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Abstract
Current practices in building new NLP mod-
els for low-resourced languages rely either on
Machine Translation of training sets from bet-
ter resourced languages or on cross-lingual
transfer from them. Still we can see a con-
siderable performance gap between the mod-
els originally trained within better resourced
languages and the models transferred from
them. In this study we test the possibility
of (1) using natural annotation to build syn-
thetic training sets from resources not initially
designed for the target downstream task and
(2) employing curriculum learning methods to
select the most suitable examples from syn-
thetic training sets. We test this hypothesis
across seven Slavic languages and across three
curriculum learning strategies on Named En-
tity Recognition as the downstream task. We
also test the possibility of fine-tuning the syn-
thetic resources to reflect linguistic proper-
ties, such as the grammatical case and gender,
both of which are important for the Slavic
languages. We demonstrate the possibility
to achieve the mean F1 score of 0.78 across
the three basic entities types for Belarus-
ian starting from zero resources in compar-
ison to the baseline of 0.63 using the zero-
shot transfer from English. For comparison,
the English model trained on the original set
achieves the mean F1-score of 0.75. The
experimental results are available from ht-
tps://github.com/ValeraLobov/SlavNER

1 Introduction

The use of pre-trained language models (PLMs),
such as BERT (Devlin et al., 2018), has signi-
ficantly improved accuracy of many NLP tasks,
such as POS tagging and Named Entity Recog-
nition (Tenney et al., 2019). It is also possible
to achieve good quality transfer of the classifi-
ers across the languages using multilingual PLMs
(Conneau et al., 2020; Hu et al., 2020). How-
ever, lesser resourced languages still present a con-
siderable problem. First, the amount of raw text

data available for their pretraining is on the order
of magnitudes smaller than what is available for
bigger languages, such as English. Second, zero-
or few-shot multilingual transfer comes with the
price of a performance gap, when a model tested
on lesser resourced recipient languages is less ac-
curate than the original donor language model.
This comes partly because of the linguistic differ-
ences between the donor and recipient languages
and partly because of the lower quality of pre-
trained embeddings obtained on smaller corpora
for lesser resourced recipient languages (Vulić
et al., 2020).

We propose a method to improve the accuracy
of models for lesser resourced languages by what
we call “natural" annotation, i.e., when some de-
sired linguistic properties are derived from annota-
tions arising as a by-product of a natural activ-
ity which is not directly related to the task of the
model. Parallel corpora provide an example of
natural annotation arising from human translations
which are not produced by the their translators
for the purpose of Machine Translation or Word
Sense Disambiguation. Similarly, in our study we
use natural annotation from Wikipedia categories,
which provide a sufficient number of Named En-
tity (NE) examples even for lesser resourced lan-
guages. This allows production of synthetic cor-
pora for such languages as Belarusian, which has
no native NER resources. As an example, the Be-
larusian Wikipedia contains more than 130 thou-
sand entries with more than four thousand entries
about people (as of April 2022), sufficient for cre-
ating synthetic training sets.

Instead of the initial problem with the availab-
ility of training data, the use of synthetic corpora
leads to the problem with having potentially mil-
lions of noisy annotated sentences per language.
Therefore, we need to estimate their usefulness for
training a model in the recipient languages. In this
study we experiment with applying Curriculum
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Learning methods (Bengio et al., 2009; Zhu et al.,
2021) to synthetic corpora with natural annotation.

The contributions of this study are as follows:

• how to build a corpus with natural annotation
from the available resources in Wikipedias;

• how to improve it by adjusting its linguistic
properties;

• how to choose the curriculum learning
strategy for corpora of this kind.

2 Methodology

2.1 Synthetic dataset
In this study we concentrate on building synthetic
corpora for seven Slavic languages with three NE
categories – PERsons, LOCations and ORGaniza-
tions. The main idea behind our experiment is:

1. to select annotated sentences in a better re-
sourced donor language (we use the English
WikiNER (Pan et al., 2017) for all experi-
ments),

2. to produce synthetic corpora by Machine
Translation of relevant annotated sentences
in the recipient languages (we use Google
Translate), and

3. to replace their annotations with the relev-
ant Wikipedia entries from the recipient lan-
guages.

