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Abstract

The cross-entropy loss function is widely used
and generally considered the default loss func-
tion for text classification. When it comes
to ordinal text classification where there is an
ordinal relationship between labels, the cross-
entropy is not optimal as it does not incorpo-
rate the ordinal character into its feedback. In
this paper, we propose a new simple loss func-
tion called ordinal log-loss (OLL). We show
that this loss function outperforms state-of-the-
art previously introduced losses on four bench-
mark text classification datasets.

1 Introduction

For many classification tasks, there is an order on
the labels of the target variable. In particular, in
natural language processing (NLP) when, for ex-
ample, we are trying to predict the number of stars
associated with a review: it is obvious that when
the label is 1 star, predicting 2 stars is better than
predicting 5 stars. This type of classification is
called ordinal classification (or ordinal regression)
and many techniques have been developed in recent
years around it. Among the most used techniques,
the ordinal binary classification consists in de-
composing the ordered target variable in several
binary ones (Frank and Hall, 2001; Allwein et al.,
2000). The threshold methods treat the target vari-
able (with N classes) as a continuous real-valued
variable and N − 1 thresholds are introduced (Her-
brich et al., 2000; Verwaeren et al., 2012; Cao et al.,
2020). In the loss-sensitive classification the loss
function is built such that a higher penalty is as-
signed if the distance between the prediction and
the label is higher. Several losses can be used here:
mapping the labels {C1;C2; ...;CN} into values
{1; 2; ...;N} and use the mean squared error. The
margin loss or the hinge loss can also be extended
for ordinal regression (Rennie and Srebro, 2005).
The weighted kappa loss (de la Torre et al., 2018),
the earth mover’s distance (Hou et al., 2016), the

soft labels (Diaz and Marathe, 2019; Bertinetto
et al., 2020) or the CORAL method (Cao et al.,
2020) are other examples of recent modified losses
introduced in ordinal classification problems.

In order to measure the performance of the ordi-
nal regression there are well known metrics such
as the off-by-k-accuracy, the mean absolute error,
the mean squared error or Kendall Tau for instance
(Cardoso and Sousa, 2011; Gaudette and Japkow-
icz, 2009).

1.1 Specific contribution
The main contribution of this paper is to introduce
a new loss named ordinal log-loss (OLL). This loss
is easy to use, adapted to ordinal classification and
gives more accurate results than classical existing
methods in text classification. The idea behind
the OLL is to penalize bad predictions instead of
rewarding good predictions like the majority of the
losses mentioned before do.

In section 2 we introduce the ordinal log-loss. In
section 3 we present the experiments, the metrics
used and finally the results.

2 Ordinal Log-Loss

2.1 Definition
As explained in the introduction, in ordinal classifi-
cation tasks, predictions too distant from the labels
can be particularly problematic. While most of the
losses introduced in the literature for ordinal clas-
sification (Gutiérrez et al., 2015; Bertinetto et al.,
2020; Rennie and Srebro, 2005) tend to encour-
age predictions close to the labels, we introduce a
loss which penalises the critical errors (i.e. the pre-
dictions that are the most distant from the correct
class).
First, for each ordinal classification task, we de-
fine a distance matrix that embodies the distances
between each label:

D = (d(Ci, Cj))(i,j)∈[[1,N ]]2 (1)
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where N is the number of classes, C =
(C1, ..., CN ) are the different classes and d(Ci, Cj)
the distance between label Ci and Cj . We denote
for the sake of simplicity d(i, j) for d(Ci, Cj) and
y for Cy (the label).
Let P = (p1, ..., pN ) be the output probability dis-
tribution of a network for a given prediction. By
definition, the cross-entropy loss encourages the
models to output a high probability for the correct
class.

Equivalently, but from the opposite perspective,
we wish that the further a prediction is from the
true label, the higher the loss should be. With a
simple modification of the cross-entropy loss, we
can find such a loss, that we introduce as the ordinal
log-loss (OLL):

LOLL−α(P, y) = −
N∑
i=1

log(1− pi)d(y, i)α (2)

where α is a strictly positive hyper-parameter.
The novelty of this loss lies in the coefficients
− log(1−pi). In fact, other articles already consid-
ered the following loss:

∑N
i=1 pid(y, i) (obtained

by replacing − log(1 − pi) by pi and where α is
taken equal to 1) (Hou et al., 2016; Kotsiantis and
Pintelas, 2004). Nevertheless, for this latter loss,
as explained in (Hou et al., 2016), the optimiza-
tion does not converge to a desired local mini-
mum. Although we have not reported these re-
sults in this article, this is indeed what we observed
experimentally and what gave us the idea of the
OLL. We wanted to penalize classification errors
more strongly and since we have the inequality
− log(1− pi) ≥ pi for all pi ∈ [0, 1[, the weights
in front of d(y, i) are more important in the OLL
loss which implies a greater penalty.

