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Abstract

This paper introduces a novel Self-supervised
Fine-grained Dialogue Evaluation framework
(SelF-Eval). The core idea is to model the
correlation between turn quality and the en-
tire dialogue quality. We first propose a novel
automatic data construction method that can au-
tomatically assign fine-grained scores for arbi-
trarily dialogue data. Then we train SelF-Eval
with a multi-level contrastive learning schema
which helps to distinguish different score levels.
Experimental results on multiple benchmarks
show that SelF-Eval is highly consistent with
human evaluations and better than the state-
of-the-art models. We give a detailed analysis
of the experiments in this paper. Our code is
available on GitHub.

1 Introduction

Dialogue systems (DS) aim to satisfy human needs
(Shum et al., 2018; Yan, 2018; Gao et al., 2019)
such as information, communication, entertain-
ment, etc. Appraising the quality of the DS re-
sponses reflects the system’s capability and pro-
vides insights into required further improvements
(Finch and Choi, 2020; Deriu et al., 2021). Among
the commonly used evaluation metrics, human eval-
uation is of high reliability but expensive to con-
duct, automatic metrics used in language genera-
tion (Perplexity (Bengio et al., 2000)) or machine
translation (BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), etc.) are easy to conduct but ineffec-
tive to reflect the dialogue quality (Liu et al., 2016;
Novikova et al., 2017). Therefore, researchers have
made great efforts to find more reliable automatic
evaluation metrics that are highly correlated with
human evaluation (Lowe et al., 2017; Tao et al.,
2018; Mehri and Eskénazi, 2020a).

The current automatic dialogue evaluation met-
rics leverage semantic information (Huang et al.,
2020; Mehri and Eskénazi, 2020b; Ye et al., 2021)
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Figure 1: The fine-grained relationships between turn-
level and dialogue-level quality.

to measure dialogue quality. For example, when
evaluating the response quality, they either com-
pute the semantic similarity between dialogue con-
text and the generated response (Xu et al., 2018a;
Tao et al., 2018; Dziri et al., 2019; Ghazarian
et al., 2019) or measure the soft semantic over-
lap between ground-truth response and the model-
generated one (Lowe et al., 2017; Xu et al., 2018b;
Zhao et al., 2019; Zhang et al., 2020a; Yuan et al.,
2021). When evaluating (Zhang et al., 2021)
the overall dialogue quality, they either learn a
dialogue-level representation for rating directly
(Mesgar et al., 2020; Zhang et al., 2021) or cal-
culate the score with the help of other indirect as-
sists (Mehri and Eskénazi, 2020a). However, re-
cent studies (Mehri and Eskénazi, 2020a; Sai et al.,
2021; Yeh et al., 2021) show that current models
can only work well for measuring the response or
evaluating the entire dialogue. They could not per-
form well in both situations at the same time. It
means that the dialogue representation they learned
(Zhang et al., 2021) could not reflect both turn qual-
ity and the entire dialogue quality.

The dialogue quality is affected by all turns’
qualities in it (Gopalakrishnan et al., 2019) and
this effect is accumulated in a multi-turn dialogue
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(Li et al., 2021). Figure 1 shows these quality cor-
relations between turns and dialogue. Each turn is
marked with a serial number. Three dialogue exam-
ples are starting with the same user turn (1). The
left example (1/2/3/4/5) shows that two good agent
responses result in good overall quality. The mid-
dle (1/6/7/8/9) and right (1/6/7/10/11) examples
show how lower-quality agent responses result in
different dialogue qualities (passable or poor). The
current open-domain dialogue evaluation methods
fail to model the fine-grained correlations between
turn quality and dialogue quality, which entail a
poor dialogue representation for evaluation.

In this paper, we introduce an evaluation method
that explicitly models the correlations between turn
quality and dialogue quality. Specifically, we aim
to learn a dialogue representation that can reflect
each turn’s contribution, so that the evaluation
score obtained by this representation aligns turn
quality with the dialogue quality. To this end, we
need to first obtain large amounts of dialogue data
that reflects fine-grained correlations between turns
quality and dialogue quality, then train an evalua-
tion model to measure the fine-grained correlations.
The contributions of this paper are:

* To the best of our knowledge, we are the first
to explicitly model the fine-grained correlation
between turns and the entire dialogue for open-
domain dialogue evaluation.

* We introduce a simple but effective data con-
struction method to align the turn-level qual-
ity with the overall dialogue quality. We de-
sign a Self-supervised Fine-grained Dialogue
Evaluation model (SelF-Eval) with a multi-
level contrastive learning (MLCL) method.
Our code and data are publicly available:
https://github.com/royny/SelF-Eval.