At the same time, Machine Translation is espe-
cially unreliable for NEs. For example, Google
Translate renders Chain was declared the winner
as a result into Slovene as Veriga je bil zaradi
tega razglašen za zmagovalca with a literal trans-
lation of Chain as ‘a series of connected links or
things’.

Therefore, in Step 1 we select annotated
WikiNER sentences with a single known NE (PER
in this sentence), replace it with a pronoun place-
holder into He succeeded in purifying penicillin
and replace the placeholder to a range of known
NEs from Wikipedia, for example, for this con-
text Einstein/Romanova/Arhit je bil zaradi tega
razglašen za zmagovalca, see Table 2. This way,
each sentence in our synthetic datasets contains at
least one NE (and no more than two of them for
PER). This makes it quite different from natural
datasets: the entity distribution is much more uni-
form in synthetic data.

The known NEs are determined as those with
matching categories in the respective Wikipedias,

see Table 1. For example, the English PER NEs
are from categories like 1791 BIRTHS → James
Buchanan →Джэймс Б’юкенен (in Belarusian).

We produced three versions of the synthetic
datasets:

S1 Replacements of the parallel set of named en-
tities;

S2 Replacements of the parallel set of named en-
tities, while taking into account the grammat-
ical case, number and gender;

S3 Replacements of a maximum available num-
ber of entities from the respective categories

For S1 and S2 we ensured that the NEs are avail-
able in all languages, so that the synthetic datasets
can be completely parallel. We also used rules
to normalize the names of the entries, e.g., Ло-
моносов, Михаил Васильевич (‘Lomonosov,
Mikhail Vasilyevich’ in Russian) was normalized
to Михаил Ломоносов ‘Mikhail Lomonosov’,
which is the form used in texts.

S1 does not take into account the grammat-
ical properties, such as the case, gender and num-
ber. Besides, it contains quite a lot of duples or
quasi-duples (e.g., ‘A.Lukashenko’ and ‘Alexan-
der Lukashenko’) which were deleted during S2
creation: this is the reason why PER number de-
creased for S2. Thus, S2 is generated by con-
straining the respective contexts for the respective
categories. For example, Romanova is a female
name, while je bil razglašen is a form requiring
the male name, so in S2 we only generate synthetic
sentences respecting these constraints:

en Albert Einstein was declared the winner as a result.
sl.m.sg → Albert Einstein je bil zaradi tega razglašen za

zmagovalca
en Anastasia Romanova warned that the syndicalists aims

were in perpetuating syndicalism itself.
sl.f.sg → Anastazija Romanova opozorila je, da so

sindikalistični cilji ohranjanje samega sindikalizma.

The number and gender for the ORG type was
detected from the syntactic properties of the head
of each ORG name using udpipe (Straka et al.,
2016).

Finally, S3 drops the constraint of having par-
allel NEs by using all of the NEs detected for a
given language through the categories in Table 1
(the contexts remain parallel, though). The num-
ber of PER NEs becomes unreasonable, so we
constrained it to 20,000 PER NEs per language.
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Table 1: Labels of NER-related categories in Wikipedias.

Language Wiki entries PER Categories LOC Categories ORG Categories
en 6,489,550 Born Cities|Countries Organizations
be 217,410 Нарадзiлiся Краiны|Гарады Арганiзацыi
bg 281,108 Родени Градове|Държави Организации
cs 502,428 Narozen Měst|Země Organizace
pl 1,519,696 Urodzeni Miasta|Kraje Organizacje
ru 1,814,092 Родились Города|Страны Организации
sl 176,025 Rojeni Mesta|Države Organizacije
uk 1,151,062 Народились Мiста|Країни Органiзацiї
#Parallel 4,492 1,709 239
#Total 140,000 22,709 34,329

Table 2: Synthetic dataset contents.