2.2 Impact of the α parameter

In the expression 2, α is an hyper-parameter that
could be interpreted as a penalizing factor: the
greater α is, the higher the loss function is when
the distance between the output predictions and the
labels is high.

3 Experiments and Results

In this section we first introduce the public datasets
(section 3.1) and the metrics (section 3.2) used to
compare our loss function to existing ones. Then
in section 3.3 we present the different results ob-
tained.

3.1 Datasets

To conduct our experiments, we used the SNLI
dataset (Bowman et al., 2015) used for tasks such
as Recognizing Textual Entailment (RTE). We also
use the Amazon Reviews Corpus (Keung et al.,
2020), the Yelp Reviews Dataset (Yelp, 2015) and
the Stanford Sentiment Treebank for fine grained
classification (SST-5) dataset (Socher et al., 2013).

SNLI: Developped by (Bowman et al., 2015),
this corpus is a collection of 570k human-written
English (including 10k for testing and 10k for
validation) pairs of sentences dedicated to the
Natural Language Inference (NLI) task. It
is composed of three balanced labels: C =
(entailment, neutral, contradiction). To accelerate
the training, we used a random subsample of 250k
rows from the training set. The ordinal relationship
between the classes is taken into account by using
the matrix defined in equation [7] as the distance
matrix.

Amazon Reviews: This dataset, published by
(Keung et al., 2020), was obtained by gathering cus-
tomer reviews of product from several categories
published on the Amazon marketplace in six differ-
ent languages. We only kept the reviews written in
English and the corresponding star rating (an inte-
ger between 1 and 5). It represents a total dataset
of 210k samples, including 5k for testing and 5k
for validation.

Yelp Reviews: Extracted from the Yelp Dataset
Challenge 2015 data (Yelp, 2015), it was first used
as a text classification benchmark in (Zhang et al.,
2015). It is a balanced dataset composed of 700k
samples of reviews (50k for testing) extracted from
Yelp, a website hosting crowd-sourced reviews
about businesses. Each sample is a (text, 5-star
rating) pair. To reduce the time taken for training, a
random subsample of the training set of size 200k
was used as the training set, and one of size 20k
was used for the validation set.

SST-5: Introduced by (Socher et al., 2013), the
Stanford Sentiment Treebank (SST) is a corpus
with parse trees enabling sentiment analysis. It is
composed of 12k sentences extracted from movie
reviews and annotated by 3 humans. In the SST
fine-grained version (or SST-5), each phrase is la-
belled as a 5 star rating corresponding to: nega-
tive, somewhat negative, neutral, somewhat posi-
tive, positive.
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3.2 Metrics
In this article we use the classical metrics for
ordinal classification (Cardoso and Sousa, 2011;
Gaudette and Japkowicz, 2009).

Off-by-k Accuracy: In the case of ordinal clas-
sification, the Off-by-k Accuracy, or OBk, is the
percentage of total predictions where the index
of the predicted label ŷ ∈ (C1, ..., CN ) and the
one from the true label differ from less than k. In
our experiments, we assumed that ∀i ∈ [[2, N ]] :
d(Ci−1, Ci) = 1 so the OBk can be formulated as:

OBk = 100×
∑S

s=1 1{d(ys, ŷs) ≤ k}
S

(3)

with S being the number of examples.
Mean Absolute Error for Classification: To

measure the mean distance between the predicted
labels and the true ones, we use the MAE:

MAE =

∑S
s=1 d(ys, ŷs)

S
(4)

where d is the distance defined Section 2.1.
Mean Squared Error for Classification: To

complete the MAE, we measure the mean squared
error:

MSE =

∑S
s=1 d(ys, ŷs)

2

S
(5)

Kendall Tau: The Kendall τ (Kendall, 1938) is
a measure of rank correlation between two mea-
sured quantities. It is defined as :

τ =
#{concordant pairs} −#{discordant pairs}(

S
2

) (6)

where ∀(i, j) ∈ [[1, S]]2, i < j, if the sort order
of (yi, yj) and (ŷi, ŷj) agrees, then (yi, ŷi) and
(yj , ŷj) are concordant pairs, and discordant pairs
otherwise.