» Experiments on multiple benchmarks show that
SelF-Eval: 1) can evenly distinguish different
replacement levels; 2) builds the correlations be-
tween turn qualities and dialogue qualities; 3)
gets better correlation scores with human ratings
than the state-of-the-art (SOTA) models.

2 Related Work

We first survey evaluation metrics in open-domain
dialogue (sections 5.1 and 5.2), then compare re-
lated work in task-oriented dialogue (section 5.3).

2.1 Calculation of Semantic Overlap

In this category, metrics are designed to measure
the semantic similarity between the generated re-
sponse and the dialogue context (Xu et al., 2018a;
Tao et al., 2018; Ghazarian et al., 2019; Pang et al.,
2020) or soft semantic overlap between the gen-
erated response and the reference response (Lowe
etal., 2017; Xu et al., 2018b; Zhang et al., 2020a;
Zhao et al., 2019; Yuan et al., 2021). Dziri et al.
(2019) presented interpretable metrics for evaluat-
ing topic coherence by making use of distributed
sentence representations. COMET (Rei et al.,
2020) evaluated machine translation quality with
a pre-trained model by minimizing the distance of
the hypothesis with both reference and source text.
The most similar work to ours is from Ye et al.
(2021) that measures quantifiable coherence scores.
The differences between their work and ours are: 1)
they focus on turn-level evaluations while we aim
to evaluate both turn and dialogue-levels. Their
method models the relationship between dialogue
context and response while we model the fine-
grained correlations between turns and the entire
dialogue; 2) their method relies on the multi-level
human annotations for dialogue quality while our
method is free from these constrain. SelF-Eval is
trained in a self-supervised manner, using synthetic
dialogue data and automatically annotated scores.

2.2 Regression to a Reference Score

In this category, metrics learn to evaluate dialogue
with scores that represent pre-defined dialogue at-
tributes. BLEURT (Sellam et al., 2020) trained a
BERT model with synthetic data and fine-tuned it
on human ratings. GRADE (Huang et al., 2020)
introduced dialogue topic transitions for coherence
evaluation. USR (Mehri and Eskénazi, 2020b)
leveraged RoBERTa and a regression model to
approximate the specific scores rated by annota-
tors. Mehri and Eskénazi (2020a) computed the
log-likelihood of DialoGPT generating predefined
positive or negative comments as the score. The
most similar work to ours in this category is from
Mesgar et al. (2020), they utilized dialogue act la-
bels to help dialogue level representation learning
and assist the performance of dialogue-level coher-
ence evaluation. The difference between their work
and ours are: 1) they use dialogue act to assist the
dialogue representation learning in a multi-task
learning framework while we only use dialogue
information; 2) their method only measures the co-
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herence of dialogue while ours measures multiple
attributes of dialogue; 3) their method aims to dis-
tinguish good samples from bad ones while ours
can assign fine-grained scores for each sample.

2.3 Related Work in Task-oriented DS

Besides the open-domain dialogue, there is also
work in task-oriented dialogue similar to ours.
They assume that users start a dialogue with a task-
sensitive patience budget and the dialogue is fin-
ished by users when the task is completed or the
budget runs out. Their model estimates user sat-
isfaction at each turn and consumes some remain-
ing budget. The differences between their work
and ours are: 1) they focus on task-oriented dia-
logue with explicitly dialogue purpose while ours
are open-domain dialogue with no such goals; 2)
they need expensive training and data collecting
pipeline while ours do not need; 3) they set up
an overall budget which is consumed during the
dialogue while we learn a dialogue-level represen-
tation for evaluation. When adopting our method
to evaluate task-oriented dialogues, information
such as intents and request types is required to de-
termine task completion. Our model will require
further improvements to utilize this information.

3 Our Proposed Method

3.1 Problem Statement

Given an n rounds (2*n turns) dialogue D =
[A1,B1,A3,Bs,...,A,,B,] where A;/B; represents
the i-th i € {1,2,...,n}) turn from human-
A/machine-B, respectively. The dialogue evalu-
ation model takes D as input and outputs a quality
score (a scalar value) for it.

