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Abstract

This paper considers the task of parsing low-
resource languages in a scenario where parallel
English data and also a limited seed of anno-
tated sentences in the target language are avail-
able, as for example in bootstrapping parallel
treebanks. We focus on constituency parsing
using Role and Reference Grammar (RRG),
a theory that has so far been understudied in
computational linguistics but that is widely
used in typological research, i.e., in particu-
lar in the context of low-resource languages.
Starting from an existing RRG parser, we pro-
pose two strategies for low-resource parsing:
first, we extend the parsing model into a cross-
lingual parser, exploiting the parallel data in the
high-resource language and unsupervised word
alignments by providing internal states of the
source-language parser to the target-language
parser. Second, we adopt self-training, thereby
iteratively expanding the training data, starting
from the seed, by including the most confident
new parses in each round. Both in simulated
scenarios and with a real low-resource language
(Daakaka), we find substantial and complemen-
tary improvements from both self-training and
cross-lingual parsing. Moreover, we also ex-
perimented with using gloss embeddings in ad-
dition to token embeddings in the target lan-
guage, and this also improves results. Finally,
starting from what we have for Daakaka, we
also consider parsing a related language (Dal-
kalaen) where glosses and English translations
are available but no annotated trees at all, i.e., a
no-resource scenario wrt. syntactic annotations.
We start with cross-lingual parser trained on
Daakaka with glosses and use self-training to
adapt it to Dalkalaen. The results are surpris-
ingly good.1

1 Introduction

Treebanks play an increasingly important role in
typological research, where linguists are oftentimes

1Our experimental code is available at https://
gitlab.com/treegrasp/rrgproj2.
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“We revered, revered him.”

Figure 1: RRG annotation of a Daakaka sentence with
glosses, parts of speech, and translation. Glosses: 1p.in–
first person plural inclusive; DIST–distal TAM marker
(for past and counterfactual contexts); 3s: third person
singular

faced with (primarily) oral low-resource languages
and where grammatical frameworks such as Role
and Reference Grammar (RRG; Van Valin and
Foley, 1980; Van Valin, 2005) are a common choice
(Toratani and González Vergara, 2020). RRG is
a non-transformational linguistic theory strongly
inspired by typological concerns. Its development
was guided by the question of what a linguistic
theory would “look like if it were based on the
analysis of languages with diverse structures such
as Lakhota, Tagalog and Dyirbal [...]?” (Van Valin,
2005, p. 1). RRG assumes constituency structures
to be organized in layers, viz. nucleus (containing
the predicate), core (containing the nucleus and the
arguments of the predicate) and clause (the core and
extracted arguments). Furthermore, each layer can
have modifiers (termed periphery elements) and
operators. An example from Daakaka (an Oceanic
language, von Prince, 2015) is given in Fig. 1,
using the annotation scheme from Bladier et al.

https://gitlab.com/treegrasp/rrgproj2
https://gitlab.com/treegrasp/rrgproj2
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(2022).

With respect to complex constructions, i.e., com-
binations of more than one CLAUSE, CORE or
NUC, RRG distinguishes not just coordination and
subordination but, in addition, cosubordination.
The latter has the general form [[ ]X [ ]X]X, an
example is the combination of the two CLAUSEs
in Figure 1 into a larger CLAUSE. In such a con-
struction, an operator that applies to categories X
takes scope over both X daughters while being real-
ized only once. The TAM marker in Figure 1 for in-
stance assigns tense to both CLAUSEs. The various
ways of combining two NUC, CORE or CLAUSE
constituents differ with respect to whether one of
the two depends on the other, how tight the two
units are concerning time and location of the two
events, and to what extent the two units share op-
erators such as tense, aspect, modality etc., all of
which can be explained by the respective combina-
tion of layer level (NUC, CORE or CLAUSE) and
construction type (coordination, subordination or
cosubordination).

In this paper, we show a way to train RRG
parsers on only a little amount of annotated data
in the target language or, in the case of Dalkalaen,
even no annotated data, yielding parse trees that can
presumably reduce annotation effort considerably
when used as a starting point for treebanking. Fur-
thermore, the resulting parse trees might be suffi-
ciently good to be the basis for (semi-)automatic in-
vestigations of syntactic properties of low-resource
languages.

The scenario underlying our work is that we
have a limited amount of data (translated to En-
glish and possibly glossed), and that a small subset
of it (a few hundred or at most a few thousand
sentences) is annotated with RRG trees. This is
a realistic scenario for the result from typological
fieldwork and grammar description. Consequently,
and in contrast to most other proposals for parsing
low-resource languages, (i) we are not aiming at de-
pendency parsing but, instead, using a constituency
scheme often used in typological research, and (ii)
we cannot use a large language model trained on
the target language, but (iii) we can make use of ad-
ditional data typically included in fieldwork output,
namely glosses and translations.