Remark: metrics such as the Accuracy or the F1

score are often used to evaluate models in classifi-
cation tasks. But in the particular case of ordinal
classification, these metrics are not considered rel-
evant as they do not truly outline the performance
of a model. Indeed, if 2 models A and B predict
the same amount of samples correctly, but model
A predicts all the other samples incorrectly with
predictions that are really distant to the true labels,
while the wrong predictions of model B are labels
that are close to the true ones, then models A and
B have the same accuracy, but model B should be
considered better than model A. Like the accuracy,

the multi-class F1 score does not take into account
the distance between classes and is therefore not
appropriate for ordinal classification.

3.3 Experimental Results
3.3.1 Model Used
To conduct our experiments, we have trained the
BERT-tiny model (Turc et al., 2019) on the four
datasets listed in section 3.1. The choice of us-
ing a smaller version of BERT (Devlin et al.,
2018) was made for several reasons. First, hav-
ing less parameters, this model is a lot faster to
train. Secondly, it produces scores lower than
bigger models such as BERT-base, allowing to
better highlight the impact of different loss func-
tions on scores. Finally, being a smaller version
of the BERT model, the results provided here are
assumed to be generalised to bigger BERT mod-
els and other similar Transformers models. The
code is available at https://github.com/
glanceable-io/ordinal-log-loss.

3.4 Distance Matrices
As explained in section 2, each ordinal classifi-
cation task comes with distance matrix D that
reflects the proximity between the different la-
bels. For the SNLI dataset, the ordered labels
are C = (entailment, neutral, contradiction) while
for the other 3 datasets, the ordered labels are
C = (1, 2, 3, 4, 5). As mentioned in section 3.2,
for any two neighbors labels, we choose a distance
of 1 between them. As a result, the distance matrix
for the SNLI task is:

D =

0 1 2
1 0 1
2 1 0

 (7)

while the one for the 1 to 5 stars rating tasks is :

D =


0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

 (8)

3.5 Procedure
For each dataset, we trained the BERT-tiny model
with 6 different types of losses: the cross-entropy,
the ordinal log-loss (our loss), the weighted kappa
loss (de la Torre et al., 2018), the soft labels
loss (Bertinetto et al., 2020), the Earth Mover’s
Distance-based loss (Rubner et al., 2000; Hou et al.,

https://github.com/glanceable-io/ordinal-log-loss
https://github.com/glanceable-io/ordinal-log-loss
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Datasets Batch Size Num Epochs Stopping Rate Weight Decay

Yelp Reviews 1024 100 5 0.01
Amazon Reviews 1024 100 5 0.01

SST-5 1024 2340 117 0.01
SNLI 1024 80 4 0.01

Table 1: Training parameters for each dataset

2016) and the CORAL framework (Cao et al.,
2020). We wanted to compare our loss with these
five other losses for the following reasons: the cross
entropy loss is a very common loss in text classi-
fication and the other four introduced losses out-
performed a significant number of other losses in
many ordinal tasks.

For the ordinal log-loss, we chose α in
{1, 1.5, 2}, for the soft labels loss, we chose β
in {2, 3, 4} because it gave us the best results (al-
though in the original paper, the values used for β
are higher). For each loss, we trained the model
with 5 different learning rates : {1, 2.5, 5, 7.5} ×
10−5, and 10−4. For the CORAL loss, we also
tested higher learning rates (around 10−3) as it
showed considerable gains. And for each learn-
ing rate, the pre-trained model was trained 5 times.
Finally, for each dataset, for each loss, we chose
the learning rate that gave the best scores in av-
erages for the 5 independent trainings. We could
have played with other hyper-parameters such as
batch size or weight decay, but that would have
enormously increased the number of experiments
to be done. Each training requires a lot of resources
and computing time. For example, to produce the
results of this paper, approximately 800 hours of
training on two NVIDIA GeForce RTX 3080 were
required. We have therefore made the choice to
keep only the learning rate, and to set the others at
default values. The only non-default value hyper-
parameter is the batch-size that we set at the maxi-
mum value to speed-up training.