3.2 Data Construction

We need training data with quantitative annotation
on both turn-level and dialogue-level (Figure 1).
However, only very few dialogue data today have
these kinds of labels (Gopalakrishnan et al., 2019)
and the models trained with this kind of data are
restricted by domain adaptability and generality.
Inspired by previous work (Mesgar et al., 2020;
Zhang et al., 2021), we adopt a replacement strat-
egy that perturbs a dialogue at the semantic level.
In this strategy, the easily accessible human-human
dialogue is considered positive. The negative sam-
ples for this dialogue are constructed by replacing
some turns with randomly selected turns from other

dialogues'. These randomly selected turns bring
multiple negative effects (topically in-congruent,
semantic confusion, etc.) w.r.t the current dia-
logue context. However, different from previous
works that replaced a fixed number of turns in a
n>0 rounds dialogue, we set multiple replacement
strategies and randomly replace i € {0,1,...,n}
turns in it. One sample with more replacements is
considered of worse overall quality (Gopalakrish-
nan et al., 2019; Li et al., 2021). Specifically, we
assign a score 1 to the original dialogue and assign
a score (n - i)/n to the new dialogue that replaces
1 turns. By aligning the replaced turn numbers
with a reference score, we get the required train-
ing data. Meanwhile, we avoid the quantity and
domain limitation of human-annotated data and
can easily obtain a large amount of fine-grained
training data in different domains.

Notice that 1) we treat each round with equal
weight in this paper, but there may be differences
when replacing a turn in the first round (usually a
greeting round) or the last one; 2) we hypothesize a
linear relationship between the number of replace-
ment turns and the overall dialogue quality, which
is not necessarily true. For example, replacing 3
turns and more than 3 turns in the same 6-rounds
dialogue may cause the same damage to the over-
all dialogue quality. We leave these problems for
future work.

3.3 Training

During training, we want to minimize the distance
between the predicted score and the reference score.
This is a difficult regression task because 1) unlike
the coherence degree between dialogue context and
response or semantic relationships in a Natural Lan-
guage Inference, our automatic score as regression
target lacks clear semantic meaning; 2) dialogues
with different replaced turns may have the same
reference score. For example, the reference score
of replacing 1 turn in a 2 rounds dialogue is equal
to the score of replacing 2 turns in a 4 rounds di-
alogue; 3) when the replacement level increases,
it is hard for the model to distinguish the small
differences. For example, the reference score of
replacing 4 turns in an 8 rounds dialogue is close
to the score of replacing 5 turns in an 8 rounds dia-
logue (0.5 and 0.375, respectively). To smooth the
convergence process, we divide the training stage

'To ensure the generality of our method, we did not use
more complex sampling strategies.
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Figure 2: The training procedure of SelF-Eval. A; and B; is the i-th turn from speaker A and B, respectively. R is
the randomly replaced utterances. The replacement positions can be arbitrary rounds.

into coarse and fine-grained and name the training
stages Multi-level Contrastive learning (MLCL)
schema. MLCL is model agnostic and can be used
for any similar tasks.

Figure 2 shows the training process of our model.
We choose RoBERTa (Liu et al., 2019) as encoder.
The input for a dialogue sample D is [<CLS>, A1,
By, ..., Ay, By], where "<CLS>" is a special token
and n is different for different D. We first obtain
two kinds of dialogue representations. The <CLS>
representation is the output vector F; of the first
token <CLS>. The Pooling representation E,ing
is obtained by average-pooling all token represen-
tations of [A1, By, Ag, Bs, ..., A,, B,]. The fi-
nal dialogue representation hp is [Ees;Epootingls
where [;] is the concatenation operation. The hp is
passed through a Multi-layer Perceptron (MLP) to
get the predicted quality score SP for D:

SD=O'(W2',M(W1-}LD+Z)1)+Z)2), (1)
where W12 and by 2 are training parameters;
o /1 is the sigmoid/tanh function, respectively.

3.3.1 The Coarse Training Stage

Formally, given a training corpus C = {Dm}%z1
where D,, is the m-th dialogue with n,,-rounds.
For each D,,,, we can replace i € {0,1,...,n}
turns and get a replaced version of D,,, named
D . Each replacement level has its own reference
score (N, - ) /Ny, In the first training stage, we
combine a separation loss and a compactness loss
as the multi-level ranking (mlr) loss. The mlr loss
helps the model learn a coarse granularity ranking
ability for multi-levels.

The separation loss aims to separate the fea-
tures of different replacement examples by distin-
guishing their scores. For each replacement level
i € {0,1,...,n,,}, we first calculate a centroid
score SD;L:KLi Zf;l S,?:’" where S,?:” is the qual-
ity score of a dialogue example with i turns re-
placed, K; is the number of contrastive samples for

D,, in this replacement level®. The separation loss
between different replacement levels is:

Nm—1 Nm

[5¢P= Z Z max(O,w*)ﬁSDz’l- SDlm)7 (2)
J=0 I=j+1

where A\=1/(n,, - 1) is the lower bound for the
distance between two centroid scores®, w = [ - 7
is the weight used for amplifying the lower bound
according to the quality-level gap.