We propose to improve parsing in this scenario
by cross-lingually injecting information from En-
glish translations (and glosses, if available) into the
target-language parser, combined with self-training.

The main research question we address in this pa-
per is to what extent this method improves perfor-
mance, and in what situations, i.e., at how many
annotated trees a language stops being “low re-
source enough” to be helped by this method. To
answer this, we test our methods on various sim-
ulated degrees of “low resource-ness”, from 100
training trees to over 4 000. To get more robust
data, we test our method not only on a real low-
resource language (Daakaka), but also on four other
languages for which parallel RRG treebanks are
available (German, French, Russian, and Farsi). In
all cases, we use English as the source language.
Finally, we conduct experiments on a language re-
lated to Daakaka, namely Dalkalaen, where we
have glosses and English translations but no syn-
tactic annotations (except for test data). The aim
is to test whether extending a cross-lingual parser
(with English as source language) to a related lan-
guage while keeping the source language leads to
useful results. The hypothesis is that parsing a
no-resource language (with glosses and English
translations, i.e., no-resource concerning syntactic
annotations) benefits from knowledge about the En-
glish translation and from knowledge learned from
a related language.

In the remainder of the paper, we will first dis-
cuss related work (Sec. 2), then explain our parsing
architecture, including grammar extraction, RRG
parsing, cross-lingual transfer, and self-training
(Sec. 3). Then, in Sec. 4, we will describe our
experimental setup, and Sec. 5 will discuss the re-
sults of the experiments. We conclude in Sec. 6.

2 Related Work

The problem of parsing low-resource languages has
been addressed both for dependency and for con-
stituency parsing for different scenarios concern-
ing available data on the target side and available
high resource parallel data (Zeman and Resnik,
2008; Vania et al., 2019). Many approaches as-
sume that there is enough unlabeled data for the
target language to train a language model (i.e., the
term ‘low resource’ refers only to syntactically an-
notated data). Schuster et al. (2019) for instance
use monolingual language models for both source
and target language and use a mapping between
decontextualized variants of these vectors to guide
the cross-lingual transfer. Mulcaire et al. (2019);
Kitaev et al. (2019) use polyglot language mod-
els trained on source and target data as input to
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crosslingual parsing. In contrast to this, we assume
a scenario where there is not enough target data to
train a language model.

There is also variation concerning the way the in-
formation from the source parse is injected into the
target parsing process. Many approaches project
the source parse onto the target sentence via align-
ments, sometimes even using multiple source lan-
guages (Agić et al., 2016). Instead of projecting
a parse of a source sentence to a target sentence,
McDonald et al. (2011) use parallel English data to
select among the k best parses of a target language
sentence by comparing to the parallel English parse.
In our case, we use only English parallel source
data, and we project supertag information along
word alignments.

Some approaches use delexicalized parsers (Mc-
Donald et al., 2011; Das et al., 2017), but it has also
been shown that lexicalization, in particular when
covering aspects shared between source and target
language helps (Falenska and Çetinoğlu, 2017). In
this vein, we experiment with including glosses in
the target language, which means that the target
language tokens contain information that is similar
to the information captured in the aligned English
tokens.

Self-training as a means of training data aug-
mentation for parsing has been proposed in a num-
ber of papers (McClosky et al., 2006; Reichart
and Rappoport, 2007; Rehbein, 2011; Rotman and
Reichart, 2019), though not in the context of the
above-mentioned approaches to cross-lingual trans-
fer in low resource parsing.

3 Method

RRG Parsing Following earlier work on RRG
parsing (Bladier et al., 2020b), we adopt a for-
malization of RRG as a Tree Wrapping Grammar
(TWG; Kallmeyer et al., 2013), a tree rewriting
grammar formalism in the spirit of Tree-Adjoining
Grammar (TAG; Joshi and Schabes, 1997). In their
parsing architecture, training trees are first decom-
posed by a rule-based algorithm into TWG elemen-
tary trees (supertags) and bilexical dependencies.2

A neural model is then trained to predict supertag
and dependency head probability distributions for
each word in a sentence. At test time, an A* pars-

2Note that the term ‘dependencies’ is used in a formal
sense here, i.e., denoting directed edges between tokens.
These edges mark combinations of the respective supertags
via (wrapping) substitution or adjunction. They correspond
only to a certain extent to dependencies in the linguistic sense.

ing algorithm takes these distributions as input and
computes the optimal TWG derivation and derived
tree. Because RRG trees contain crossing branches,
a decrossing step before supertag extraction and
a recrossing step between parsing and evaluation
on the gold data is required. Figure 2 shows an
example.