PER LOC ORG
S1
Entities 7,889 1,709 239
Contexts 7,694 1,535 348
S2
Entities 4,492 3,178 239
Contexts 7,439 1,535 348
S3
Entities 20,000 6,178 9,828
Contexts 7,439 1,535 1,087

We compare training on our synthetic corpora
against two commonly used baselines with ran-
dom training dataset ordering:

B1 Zero-shot transfer of a multilingual PLM with
training on the original English dataset;

B2 Training on the target language dataset pro-
duced by Machine Translation of the original
English dataset (The original entities were
marked in the text by special symbols like
‘|0|’ so that the labels would not be lost dur-
ing MT).

Each training dataset consists of 12000 ran-
domly generated examples from the available set
of entities and contexts for particular language.
The test dataset was produced by manual clean-
ing of approximately 10,000 tokens taken from
WikiNER for each of the eight languages includ-
ing English. The NE counts for this dataset are
listed in Table 3.

2.2 NER setup

To test the contribution of our synthetic corpora
with curriculum learning mechanisms, we rely
on a competitive NER approach, which is based
on XLM-R (Conneau et al., 2019). In the start-
ing stage, we compared the multilingual BERT
(Devlin et al., 2018) and XLM-R on our datasets.
Subsequently, the XML-R model was used for all
predictions as it showed slightly better results in

all of our experiments (as also shown in other
downstream applications). In addition, XLM-R
offered better zero-shot transfer results, which is
relevant for our B1 baseline.

2.3 Curriculum learning methods
The main purpose of using curriculum learning
(CL) in the proposed method is to ensure better
ordering of potentially noisy examples. Since the
training dataset may contain samples from incom-
patible semantic categories within the same NE
type (e.g., Greek philosophers doing research on
penicillin), the CL model must reduce the negative
effect of noisy examples and thereby make learn-
ing process more stable.

In total, we implemented three models to de-
termine the order of significance for the examples:

C1 order data by sample size, i.e. sentence length

C2 order data by average confidence in predicted
named entities

C3 order data by perplexity value

These models cover our hypotheses regarding
aspects of data complexity for the named entity re-
cognition task. C1 reflects the amount of inform-
ation that the model is gradually learning. Long
sentences carry significantly more information and
therefore may be more difficult to mark up entit-
ies in them. Another complexity measure for NER
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Table 3: Counts of NER-related categories in the test dataset.

Entities en be bg cs pl ru sl uk
PER 340 479 321 377 414 373 360 298
LOC 336 821 974 530 716 552 690 948
ORG 358 125 87 195 195 292 104 138

task samples is the average confidence of the CL
model in predicted named entities (model C2). In-
spired by the article (Zhu et al., 2021) we also cal-
culate the probability that the entity word has a
label from the gold-label markup. By sorting the
training dataset in descending order of such prob-
ability, we thereby place incorrect examples at the
end and give priority to high-confidence data.

The model needs to be based on a different ar-
chitecture, for which we used Bi-LSTM-CRF. It
calculates the optimal tag probability as:

p∗(x) = max
y′∈y

[
CRFF (x, y

′
) + CRFB(x, y

′
)
]
(1)

where y means the original set of labels, x - input
word, CRFF and CRFB represent the calculated
probabilities from the CRF model for forward and
backward pass of the Bi-LSTM network. Then
the average probability among the entities words
is computed as:

C2score(S) =
1

|w|

|w|∑
i=1

(p∗(wi)) (2)

where w,w ⊂ S mean subset of words from the
sentence S which are named entities.

Finally C3 is perplexity of CL model for a given
sentence. Perplexity is a measurement of how well
a probability model p predicts a sample. This met-
ric is calculated below:

PP (p) = 2−
∑

x p(x) log2 p(x) (3)

So, we are curious if this metric is suitable for sort-
ing training samples and improving the learning
process in our task. As follows from the defini-
tion, the training dataset needs to be sorted in the
ascending order of this metric.

