The man is at a baseball game.

Table 5: Predictions of BERT and our method on orig-
inal examples and their counterfactual examples on
the SNLI dataset. The counterfactual examples are ex-
tracted from Kaushik et al. (2020) and are constructed
by substituting entities or adding details to entities. The
examples in the yellow background are counterexam-
ples. P. and T. represent prediction and true label. E, N
and C are entailment, neutral, and contradiction. P and
H are premise and hypothesis. Labels in red are wrong
predictions while labels in blue are correct predictions.

When all the interpolation steps are excluded,
the test accuracy is 69.77% and the F1 score is
69.59%. When we interpolate in the input space
(the 0-th layer), the accuracy and F1 score increase
by about 1.3% and 1.4%, showing that interpo-
lation contributes to the performance. When we
perform interpolations at layer set {0, 1, 2} with
lower layers, the accuracy and F1 increases are
smaller than interpolating in input space. However,
when we interpolate at some middle layers such as
{3, 4} and {3, 6, 9}, the performance improvement
is more significant. According to Jawahar et al.
(2019), the 9-th layer captures most of the syntactic
and semantic information. We have tried several
layer sets containing the 9-th layer and find {9, 10,
12} containing upper layers performs best. At the
same time, we notice that the number of layers in
the interpolation layer set is not the more the bet-

4628

TSNE visualization of BERT

80

60

40

204 .

-204
—40 4

—60 1

-80 -60 -40 -20 0 20 40 60 80

TSNE visualization of our method

60 -

404

20 A

—-20 4

—404

—60 4

-80 -60 —40 =20 0 20 40 60

Figure 2: T-SNE projection of the features generated by the 12-layer encoder of BERT baseline (left) and BERT
+ DOUBLEMIX (right) on SNLI with 10000 training samples. The visualized features of the augmented text are
extracted from the last layer of the base model during testing.

ter. The performance of {3,4,6,9,10,12} is only
70.90%, which is lower than any other layer set,
and the performance of {3,4,6,7,9,12} is not the
best, indicating that too many interpolation layers
will reduce the efficiency of representation learn-
ing.

5.4 Case Studies

To further understand how DOUBLEMIX works, we
randomly pick up some examples from the SNLI
dataset and check the discrepancy between the pre-
dictions obtained from BERT and our method. Pre-
dictions of BERT and DOUBLEMIX are shown
in Table 5. We find in those examples with “contra-
diction” label, both BERT and DOUBLEMIX can
accurately predict the true label. Additionally, to
investigate how our method behaves in challenging
scenarios, we also test on the counterfactual ver-
sion (Kaushik et al., 2020) of our selected samples.
Both models excel in detecting negative words “not”
and location names. However, when the ground
truth is “entailment” or “neutral”, DOUBLEMIX
is more likely to make correct predictions. When
the premise and hypothesis contain some common
words (e.g., Man in green jacket with baseball hat
on. The man is at a baseball game.), DOUBLEMIX
inclines to make more accurate predictions.

5.5 Manifold Visualization

Finally, we visualize the embedding vectors gener-
ated by the 12-layer encoder of the BERT baseline
with no data augmentation (BERT) and with DoU-

BLEMIX to qualitatively show the effectiveness of
our approach in facilitating the model to learn ro-
bust representations in Fig. 2. Our experiments
are conducted on SNLI with 10000 training sam-
ples. The visualized features are extracted from the
output of the last layer of the model. We employ
t-SNE (Van der Maaten and Hinton, 2008) which is
implemented by the python package scikit-learn' to
visualize the features. In Fig. 2, there are three clus-
ters with three colors indicating different classes.
We observe that the features in DOUBLEMIX are
better separated than those in BERT, indicating that
our method effectively improves robustness by en-
couraging the model to learn nearby features of
each training sample.

6 Conclusion

In this work, we present a simple interpolation-
based data augmentation approach DOUBLEMIX
to improve models’ robustness on a wide range
of text classification datasets. DOUBLEMIX first
leverages simple augmentation operations to gen-
erate perturbed data of each training sample and
then performs a two-step interpolation in the hid-
den space of models to learn robust representations.
Our approach outperforms several popular data aug-
mentation methods on six benchmark datasets and
three low-resource datasets. Finally, ablation stud-
ies, case studies, and visualization of manifold fur-

"https://github.com/scikit-learn/
scikit-learn

4629

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn

ther explain how and why our method works. Our
future work includes making the mixing weights
learnable as well as extending DOUBLEMIX to nat-
ural language generation tasks.