The compactness loss aims to compact the ex-
amples within the same level, which served as a
regularization role to avoid outlier exceptions for
each level. Specifically, the dialogue quality score

S,?:” for k € {1,2, ..., K;} is forced to be closer to
the corresponding centroid SPm as follows:

nm  K; )

com ¢ D:n

£om=> "> " max(0,[S%m - §) - p), (3
=0 k=1

where p is the upper bound for the distance be-
tween the centroid of a certain replacing level and
the score within this level*. The mlr loss is:

M
L=y (e 1™, (4)
m=1

The original multi-level ranking method is pro-
posed by Ye et al. (2021) and has three secondary
losses: separation loss, compactness loss, and or-
dering loss. The difference between the multi-level
ranking methods we used and what they used is
that we remove the ordering loss and compute the
difference instead of the L1 distance between dif-
ferent centroid scores so that the ordering loss is
covered by the separation loss. Our method can
save training time and keep equal performance.

%For example, when replacing i turns in a n rounds dia-
logue, we have total K;=n!/(i!(n - ¢)!) contrastive samples.

3For example, A=0.5 when there are 3 reference score
levels. The expecting 3 centroids are around 1, 0.5, and 0.

*For example, if we set A to 0.3 and p to 0.1 when there

are 3 reference levels. The expecting 3 level ranges are around
[0.9,1],[0.4,0.6], and [0, 0.1].
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Dataset Ds turns words | turns/D
Empathetic 24846 | 107,208 | 1.7M 4.3
ConvAlI-2 18,878 | 278,192 | 3.3M 14.7
DailyDialog 12,096 | 100,360 | 1.4M 8.3
DailyDialog++ | 19,071 | 215,625 | 1.2M 4.3
GRADE 1,200 2,400 61K 2.0
FED 500 5,603 49K 11.2
DSTC-9 2,200 59,840 533K 27.2

Table 1: Statistics of datasets. "D" means dialogue.

3.3.2 The Fine-grained Training Stage

After the coarse training stage, the model has
learned to rank multi-level scores, which can be
seen as an approximate fitting to the reference la-
bels. To make the training more smooth and more
efficient, we add an R-drop loss (Liang et al., 2021)
aside from the mlr loss to obtain a more robust
representation for each dialogue. The robust repre-
sentation will help the convergence of the model.
Specifically, one input dialogue will go through
the model twice and obtain two scores S,I; %’Jirst and
S?i’é cong» then the model will minimize the dis-
tance between the two scores as follows:

M n., K; ) )
drop _ D), D/, 2
L - Z Z Z(Sk,?irst - Sk,;necond) ’ (&)
m=1j—0 k=1

The overall Loss of the fine-grained training
stage L7 js computed as follows:

Lfinal — Lmlr + Ldrop. (6)

4 Experimental Settings

4.1 Datasets

The datasets used in this paper are shown in Table
1. Empathetic Dialogue dataset (Rashkin et al.,
2019) simulates real life dialogue in which the
interlocutor needs to identify and recognize the
feelings of others. ConvAI-2 (Zhang et al., 2018;
Dinan et al., 2019) mimics the scene where each
interlocutor tries to understand each other by in-
corporating persona information. DailyDialog (Li
et al., 2017) reflects our daily communication and
covers different topics such as interpersonal rela-
tionships and health. DailyDialog++ (Sai et al.,
2020) is a multi-reference open-domain dialogue
dataset with 3 groups (relevant, irrelevant, and ad-
versarial) of responses for each context, each group
has 5 different responses. GRADE dataset (Huang
et al., 2020) contains 300 dialogue examples from
Empathetic Dialogue and DailyDialog, and 600
dialogue examples from ConvAl2. Each exam-
ple has 2 turns with human-annotated relevance

scores. FED (Mehri and Eskénazi, 2020a) is a
set of human-machine and human-human conver-
sations with eighteen fine-grained quality scores
in both turn and dialogue levels. DSTC-9 (Gu-
nasekara et al., 2020) was collected on the DialPort
platform through direct interaction between real
users and open-domain chit-chat systems.

4.2 Baselines

We choose the following SOTA models: GPT-2
(Pang et al., 2020) computes the log-likelihood of
the response conditional on the the dialogue context
normalized by the length of the response; Quan-
tiDCE (Ye et al., 2021) uses BERT (Devlin et al.,
2019) to get dialogue-level representations and pro-
poses a multi-level ranking method to train a quan-
tifiable turn-level coherence metric; FED (Mehri
and Eskénazi, 2020a) computes the log-likelihood
of DialoGPT (Zhang et al., 2020b) generating pre-
defined positive or negative comments as the qual-
ity score. It can measure both turn and dialogue-
level qualities; DynaEval (Zhang et al., 2021) in-
tegrates turn representations from RoBERTa into
dialogue-level representation with a graph convolu-
tional network, then adopts contrastive learning to
distinguish positive and negative samples.