Several studies in curriculum learning (Wang
et al., 2019a,b; Castells et al., 2020) suggest dis-
carding the top-N% of the most complex samples
from the dataset. Therefore, in our study, we con-
ducted several experiments to understand whether
the model should use all samples or a certain per-
centage during training.

3 Results

Because of space constraints, here we compare
the performance of CL models and of synthetic
datasets for two languages – Polish and Belarus-
ian. Belarusian is the most under-resourced lan-
guage out of those tested in our study, in terms
of the amount of (1) pre-trained data, (2) Wiki-
pedia entries and (3) available training resources.
Polish is a better resourced language from a dif-
ferent Slavic branch (West vs East for Belarus-
ian), and also it is written in a mix of Latin
and Polish-specific characters, which creates non-
trivial tokenization problems, as its tokenizer is in-
fluenced by major European languages. The res-
ults for Polish reported below are similar to those
for Belarusian, which emphasizes the universality
of the methods for Slavic languages presented in
this paper. The applicability of these methods to
other language groups is beyond the scope of this
article, but nevertheless this is an interesting topic
for further research.

Table 4 reports summary F1 metrics on
WikiNER evaluation dataset for all models and
training datasets for Belarusian. Table 5 - a sim-
ilar table for Polish. The main overall measure
is the mean F1 scores for the three main NE cat-
egories (omitting the Other category, which does
not indicate the source of errors). The best mean
score for Belarusian is 0.78, for Polish 0.79. For
comparison, the same English model trained on
the same set achieves the mean F1-score of 0.75,
while the best zero-shot transfer achieves 0.63 for
Belarusian and 0.68 for Polish. The full set of res-
ults for 7 Slavic languages is presented in Figure 6
in the Appendix.

3.1 Synthetic datasets

There is considerable variation between the NE
types. PER is easy to detect by using any training
set, this is followed by LOC, while ORG is more
difficult. There is a very considerable improve-
ment from using more linguistic information when
moving from S1 to S2. S1 is mostly not better
than either of the two baselines, i.e. B1 – zero-shot
transfer or B2 – direct MT of the English training
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Table 4: Belarusian: F1 scores for all entities, models and datasets. The scores in bold mean the best results for
a CL model within a dataset. The underlined scores are the best scores for each NE type across all models and
datasets. Last row, mean score, represents mean F1 score for three entity types.

Entity Model B1 B2 S1 S2 S3

PER
C1 0.89 0.90 0.85 0.91 0.92
C2 0.88 0.91 0.89 0.93 0.91
C3 0.88 0.89 0.88 0.92 0.91

LOC
C1 0.60 0.64 0.59 0.78 0.76
C2 0.55 0.58 0.51 0.81 0.60
C3 0.64 0.66 0.70 0.79 0.57

ORG
C1 0.40 0.43 0.30 0.56 0.62
C2 0.42 0.44 0.33 0.61 0.58
C3 0.38 0.45 0.37 0.62 0.57

Mean score
C1 0.63 0.66 0.58 0.75 0.77
C2 0.62 0.64 0.57 0.78 0.70
C3 0.63 0.67 0.65 0.77 0.68

Table 5: Polish: F1 scores for all entities, models and datasets. The scores in bold mean the best results for a CL
model within a dataset. The underlined scores are the best scores for each NE type across all models and datasets.
Last row, mean score, represents mean F1 score for three entity types.

Entity Model B1 B2 S1 S2 S3

PER
C1 0.88 0.89 0.86 0.92 0.93
C2 0.88 0.90 0.82 0.93 0.94
C3 0.87 0.89 0.87 0.92 0.92

LOC
C1 0.64 0.67 0.54 0.76 0.81
C2 0.66 0.68 0.55 0.75 0.68
C3 0.68 0.70 0.64 0.80 0.63

ORG
C1 0.54 0.56 0.50 0.61 0.57
C2 0.51 0.55 0.48 0.60 0.59
C3 0.43 0.48 0.55 0.66 0.54

Mean score
C1 0.68 0.70 0.63 0.76 0.77
C2 0.68 0.71 0.62 0.76 0.74
C3 0.66 0.69 0.68 0.79 0.70

set. Also, surprisingly, the very simple B2 setup is
often better than the popular zero-shot transfer of
B1.