Acknowledgement

This work is supported by the A*STAR under its
RIE 2020 AME programmatic grant RGAST2003
and project T2ZMOE2008 awarded by Singapore’s
MOoE under its Tier-2 grant scheme.

References

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556-7566, Online. Association for
Computational Linguistics.

Philip Bachman, Ouais Alsharif, and Doina Precup.
2014. Learning with pseudo-ensembles. In Ad-
vances in Neural Information Processing Systems,
volume 27, pages 3365-3373.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632—
642.

Olivier Chapelle, Jason Weston, Léon Bottou, and
Vladimir Vapnik. 2001. Vicinal risk minimization.
In Advances in neural information processing sys-

tems, pages 416-422.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
Text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147—
2157.

Yong Cheng, Lu Jiang, Wolfgang Macherey, and Jacob
Eisenstein. 2020. AdvAug: Robust adversarial aug-
mentation for neural machine translation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5961-5970, On-
line. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,

pages 489-500.

Demi Guo, Yoon Kim, and Alexander Rush. 2020.
Sequence-level mixed sample data augmentation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5547-5552, Online. Association for Computa-
tional Linguistics.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
Mixup as locally linear out-of-manifold regulariza-
tion. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3714-3722.

Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk,
Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. 2020. Augmix: A simple data processing
method to improve robustness and uncertainty. In In-
ternational Conference on Learning Representations.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song.
2020. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Con-
ference on Machine Learning, pages 5275-5285.
PMLR.

Yekyung Kim, Seohyeong Jeong, and Kyunghyun Cho.
2021. Linda: Unsupervised learning to interpo-
late in natural language processing. arXiv preprint
arXiv:2112.13969.

Soonki Kwon and Younghoon Lee. 2022.
Explainability-based mix-up approach for text
data augmentation. ACM Transactions on Knowl-
edge Discovery from Data (TKDD).

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142—-150.

4630

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://proceedings.neurips.cc/paper/2014/file/66be31e4c40d676991f2405aaecc6934-Paper.pdf
https://www.aclweb.org/anthology/D15-1075.pdf
https://www.aclweb.org/anthology/D15-1075.pdf
https://papers.nips.cc/paper/1876-vicinal-risk-minimization.pdf
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/2020.acl-main.529
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://aclanthology.org/D18-1045.pdf
https://aclanthology.org/D18-1045.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.447
https://arxiv.org/pdf/1809.02499.pdf
https://arxiv.org/pdf/1809.02499.pdf
https://arxiv.org/pdf/1912.02781.pdf
https://arxiv.org/pdf/1912.02781.pdf
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://proceedings.mlr.press/v119/kim20b/kim20b.pdf
https://proceedings.mlr.press/v119/kim20b/kim20b.pdf
https://arxiv.org/pdf/2112.13969.pdf
https://arxiv.org/pdf/2112.13969.pdf
https://dl.acm.org/doi/pdf/10.1145/3533048
https://dl.acm.org/doi/pdf/10.1145/3533048
https://www.aclweb.org/anthology/C02-1150.pdf
https://www.aclweb.org/anthology/C02-1150.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://www.aclweb.org/anthology/P11-1015.pdf

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428-3448, Florence,
Italy. Association for Computational Linguistics.

Junghyun Min, R. Thomas McCoy, Dipanjan Das,
Emily Pitler, and Tal Linzen. 2020. Syntactic
data augmentation increases robustness to inference
heuristics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2339-2352, Online. Association for Computa-
tional Linguistics.

Pasquale Minervini and Sebastian Riedel. 2018. Ad-
versarially regularising neural nli models to integrate
logical background knowledge. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 65-74.

Seo Yeon Park and Cornelia Caragea. 2022. A data
cartography based MixUp for pre-trained language
models. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4244-4250.