We also test with different settings of SelF-Eval.
The model shown in Figure 2 is named SelF-
Eval(full), in which the training dialogue can be
any rounds. The first different setting is that we
use fixed rounds of dialogue data for training. We
set all dialogues to 2 rounds and have 3 differ-
ent replacement strategies: the original dialogue
and replacing 1 or 2 turns. This setting is named
SelF-Eval(simple). Besides, we have the follow-
ing settings for the ablation study. SelF-Eval(-mlr)
and SelF-Eval(-drop) means we remove the multi-
level ranking loss and D-drop loss, respectively.
When removing the mlr loss, we use a binary cross-
entropy (BCE) loss instead. It means the model
makes a binary decision between original dialogue
and dialogue with replacements. We use BCE loss
to show our multi-level ranking method is better
than a two-level loss when learning a dialogue rep-
resentation for evaluation.

4.3 Implementation Details

The setting of the baseline models follows the
papers that proposed them. The pre-trained
models (BERT, RoBERTa, DialoGPT, GPT-2)
are based on the public Pytorch implementa-
tion (https://github.com/huggingface/transformers).
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model Rep-0 | Rep-1 | Rep-2 | overall
QuantiDCE 0.688 | 0.486 | 0.654 | 0.609
DynaEval 0.812 | 0.595 | 0.699 | 0.702
SelF-Eval(simple) | 0.962 | 0.891 | 0.904 | 0.919
SelF-Eval(full) 0973 | 0.898 | 0914 | 0.928

Table 2: Accuracy of predicting replacement levels.

The hyper-parameters which are not introduced in
this section follow the original implementation in
the link. During fine-tuning, we truncate the in-
put dialogue length to 512 tokens. Among the 7
datasets we used, only DSTC-9 has dialogue exam-
ples that exceed 512 tokens and the percentage is
13.6%. We set the max contrastive sample number
to 8. All models are learned with Adam optimizer
with 51 =0.9 and B3 = 0.999. We use a single Tesla
A100s GPU with 40GB memory, the batch size is
15. The average training time for each epoch is
around 4 hours (2 hours for the first training stage
and 2 hours for the second training stage). The
initial learning rate is set to 0.005 and decays to
0.002 in the second stage. A dropout of 0.5 is also
applied. When training SelF-Eval(full), the GPU
memory occupation is 39GB. y is set to 0.1.5

4.4 Evaluation Metrics

Following previous works (Mehri and Eskénazi,
2020a; Zhang et al., 2021), we choose two metrics
to correlated with manual evaluations. Pearson
Correlation (Freedman et al., 2007) measures the
linear correlation between two sets of data. Spear-
man Correlation (Zar, 2005) assesses the mono-
tonic relationships between two variables. Besides,
we use Accuracy measures the percentage of cor-
rect ranking for multi-level replacement.

5 Experimental Results and Analysis

We aim to answer the following questions about
SelF-Eval: (Q1) can it assign reasonable scores
for multiple replacement levels? (See section
5.1) (Q2) does it outperform state-of-the-art meth-
ods and truly model the correlations between
turns/dialogue? (See section 5.2 and 5.3) (Q3)
how do the different components contribute to its
performance? (See section 5.4) (Q4) what can we
learn from case study? (See section 5.5)

SWhen evaluating dialogue-level qualities with turn-level
metrics, we measure all context-response pairs in a dialogue
and use their average as the final score. When evaluating
turn-level qualities with dialogue-level metrics, we treat the
context-response pair as an entire dialogue.

model Pearson | Spearman | average
DynaEval 0.093 0.101 0.097
FED 0.128 0.120 0.124
SelF-Eval(simple) 0.158 0.165 0.162
SelF-Eval(full) 0.163 0.173 0.168

Table 3: Evaluation on DSTC-9 dialogue-level quality.

5.1 Ranking Capability (Q1)

This experiment tests whether an evaluation model
assigns higher scores for dialogues with less re-
placement. Table 2 shows the accuracy results of
QuantiDCE, DynaEval, and SelF-Eval(simple/full),
all models 1) are trained with DailyDialog++ and
test with the DailyDialog++ test set; 2) use base-
sized pre-trained models as backbones. Quan-
tiDCE is chosen because 1) it is trained for classi-
fication and fits perfectly for this experiment; 2) it
represents the SOTA turn-level metric. DynaEval
is chosen because it is the SOTA dialogue-level
metric. We define 3 replacement levels: the origi-
nal dialogue (Rep-0), the dialogue with 1 replacing
turn (Rep-1), and more than 1 replacing turn (Rep-
2). Each replacement level has 5010 samples.