S2 is the best dataset overall, so the expected
improvements by using larger training sets in S3
did not materialise. The most likely reason is that
most frequent location entities in the test data-
set are country names, which are well covered
by S2, as most of them are translated across the
Wikipedias; thus, adding even a much bigger set
of examples with rare place names could not im-
prove the scores (though we suppose that S3 could
show better results on a test dataset with rare place
names). The effect of gender disambiguation used
in S2 and S3 (opposite to S1) clearly show the be-

nefits for PER recognition, even though this is an
easier task for all of the models and datasets. The
most difficult category is ORG. Some organiza-
tion names are rendered without translation, i.e.,
General Motors, so they are easier to recognize.
,On the other hand, many ORG names are linguist-
ically diverse with a complicated structure, for
example, Międzynarodowe Centrum Badań nad
Ochroną i Konserwacją Dziedzictwa Kulturowego
‘International Centre for the Study of the Preser-
vation and Restoration of Cultural Property’, with
the problem in their detection persisting across any
available NER model.
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Figure 1: F1 score on evaluation dataset after each
training step on belarusian S2 dataset.

Figure 2: Evaluation loss after each training step on
Belarusian S2 dataset.

3.2 CL Models

In our experiments with models, we wanted to
evaluate the impact of curriculum learning on the
synthetic dataset. First of all, ordering of the
training samples improves target metrics com-
pared to baseline, basic XLM models with ran-
dom sampling. For locations and organizations
the difference is substantial: 0.15 and 0.17 of the
F1-score points respectively. For persons, the dif-
ference is not so big, because initially there are
enough entities and context examples for persons,
so it is easier to recognize PER entities irrespect-
ively of the order of training.

One of the key goals of using curriculum learn-
ing in this study is to reduce the impact of noisy
synthetic examples. For example, using the Be-
larusian dataset S2 and model C2 (average probab-
ility of predicting gold-label entity tags), these ex-
amples are listed as the highest difficulty for pre-
dicting LOC:

1. Шпаер таксама ў спiсе з двума. ‘Speyer is
also in the list with the two’

2. Рэвалюцыя 1897-1898 гадоў адкрыла
дзверы для больш шырокiх ведаў, i па-
чалося шмат даследаванняў, пра якiя
гл. Валета ‘The 1987-1898 revolution
opened the doors for wider knowledge, and
many researches were started, about which
see Valeta’

The C2 model reasonably placed these ex-
amples at the end of the training dataset. In the
first example, the location Шпаер (‘Speyer’) is
similar to the surname, so the model is not confid-
ent between deciding it is a location and a person.
In the second example, the structure is not correct
since the end of the sentence contains an artifact
from Wikipedia "about which see [entity]". This
sentence tells about the revolution, not about the
location, so the context of the entity is incomplete.
In the examples shown above, the model correctly
identified the entities, but was not sure about them,
so the curruculum learning method assigned them
the higher scores.

Comparing the methods of curriculum learn-
ing, we wanted to determine which method makes
learning more robust and efficient. For this ex-
periment, we took the S2 dataset, as it provides
the best performance among all other datasets. As
for the experiment setup, we trained three models
C1, C2, C3 on the Belarusian S2 dataset with fol-
lowing configuration: 1 epoch, Adam optimizer,
learning rate equals 1e-5, weight decay equals
0.01. The choice of a single epoch and a low
learning rate is primarily due to the fact that the
NER model trained on synthetic datasets quickly
overfits. For example, for Belarusian and Polish
S2, the validation loss increases after 12.5% of
the training dataset of the second epoch. On the
charts 1 and 2 the key evaluation metrics of three
CL models are shown. Since we found out that
one epoch is enough for training, on the figures
each training step is 12.5% of the training data-
set. In particular, Figure 2 shows that the rank-
ing of training examples based on the metric of
the average probability of predicting named entit-
ies (model C2) demonstrates more stable training.
Moreover, this model is the fastest gaining more
than 90% of the F1 metric and has the minimum
evaluation loss among all models.