Alexandre Ramé, Rémy Sun, and Matthieu Cord. 2021.
Mixmo: Mixing multiple inputs for multiple out-
puts via deep subnetworks. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 823-833.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86—96.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In In Workshop at International Conference
on Learning Representations. Citeseer.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting
Liang, S Yu Philip, and Lifang He. 2020. Mixup-
transformer: Dynamic data augmentation for nlp
tasks. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3436—
3440.

AFM Shahab Uddin, Mst Sirazam Monira, Wheemyung
Shin, TaeChoong Chung, and Sung-Ho Bae. 2020.
Saliencymix: A saliency guided data augmentation
strategy for better regularization. In International
Conference on Learning Representations.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, loannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In In-
ternational Conference on Machine Learning, pages
6438-6447. PMLR.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6383-6389.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256—-6268.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2367-2376.

Wenpeng Yin, Huan Wang, Jin Qu, and Caiming Xiong.
2021. Batchmixup: Improving training by interpolat-
ing hidden states of the entire mini-batch. In Find-
ings of the Association for Computational Linguistics:
ACL-1JCNLP 2021, pages 4908-4912.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. 2021.
Ssmix: Saliency-based span mixup for text classi-
fication. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3225-3234.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Stephan Zheng, Yang Song, Thomas Leung, and Ian
Goodfellow. 2016. Improving the robustness of deep
neural networks via stability training. In Proceedings
of the ieee conference on computer vision and pattern
recognition, pages 4480-4488.

A Dataset Statistics

Table 6 describes the statistics of the datasets we
used. Note that for SST-2, we did not use the one

4631

https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://www.aclweb.org/anthology/K18-1007.pdf
https://www.aclweb.org/anthology/K18-1007.pdf
https://www.aclweb.org/anthology/K18-1007.pdf
https://doi.org/10.18653/v1/2022.naacl-main.314
https://doi.org/10.18653/v1/2022.naacl-main.314
https://doi.org/10.18653/v1/2022.naacl-main.314
https://openaccess.thecvf.com/content/ICCV2021/papers/Rame_MixMo_Mixing_Multiple_Inputs_for_Multiple_Outputs_via_Deep_Subnetworks_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Rame_MixMo_Mixing_Multiple_Inputs_for_Multiple_Outputs_via_Deep_Subnetworks_ICCV_2021_paper.pdf
https://www.aclweb.org/anthology/P16-1009.pdf
https://www.aclweb.org/anthology/P16-1009.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://www.aclweb.org/anthology/D13-1170.pdf
https://www.aclweb.org/anthology/D13-1170.pdf
https://aclanthology.org/2020.coling-main.305.pdf
https://aclanthology.org/2020.coling-main.305.pdf
https://aclanthology.org/2020.coling-main.305.pdf
https://openreview.net/pdf?id=-M0QkvBGTTq
https://openreview.net/pdf?id=-M0QkvBGTTq
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA
https://proceedings.mlr.press/v97/verma19a/verma19a.pdf
https://proceedings.mlr.press/v97/verma19a/verma19a.pdf
https://www.aclweb.org/anthology/D19-1670.pdf
https://www.aclweb.org/anthology/D19-1670.pdf
https://www.aclweb.org/anthology/D19-1670.pdf
https://www.aclweb.org/anthology/N18-1101.pdf
https://www.aclweb.org/anthology/N18-1101.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://aclanthology.org/D15-1284.pdf
https://aclanthology.org/D15-1284.pdf
https://aclanthology.org/2021.findings-acl.434.pdf
https://aclanthology.org/2021.findings-acl.434.pdf
https://aclanthology.org/2021.findings-acl.285.pdf
https://aclanthology.org/2021.findings-acl.285.pdf
https://openreview.net/pdf?id=r1Ddp1-Rb
https://openreview.net/pdf?id=r1Ddp1-Rb
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zheng_Improving_the_Robustness_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zheng_Improving_the_Robustness_CVPR_2016_paper.pdf

on the GLUE benchmark, as the test labels are
not publicly available. We used the original SST-
2 dataset and it can be loaded from huggingface
datasets.