We can see that SelF-Eval(full) gets the highest
performance on all replacement levels. Between
the multi-level ranking models, Self-Eval(full) out-
performs QuantiDCE by 52.4%. Between the
dialogue-level ranking models, SelF-Eval(full) sur-
passes DynaEval by 32.2%. Notably, the accuracy
gaps between Rep-(0, 1, and 2) of SelF-Eval(full)
are 0.075/-0.016, which are much smaller than the
gaps of QuantiDCE (0.202/-0.168) and DynaEval
(0.217/-0.104). The results show that 1) SelF-Eval
can evenly distinguish the 3 replacement levels; 2)
the MLCL method we used shows advantages over
multi-level learning in QuantiDCE and contrastive
learning in DynaEval.

5.2 Experiments on DSTC-9 (Q2)

Table 3 shows the experimental results on DSTC-
9 data. The DSTC-9 dataset is difficult to evalu-
ate because of two reasons: 1) it contains direct
interaction between real users and multiple open-
domain chit-chat systems. These chit-chat systems
are trained with dialogue data in different domains
compared with ours. In another word, the DSTC-9
dialogue data is out-of-domain for our model and
can be used to test the generality of our method;
2) the average turns in a dialogue is around 27.2,
which is the longest among all datasets we used and
also much longer than the training data we used. It
is difficult for evaluation models to give a score for
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Dialogue Aspects | GPT-2 | Q-DCE [ FED [ D-Eval [ S-E(s) | S-E(f) [ (-drop) [ (-mir) [ (-drop,-mir) | Human
Dialogue-level (11 quality aspects) Spearman Correlation
Coherence 0.122 0.191 0.251 0.424 0.423 | 0.436 | 0.332 | 0.340 0.137 0.809
Error Recovery 0.097 0.109 | 0.165 | 0.351 0.363 | 0.393 | 0.252 | 0.269 0.135 0.840
Consistency 0.093 0.332 | 0.116 | 0.326 0.246 | 0.347 | 0.233 | 0.318 0.124 0.562
Diversity 0.145 -0.014 | 0.420 | 0.342 0.283 | 0.263 0.197 | 0.116 0.022 0.789
Topic Depth 0.094 -0.054 | 0476 | 0.375 0.316 | 0.327 0.204 | 0.177 0.004 0.833
Likability 0.178 0.098 | 0.262 | 0.357 0.345 | 0.390 | 0.285 | 0.275 0.074 0.838
Understanding 0.073 0.210 | 0.306 | 0.373 0.364 | 0.406 | 0.329 | 0.306 0.108 0.809
Flexibility 0.135 0.093 | 0.293 | 0.361 0.307 | 0.317 0.233 | 0.184 0.082 0.816
Informativeness 0.119 0.063 | 0.288 | 0.302 0.311 | 0.318 | 0.184 | 0.194 0.019 0.806
Inquisitiveness 0.070 0.115 0.163 | 0.294 0.401 | 0.421 0.309 | 0.267 0.085 0.769
Overall 0.121 0.140 | 0.443 | 0.428 0.428 | 0.435 0.252 | 0.272 0.055 0.830
Turn-level (9 quality aspects) Spearman Correlation
Interestingness -0.097 | -0.163 | 0.408 | 0.197 0.146 | 0.183 0.143 | 0.142 0.063 0.819
Engagement -0.096 | -0.138 | 0.318 | 0.119 0.149 | 0.206 | 0.126 | 0.128 0.047 0.798
Specificity -0.114 | -0.171 | 0.267 | 0.161 0.097 | 0.169 | 0.139 | 0.112 0.069 0.790
Relevance -0.103 0.085 | 0.152 | 0.171 0.263 | 0.282 | 0.174 | 0.175 0.101 0.753
Correctness 0.041 0.080 | 0.133 | 0.165 0.233 | 0.291 0.165 | 0.163 0.083 0.780
S.Appropriateness | -0.081 0.112 | 0.155 | 0.112 0.208 | 0.247 | 0.143 | 0.132 0.068 0.682
Understandable -0.076 | 0.195 | 0.111 | 0.116 0.136 | 0.173 | 0.110 | 0.111 0.046 0.522
Fluency -0.154 | 0.071 0.224 | 0.016 0.095 | 0.038 | 0.034 | 0.036 -0.047 0.714
Overall -0.090 | 0.014 | 0.209 | 0.207 0.255 | 0.292 | 0.146 | 0.140 0.067 0.820