Also, in the same experiment we found out that
throwing out 10% of most complicated data leads
to mean decrease in F1 measure by around 3%
with all CL models. This means that the model



4474

should rather see the most complex examples in
order to demonstrate the best quality.

3.3 Errors analysis

We manually analyzed and compared the predic-
tions of models finetuned on S2 and S3 datasets
for Polish and Belarusian. The quality for Be-
larusian is comparable to the other languages in
the set. There were no problems found caused by
tokenization, though sometimes the models tend to
misjudge the boundaries of the entities, including
spaces, brackets or commas.

Most errors for S2 are predictably caused by
cases: so PER entities which are not in nominat-
ive case often do not get a correct label, or case
endings may not be labelled (our model labels
every BPE-token), e.g., Polish Artura Rubinsteina
‘Arthur Rubinstein’ loses its PER label for end-
ings -a in both name and surname and the markup
looks like ‘Artur, PER’ and ‘#a, O’. The same
goes for other entities, for example, Polish Kanady
‘Canada’ (genitive) may not get annotated in cer-
tain contexts at all, and ORG entity Partią Repub-
likańską ‘Republican Party’ (instrumental) has an
unlabelled case ending ą.

Some of other easily explainable errors are
caused by entity type: seas, rivers, and mountains
were not present in the synthetic datasets, so the
models may only partially recognize entities like
Belarusian Галiлейскага мора ‘Sea of Galilee’.

Another quite common, but not so obvious er-
ror concerns unlabelled country names: although
the models must have seen them, country names
are often lost. It is worth mentioning that coun-
try names are often unlabelled in real data, such as
WikiNER and SlavicNER (Piskorski et al., 2021),
as well.

When the models are finetuned on the S3 data-
set, the error types generally remain the same,
though their quantity is slightly smaller. We
noticed that sometimes the context obviously
provides a false label, i.e., in Belarusian sentence
which contains пад нацiскам Рима пазбавиў
‘under the pressure of Rome [he] deprived’ Rome
in genitive case gets the PER label, because it is
followed by a verb common for PER entities.

4 Related work

4.1 NER and synthetic corpora

The idea of using synthetic data for augmenta-
tion was a natural consequence of the develop-

ment of ML models which need a lot of annot-
ated data in order to learn. Mentions of synthetic
data in NLP can be found as early as in 2000s
(i.e., (Talbot, 2003)); an obvious solution was to
generate training data for ML models using rule-
based tools, as it was done to improve machine
translation in (Hu et al., 2007). Starting from late
2000s, the idea of using synthetic corpora grew
more popular and was applied in various areas of
research, for example, for generation of anima-
tions for sign languages (Schnepp et al., 2010), or
for Implicit Discourse Relation Recognition (Lan
et al., 2013). Nowadays, there are plenty of works
using synthetic data for improvement, and gener-
ating synthetic datasets is considered a common
technique. For example, (Kvapilíková et al., 2020)
article used unsupervised machine translation to
build a synthetic dataset and improve quality on
parallel corpus mining task in low-resource lan-
guages, which is especially relevant for our re-
search. Some recent works using this approach
are, for example, (Li et al., 2021), (Hosseini et al.,
2021) or (Whitfield, 2021), the latter introducing
GPT-2 model for data generation. Also, method
proposed in (Sellam et al., 2020) uses synthetic
sentences for BERT pre-training, which contain a
wide variety of lexical, syntactic, and semantic di-
versity. The key goal for synthetic datasets is to
provide the maximum variation of text data in or-
der to make the target model more robust.