Dataset | Task Type # Label Size
SST-2 Sentiment 2 6.9k /872 /1.8k
TREC Classification 6 4.9k / 546 / 500
Puns Humor 2 3.6k / 603 / 604
IMDB Sentiment 2 22.5k / 2.5k / 25k
SNLI Inference 3 550k / 9.8k / 9.8k
MNLI Inference 3 392k / 9.8k / 9.8k

Table 6: Summary statistics of the seven natural lan-
guage understanding datasets. We report the size of
datasets as (train / validation / test) format.

B Baseline Details

This section introduces the details of our baselines:

¢ Easy Data Augmentation (Wei and Zou,
2019) contains several simple data augmen-
tation techniques in text such as synonym re-
placement, random insertion, random swap,
and random deletion. The experimental setup
for these methods is the same as that of back-
translation. We use the official code® with
the default insertion/deletion/swap ratio the
author provided.

¢ Back-translation (Sennrich et al., 2016)
translates an input text in some source lan-
guage (e.g. English) to another intermediate
language (e.g. German), and then translates it
back into the original one. In our experiments,
our intermediate languages are German and
Russian. And we create two types of aug-
mented text for every training sample. These
augmented examples are directly added to the
training set. We use the code of fairseq* to
implement this baseline.

* Syntactic Transformation (Min et al., 2020)
applies rule-based syntactic transformations
such as inversion and passivization to sen-
tences to generate augmentations in inference
tasks. We directly add the augmented data to

https://huggingface.co/datasets/
gpt3mix/sst?2

*https://github.com/jasonwei20/eda_nlp

*https://github.com/pytorch/fairseq/
blob/main/examples/wmt19/README.md

the training set. The implementation is based
on the official code’ the author provided.

* Manifold Mixup (Verma et al.,, 2019)
performs in hidden space. Similar to
Mixup (Zhang et al., 2018), Manifold Mixup
samples two training examples and mixes up
the hidden representations using a coefficient
Ao randomly sampled from Beta(a, 3). For
the training objective, Manifold Mixup first
uses the Cross-Entropy loss to measure the
divergence between the predicted distribution
and the one-hot vector of gold label, and then
mix up the Cross-Entropy losses. Our im-
plementation is based on the official code of
Mixup®.

e TMix (Chen et al., 2020) is similar to Mani-
fold Mixup which performs interpolation in
hidden space. We first mix up the gold la-
bels to a sythetic label and secondly minimize
the KL divergence between the synthetic la-
bel and the predicted distribution. We use the
code implemented in the MixText’ repository.

* SSMix (Yoon et al., 2021) is similar to
PuzzleMix (Kim et al., 2020) and Salien-
cyMix (Uddin et al., 2020). It applies Mixup
based on the saliency (Simonyan et al., 2014)
of tokens. Our implementation is based on the
official code of SSMix®.

C Implementation Details

For all the experiments, we set the learning rate
of the encoder model as 1e-5, set the learning rate
of the two-layer MLP classifier as 1e-3, and tried
different batch sizes within 8, 16, and 32 to choose
the best performance. For the hyper-parameters in
Dirichlet distribution and Beta distribution, we set
7 as 1.0 and set « as 0.75. The coefficient v of JSD
loss was set to be 8, and the max number of training
epochs was set to be 20. All these hyper-parameters
are shared among the models. All the experiments
are performed multiple times across different seeds
on a single NVIDIA RTX 8000 GPU.

Shttps://github.com/aatlantise/
syntactic-augmentation-nli
®https://github.com/hongyi-zhang/mixup
"https://github.com/GT-SALT/MixText
$https://github.com/clovaai/ssmix

4632

https://huggingface.co/datasets/gpt3mix/sst2
https://huggingface.co/datasets/gpt3mix/sst2
https://github.com/jasonwei20/eda_nlp
https://github.com/pytorch/fairseq/blob/main/examples/wmt19/README.md
https://github.com/pytorch/fairseq/blob/main/examples/wmt19/README.md
https://github.com/aatlantise/syntactic-augmentation-nli
https://github.com/aatlantise/syntactic-augmentation-nli
https://github.com/hongyi-zhang/mixup
https://github.com/GT- SALT/MixText
https://github.com/clovaai/ssmix