3.6 Results

The results of the experiments are shown in table 2
and 3. The best model is colored in dark green and
the second best in light green. In table 3, according
to the procedure described in section 3.5, for each
line in the table we took the average scores for the
5 independent trainings for the given learning rate.
We did not display the OB2 score for SNLI because
there are only three classes.

We can observe that the OLL gave better results
for all the metrics used, although the SOFT loss is
performing well too on the MAE metric. Results of

the OLL loss vary with the α parameter : while α ∈
{1, 1.5} gives better results on the SNLI and SST-5
datasets, for α = 2, the OLL loss is providing good
results on the other 2 datasets. Overall, α = 1.5
seems to be a good tradeoff.

To have a clearer idea of which losses perform
better, we completed the table 2, where each line
displays the average rank of the corresponding loss
on the 4 datasets, for each metric. Although the
SOFT loss with β = 4 gives interesting results
for the MAE and the Kendall Tau, the OLL loss
seems to perform better overall. The impact of the
α parameter in the OLL loss vary, depending on
the dataset and the number of classes, but the table
2 confirmed that α = 1.5 is a good trade-off.

Loss OB1 OB2 MAE MSE Kendall
Tau

CE 6.25 7.67 5 7 7.25
OLL-1 3.5 2.67 3.35 2.25 2.75

OLL-1.5 1.5 1.33 3 1.5 2
OLL-2 1.5 1.67 6.75 2.25 5
WKL 7 3.67 9.25 7.75 7.25

SOFT-2 8 8 6.75 7.75 5.5
SOFT-3 6.5 7.67 3.75 7 5.25
SOFT-4 5.75 6.67 2.25 6 4.5
EMD 4.5 5.33 3.25 4.5 3.75

CORAL 8 6.67 9.5 8.5 8.75

Table 2: Losses mean rank on each metrics

4 Conclusion

We introduced a simple and novel loss function spe-
cially designed for the ordinal classification task.
This loss is intuitive and easy to use. We evaluated
our method on four benchmark ordinal text classi-
fication datasets and against five different metrics.
Our loss outperforms state-of-the-art comparable
and previously introduced losses. We also experi-
mentally find good hyper-parameters to use. Thus,
the contribution of this article is to introduce a new
loss (OLL) that is easier to use than the majority
of recently introduced losses and which gives bet-
ter results for ordinal classification applied to NLP
tasks. We believe that those results could be ex-
tended to other machine learning tasks in computer
vision, speech or structured data for instance.
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Dataset Loss
Learn

OB1 OB2 MAE MSE
Kendall

Rate Tau

Y
el

p
re

vi
ew

s

CE 7.5e-5 92.9 ± 0.1 97.7 ± 0.0 0.529 ± 0.001 0.809 ± 0.001 0.713 ± 0.000
OLL-1 5e-5 92.7 ± 0.0 98.0 ± 0.0 0.536 ± 0.000 0.796 ±0.000 0.712 ± 0.000

OLL-1.5 1e-4 93.1 ± 0.0 98.4 ± 0.1 0.530 ± 0.003 0.750 ± 0.004 0.718 ± 0.001
OLL-2 1e-4 93.3 ±0.1 98.6 ± 0.0 0.534 ± 0.003 0.742 ± 0.003 0.716 ± 0.001
WKL 1e-4 92.1 ± 0.1 98.2 ± 0.1 0.554 ± 0.003 0.814 ±0.011 0.712±0.001

SOFT-2 7.5e-5 92.6 ± 0.2 97.7 ± 0.1 0.535 ± 0.005 0.826 ± 0.016 0.712±0.001
SOFT-3 7.5e-5 92.8 ±0.2 97.7 ±0.1 0.532 ±0.003 0.817 ±0.011 0.712±0.001
SOFT-4 1e-4 92.9 ±0.0 97.9 ±0.0 0.529 ±0.000 0.804 ±0.000 0.714±0.000
EMD 7.5e-5 92.9 ± 0.1 97.9 ± 0.0 0.532 ± 0.002 0.804 ± 0.004 0.713±0.001

CORAL 5e-3 90.6 ± 0.0 98.0 ± 0.0 0.600 ± 0.000 0.898 ± 0.000 0.682±0.000

A
m

az
on

re
vi

ew
s

CE 5e-5 90.9 ± 0.3 97.8 ±0.1 0.578 ±0.004 0.897 ±0.008 0.692±0.002
OLL-1 5e-5 92.3 ±0.1 98.5 ±0.1 0.570 ±0.001 0.802 ±0.005 0.699±0.001