NER typically involves one of three gold stand-
ards: MUC, CoNLL, or BBN, all created by
costly manual annotation. One of the first data-
sets for NER in the CoNLL standard was cre-
ated in 2003 (Sang and De Meulder, 2003) and
covered two languages (English and German); the
NER-related categories consisted of PER, LOC,
ORG and MISC labels. There were also sev-
eral datasets in CoNLL standard created around
2010, one of them being WikiGold (Balasuriya
et al., 2009) – 40K tokens of Wikipedia articles,
manual annotation; the other, Web (Ratinov and
Roth, 2009), contained 8K tokens taken from the
Web, and the third dataset used Twitter as a re-
source and contained approximately 34K tokens
(Ritter et al., 2011). Later additions are repres-
ented by Broad Twitter Corpus (Derczynski et al.,
2016) and WiNER (Ghaddar and Langlais, 2017),
although the list of NER-annotated corpora isn’t
exhausted by those.

There are also attempts to create synthetic
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corpora with NER-annotation, mostly for low-
resource languages, i.e., (Jónsson et al., 2021)
for Icelandic. Cross-lingual transfer is a viable
method as well and it was used for creation of a
synthetic Chinese NER corpus in 2014, for ex-
ample (Fu et al., 2014). There has also been a
recent set of experiments on cross-lingual annota-
tion, for example, for African languages (Adelani
et al., 2021). There is also an approach to use a
small number of examples via triggers (Lin et al.,
2020).

4.2 Curriculum learning

Curriculum Learning (CL) is a learning tech-
nique where the order of training samples depends
on their complexity for the target model. This
paradigm resembles human learning: a gradual
increase in the complexity of training examples
makes learning process more qualitative. The ori-
ginal technique was proposed by (Bengio et al.,
2009). But for supervised learning and NLP in
particular, (Elman, 1993) article is one of the first
where an idea similar to curriculum learning is ap-
plied. The author emphasized that the order of
training data is important, where the "small" data
comes first.

More recently, the curriculum learning ap-
proach was used quite extensively in NLP. Differ-
ent measures of complexity have been proposed,
depending on the task. For instance, (Tay et al.,
2019) article addresses the problem of reading
comprehension of long texts. Curriculum learn-
ing based on the answerability and understand-
ability of texts effectively improves training pro-
cess. In addition, (Platanios et al., 2019) apply
curriculum learning to neutral machine translation
to learn better and converge faster. The framework
presented in the paper shows certain samples to the
model at certain times according to their complex-
ity and model competence at that moment.

NER task requires a comprehensive metric to
use for curriculum learning. The study closest to
our work (Zhu et al., 2021) uses several strategies
to organize their training data. All of them use
probability of entities from the gold label dataset
calculated by the CL model. In one case, the aver-
age confidence of the model is calculated from all
entities from the input sentence. In another, the av-
eraged confidence of the model is considered only
for named entities. This approach is relevant due
to the fact that goal is to recognize named entit-

ies correctly, other tokens in the sentence are not
so important. Furthermore, there are other tech-
niques for filtering and ordering samples for the
NER task, especially suitable for generated data-
sets. (Liu et al., 2021) filter data samples with
specific entity based on complex criteria: for ex-
ample, if this entity is too frequent in the training
dataset.

4.3 Cross-lingual transfer

Cross-lingual transfer is relevant when there is suf-
ficient data for training a model for one language
and no such data for another language. A model
which is trained on the data for one language and
applied on the data of the other (zero-shot trans-
fer), usually shows worse results than on donor
language material; thus leading to a transfer gap,
which can be measured as the difference between
the performance of the same model on donor and
recipient languages (Hu et al., 2020). In order to
use cross-lingual transfer, language spaces must
be aligned, and the models which provide higher
quality vector spaces perform better. This idea
has become popular since 2014, when embedding
methods produced high quality spaces which are
almost isomorphic across languages and which
can be aligned by using small seed dictionaries
(Mikolov et al., 2013).