Table 4: Comparison of both dialogue and turn level Spearman correlations on the FED evaluation dataset. Q-
DCE/D-Eval/S-E(s)/S-E(f)/"S." is short for QuantiDCE/DynaEval/SelF-Eval(simple)/SelF-Eval(full)/Semantically,
respectively. Scores with p-values larger than 0.01 are italicized (indicating statistical insignificance).

such a long conversation. In this experiment, all
models are fine-tuned on DailyDialog++ and the
RoBERTa-based models are all first pre-trained on
Empathetic Dialogue, ConvAl-2, and DailyDialog.

Pearson and Spearman correlations between the
model-generated scores and the corresponding hu-
man evaluation scores are computed in Table 3.
FED and DynaEval are chosen because they are the
SOTA dialogue-level evaluation models. We can
see that both SelF-Eval(simple) and SelF-Eval(full)
largely outperform SOTA baselines even though
all models are affected by the out-of-domain and
long conversation problems. The results show that
SelF-Eval is capable of learning a dialogue repre-
sentation for evaluating dialogue-level quality even
in a difficult dataset such as DSTC-9. To further
verify the generality of this evaluation ability, we
test with other out-of-domain datasets in the fol-
lowing sections.

5.3 Experiments on FED (Q2)

Table 4 shows the experimental results on FED data.
In both dialogue and turn-level evaluations, Spear-
man correlations between the model-generated
scores and the corresponding human evaluation
scores are computed. Models are trained in the
same setting as experiments on DSTC-9.

5.3.1 Dialogue-level Evaluation

There are 11 different aspects of the FED dialogue-
level evaluation. GPT-2 and QuantiDCE are SOTA

turn-level evaluation metrics. They evaluate a dia-
logue based on the aggregation of scores of all the
context-response pairs within the dialogue. We can
observe that most of their correlation scores (21
out of 22) on dialogue aspects are lower than those
of FED and DynaEval. The results are consistent
with the conclusion of previous studies (Yeh et al.,
2021) that turn-level quality evaluation may be in-
sufficient to assess the dialogue-level performance.

FED has the highest scores on Diversity, Topic
Depth, and Overall. These results may indicate
that the DialoGPT-based evaluation model (FED)
is better at measuring these three attributes than
the RoOBERTa-based models (DynaEval and SelF-
Eval). The reason is that DialoGPT uses a large
amount of Reddit data for training. The diverse top-
ics and variation expressions in Reddit data provide
DialoGPT with more insights on these attributes,
especially the dialogue-level Overall attribute. In
contrast, DynaEval and SelF-Eval are trained with
fewer dialogue data (fewer topics and variation ex-
pressions). The DynaEval focuses on modeling
the dependency between pairs of utterances and
the SelF-Eval focuses on modeling the correlations
between turns and the entire dialogue. They are
more useful for evaluating Coherence, Error Re-
covery, and Consistency aspects which reflect the
interaction between turns. Specifically, SelF-Eval
owns the highest correlation scores in 7 out of 11
dialogue aspects (Coherence, Error Recovery, Con-
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sistency, likability, Understanding, informativeness,
and Inquisitiveness) and the second-highest corre-
lation scores on Flexibility and Overall. SelF-Eval
successfully learns to measure these attributes with
our replacement strategies. The MLCL training
method captures the various dialogue attributes and
entails good dialogue-level representations. The
dialogue-level evaluation tasks are benefiting from
this representation. One way to improve the Diver-
sity and Topic Depth scores of RoOBERTa-based
models is to pre-train them with dialogue data
that contains more topics and domains. We can
also notice that SelF-Eval(full) is better than SelF-
Eval(simple) in most aspects. It means the simpli-
fied training method used by SelF-Eval(simple) is
not as strong as the original method introduced in
Figure 2.