OLL-1.5 2.5e-5 92.5 ±0.2 98.6 ±0.0 0.567 ±0.004 0.787 ±0.009 0.701±0.003
OLL-2 5e-5 92.5 ±0.0 98.6 ±0.0 0.577 ±0.001 0.791±0.002 0.697±0.000
WKL 5e-5 91.2 ±0.3 98.5 ±0.1 0.591 ±0.008 0.847 ±0.015 0.698±0.003

SOFT-2 5e-5 90.7 ±0.1 97.9 ±0.1 0.579 ±0.005 0.897 ±0.012 0.695±0.003
SOFT-3 5e-5 90.8 ±0.2 97.8 ±0.1 0.577 ±0.004 0.899 ±0.012 0.693±0.002
SOFT-4 5e-5 90.7 ±0.0 97.7 ±0.0 0.577 ±0.000 0.909 ±0.000 0.694±0.000
EMD 5e-5 91.8 ± 0.0 98.2 ± 0.0 0.569 ± 0.002 0.843 ± 0.003 0.699±0.001

CORAL 5e-3 89.1 ± 0.6 98.0 ± 0.1 0.634 ± 0.004 0.964 ± 0.017 0.665±0.000

SS
T-

5

CE 5e-5 85.2 ±0.2 97.0 ±0.2 0.754 ±0.008 1.171 ±0.012 0.533±0.005
OLL-1 7.5e-5 86.7 ±0.2 98.0 ±0.1 0.738 ±0.002 1.084 ±0.008 0.548±0.003

OLL-1.5 7.5e-5 86.9 ±0.2 98.0 ±0.1 0.739 ±0.000 1.081 ±0.005 0.544±0.002
OLL-2 1e-5 86.3 ±0.4 97.7 ±0.2 0.757 ±0.007 1.121 ±0.016 0.531±0.004
WKL 1e-5 83.8 ±0.7 97.2 ±0.1 0.806 ±0.019 1.259 ±0.038 0.520±0.009

SOFT-2 2.5e-5 84.8 ±0.6 96.9 ±0.4 0.754 ±0.004 1.186 ±0.031 0.548±0.003
SOFT-3 1e-5 85.2 ±0.3 97.0 ±0.2 0.748 ±0.001 1.166 ±0.011 0.544±0.005
SOFT-4 7.5e-5 86.1 ±0.0 97.3 ±0.0 0.738 ±0.000 1.124 ±0.000 0.549±0.000
EMD 7.5e-5 85.8 ± 0.3 97.2 ± 0.2 0.745 ± 0.008 1.143 ± 0.022 0.543±0.010

CORAL 1e-3 74.8 ± 2.6 91.8 ± 2.1 1.050 ± 0.076 1.999 ± 0.245 0.446±0.020

SN
L

I

CE 7.5e-5 97.2 ±0.0 0.208 ±0.000 0.264 ±0.001 0.773±0.001
OLL-1 1e-4 98.3 ±0.0 0.202 ±0.002 0.237 ±0.002 0.786±0.002

OLL-1.5 7.5e-5 98.3 ±0.0 0.207 ±0.000 0.241 ±0.000 0.781±0.000
OLL-2 7.5e-5 98.5 ±0.0 0.214 ±0.003 0.244 ±0.004 0.777±0.003
WKL 1e-4 97.7 ±0.1 0.238 ±0.005 0.283 ±0.006 0.750±0.005

SOFT-2 2.5e-5 97.3 ±0.1 0.208 ± 0.004 0.261 ±0.006 0.775 ±0.004
SOFT-3 1e-4 97.4 ±0.0 0.204 ±0.000 0.257 ±0.001 0.779±0.000
SOFT-4 7.5e-5 97.3 ±0.0 0.205 ±0.000 0.259 ±0.000 0.776±0.000
EMD 1e-4 97.6 ±0.1 0.205 ± 0.004 0.254 ±0.006 0.779 ±0.004

CORAL 2.5e-5 98.3 ±0.1 0.213 ± 0.005 0.247 ±0.007 0.778 ±0.006

Table 3: Losses comparisons on 4 datasets: Yelp reviews, Amazon reviews, SST-5 and SNLI
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