Modern models, such as multilingual BERT or
XLM-RoBERTa, are even more efficient at build-
ing cross-lingual vector spaces (Conneau et al.,
2020). Some recent studies in this area showed
that the transfer gap if the donor language is Eng-
lish normally is not bigger than 0.25 (0.14 on av-
erage) for a set of recipient languages (Hu et al.,
2020; Ruder et al., 2021). For example, the Nat-
ural Language Inference (NLI) task for Slavic lan-
guages has a transfer gap of 0.07. As for the NER
task with the use of cross-lingual transfer, there
was a recent analysis of zero-shot transfer between
English and Korean (Kim et al., 2021). More spe-
cifically on the topic of this paper, cross-lingual
transfer for NER on Slavic languages has been dis-
cussed in (Sharoff, 2020), and shared tasks such as
SlavicNER (Piskorski et al., 2021) are specifically
aimed at NER for Slavic languages.

5 Conclusions

In this work we demonstrated how to achieve
prediction quality for lesser resourced languages
without any performance gap introduced by zero-
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shot transfer or Machine Translation. A synthetic
corpus of about 10,000 sentences produced from
a combination of naturally annotated data and ma-
chine translation from a better resourced language
can produce better results than training on the
source dataset for the better resourced language.
However, the key to this success is an accurate
model of important linguistic phenomena (case,
number and gender, as in our S2 and S3 data-
sets), as without this the synthetic corpus (our ver-
sion S1) is worse than the zero-shot baseline (B1).
The second major contribution is the importance
of the curriculum learning strategy. Any strategy
for choosing the examples helps, but the average
probability (from a different model) and perplex-
ity usually help more than simple ordering by the
sentence length. Also discarding the most difficult
items does not help, as the models improve when
seeing more data.

The negative result of this study is that a big-
ger collection NEs (S3) did not improve over the
smaller set (S2). More research is needed into un-
derstanding the reasons for this. Better NE selec-
tion can help in matching the test dataset, while
this might cause problems in applying the models
beyond the test dataset. The study is also limited
to a specific set of languages as well as to a single
downstream task. In our future research we want
to explore Wikipedias and similar resources with
natural annotation for building synthetic training
sets for more languages and for other downstream
tasks, such as NE linking or ontology building.
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A Appendix

A.1 Results for 7 Slavic languages
In this section we provide Figure 6 with compre-
hensive results of our experiments in seven Slavic
languages.
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Table 6: Mean F1 scores per 3 entities types for all languages, models and datasets. The scores in bold mean the
best results for a CL model within a dataset. The underlined scores are the best scores for each NE type across all
models and datasets.

Language Model B1 B2 S1 S2 S3

Belarussian
C1 0.63 0.66 0.58 0.75 0.77
C2 0.62 0.64 0.57 0.78 0.70
C3 0.63 0.67 0.65 0.77 0.68

Ukrainian
C1 0.63 0.67 0.61 0.71 0.69
C2 0.64 0.68 0.67 0.75 0.70
C3 0.65 0.67 0.68 0.73 0.72

Russian
C1 0.61 0.63 0.60 0.73 0.70
C2 0.63 0.62 0.63 0.77 0.73
C3 0.62 0.63 0.61 0.75 0.72

Slovenian
C1 0.67 0.69 0.60 0.70 0.69
C2 0.68 0.71 0.64 0.78 0.75
C3 0.68 0.70 0.65 0.73 0.71

Polish
C1 0.68 0.70 0.63 0.76 0.77
C2 0.68 0.71 0.62 0.76 0.74
C3 0.66 0.69 0.68 0.79 0.70

Bulgarian
C1 0.62 0.64 0.61 0.74 0.70
C2 0.65 0.66 0.64 0.76 0.74
C3 0.66 0.67 0.63 0.78 0.71

Czech
C1 0.64 0.67 0.65 0.72 0.71
C2 0.65 0.68 0.68 0.76 0.75
C3 0.65 0.69 0.66 0.74 0.74