5.3.2 Turn-level Evaluation

There are 9 different aspects of the FED turn-level
evaluation. The turn-level metrics (GPT-2 and
QuantiDCE) only get better correlations on 6 out
of 18 aspects than the dialogue-level metrics (FED
and DynaEval). The results indicate that the gen-
erality of these two turn-level evaluation models is
not strong. They work well only in constrained en-
vironments or on specific datasets. The FED model
achieves the highest correlation on Interestingness,
Engagement, Specificity, and Fluency. The reason
is that the DialoGPT used by FED is trained with
an auto-regressive mode and models language gen-
eration word by word. DialoGPT focuses more
on the token-level correlations and is effective for
evaluating the naturalness of an utterance. In con-
trast, all the RoBERTa-based models (DynaEval
and SelF-Eval) perform poorly for token-level as-
pects. This is because they focus on the correlations
in the turn level and do not pay enough attention to
the token level. One way to strengthen the fluency
and Specificity aspects of SelF-Eval is to introduce
token-level perturbation strategies in training data,
such as word drop and addition (Sai et al., 2021).
These strategies provide negative samples with se-
mantical or grammatical mistakes which may also
be used for setting multi-level turn qualities for
training. We consider this token-level perturbation
as future work. What’s more, we have a similar
finding to Zhang et al. (2021) that SelF-Eval(s)
and FED complement each other at turn-level. It
means that they both perform well in aspects that
the other one is not good at. SelF-Eval achieves the
highest correlation in Relevance, Correctness, Se-

Ul: My partner left me the other day.
U2: That’s rough, I’'m sorry to hear that.
R: Being a punching bag in a relationship is no good.
It’s a 2 way street. Is your partner doing their part?
Scores(Human / SelF-Eval / DynaEval): 0.77 / 0.84 / 0.50

U1: 1 was so stressed when i found out that i did not get
accepted in my dream college.

U2: Oh no. Did you have a good backup plan?

R: thats cool, i hope you have a good time.

Scores(Human / SelF-Eval / DynaEval): 0.25/0.09 / 0.46

Table 5: Case study on GRADE. U1/U2 are the dialogue
context and R is the response to be evaluated.

mantically Appropriateness, Understandable, and
Overall. The SelF-Eval(simple)/(full) outperforms
the best baseline 39.7%/22.0% on turn-level Over-
all, respectively. It also has the second-highest
scores on Engagement and Specificity. The results
are consistent with the dialogue-level evaluation
where SelF-Eval has good results on aspects that
reflect the interaction between turns. As in the
dialogue-level, SelF-Eval(full) is still better than
SelF-Eval(simple) on most aspects in turn-level.
To sum up the experiments on the FED dataset,
SelF-Eval performs well for both dialogue-level
and turn-level evaluations, especially the latter. The
reason is that the training process of SelF-Eval not
only models the correlation between turns and the
entire dialogue but also models the inner connec-
tion between context and response. Our method
successfully aligns the semantic information shared
by turns and dialogue and shows good domain
adaptability (on both DSTC-9 and FED).

5.4 Ablation Study (Q3)

Table 4 also shows the ablation study of the SelF-
Eval(full). Removing R-drop loss (-drop) in the
fine-grained training stage causes more declines
than (-mlr) in dialogue-level evaluations. This is
because the R-drop loss helps SelF-Eval to learn
more robust dialogue representations. Replacing
the mlr loss with BCE loss (-mlr) causes more de-
clines than (-drop) in turn-level evaluations. This
indicates that the mlr loss helps to distinguish the
turn replacement levels and the semantic incon-
sistency information caused by the replacements.
When removing both mlr and R-drop losses, the
performance declines significantly and the results
become statistical insignificance.

5.5 Case Study (Q4)

We randomly select 2 examples from GRADE for
the case study (Table 5). The task is to evaluate the
response when giving dialogue context. We com-
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pare the human rating (the relevance scores) with
the scores given by DynaEval and SelF-Eval(full).
They are both based on RoBERTa and could pro-
vide more insight into our model. In both cases,
the scores given by SelF-Eval are closer to the hu-
man rating score than DynaEval. This is consistent
with the experimental results in the turn-level Rel-
evance of the FED dataset. In both cases, scores
from SelF-Eval are more polarized than the human
evaluations. This indicates that humans may be re-
luctant to give extreme scores and SelF-Eval could
improve its performance by penalizing scores that
are too extreme. However, whether this penalizing
works for dialogue attributes other than relevance
requires further study.

6 Conclusion

We propose to measure dialogue quality by mod-
eling the fine-grained correlations between turns
and the entire dialogue. We introduce our data
construction method and SelF-Eval model. Ex-
periments show that SelF-Eval builds fine-grained
correlations and gets better correlation scores with
human ratings than SOTA models. We think our
method may have two potential applications: 1)
It can be used alone in the evaluation of dialogue
tasks after training the SelF-Eval model with a large
amount of in-domain data; 2) It can be combined
with other evaluation models (such as FED) to eval-
uate the dialogue task by integrating the advantages
of different evaluation models. In the future, we
would like to improve our method by 1) employing
multi-granularity turn-level scores; 2) modeling
the nonlinear relationships between replacement
numbers and dialogue quality.
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