Note that decrossing is rather local, since cross-
ing branches usually occur within a single group
of layers CLAUSE – CORE – NUC (resp. XP –
CORE_X – NUC_X), as in Fig. 1 and 2. The de-
crossing algorithm of Bladier et al. (2020b), which
we use, differs from the graph decrossing method
proposed by Boyd (2007) in that the tree structures
undergo only minimal changes to largely preserve
the original tree structure and that it follows hand-
written rules to decross the nodes uniformly, e.g.
the discontinuous OPtns node under the CLAUSE
is always re-attached to the closest lower CORE
node. The co-anchoring for PPs without a clear
meaning contribution (e.g. made for the stairs)
and particle verbs (e.g. pick up) is simulated by
including the corresponding internal structure of
the dependent supertag into the head supertag (see
Fig. 2). The supertags are extracted with features
that indicate the original parent node, which facili-
tates the rule-based recrossing step after parsing.

For the steps of decrossing, supertag extraction,
A* parsing, and recrossing, we use the system de-
veloped by (Bladier et al., 2020a,b). Our cross-
lingual extension is in the neural supertag and arc
scoring module. The idea is illustrated in Figure 3:
we train a monolingual system for the source lan-
guage and then use its internal representations as
an additional input to a system for the target lan-
guage. The representations are fed through a cross-
lingual attention mechanism to take into account
word alignment information. The resulting cross-
lingual system takes a source-language sentence
and an aligned target-language sentence as input
(both are available in the parallel treebanking sce-
nario) and produces a parse for the latter. We now
describe the monolingual scoring module and our
cross-lingual extension in detail.

Monolingual Scoring Module The scoring mod-
ule of Bladier et al. (2020b) takes a sequence of
word embeddings (xi)

N
i=1 as input, to which a 2-

layer BiLSTM transducer is applied to provide con-
textualized word representations (hi)Ni=1. To these,
two additional 2-layer BiLSTMs are applied to
obtain supertag-specific (h(sp)) and dependency-
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Figure 2: Example for decrossing and subsequent supertag extraction. [PS=CL] indicates that the OPtns node was
originally immediately below CLAUSE. ⋄ indicates the position of the lexical anchor.
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Figure 3: Architecture overview

specific (h(dp)) word representations, respectively:

(h
(sp)
1 , . . . , h

(sp)
N ) = BiLSTMs(h1, . . . , hN ) (1)

(h
(dp)
1 , . . . , h

(dp)
N ) = BiLSTMd(h1, . . . , hN ) (2)

(h
(sp)
1 , . . . , h

(sp)
n ) are used to predict supertags:

Pr(sup(i)) = softmax(Linears(h
(sp)
i )) (3)

Finally, the dependency parsing component is
based on biaffine scoring (Dozat and Manning,
2017), in which the head and dependent represen-
tations are obtained by applying two feed-forward
networks to (h

(dp)
1 , . . . , h

(dp)
N ), hdi = FFhd(h

(dp)
i )

and dpi = FFdp(h
(dp)
i ). The score of word j be-

coming the head of word i is then defined as fol-
lows (M is a matrix and b is a bias vector):

ϕ(i, j) = dpTi M hdj + bThdj (4)

Cross-lingual Embeddings via Soft Alignment
Our cross-lingual system requires on input (i) a

target sentence (yi)
M
i=1 of length M , (ii) a cor-

responding source sentence (xi)
N
i=1 of length N ,

and (iii) a soft word alignment function a(j, i),
obtained using standard unsupervised word align-
ment. a(j, i) provides the probability of aligning
the j-th target word with the i-th source word (0
in the source sentence is used for unaligned tar-
get words), and it holds that for each j ∈ 1..M
the sum of all a(j, i) (i ∈ 0..N ) is 1. The align-
ment enables an attention mechanism that projects
the source supertag/dependency representations via
the word alignments onto the corresponding target
words. The source-side representations are pro-
vided by a monolingual parser trained on a large
dataset available for the source language. Formally,
let (h(src_sp)

i )Ni=1 and (h
(src_dp)
i )Ni=1 be the source

supertag and dependency representations (calcu-
lated as in Eq. 1 and Eq. 2). They are projected
along the alignment function to obtain the target
supertag/dependency projections:

h
(prj_sp)
j =

∑
i
a(j, i)h

(src_sp)
i (5)

h
(prj_dp)
j =

∑
i
a(j, i)h

(src_dp)
i (6)

These projections are then concatenated with the
target language supertag and dependency represen-
tations (h(trg_sp)

j and h
(trg_dp)
j , resp.), calculated as

in Eq. 1, 2 but without pre-trained embeddings:

h
(hbr_sp)
j = [h

(prj_sp)
j ;h

(trg_sp)
j ] (7)

h
(hbr_dp)
j = [h

(prj_dp)
j ;h

(trg_dp)
j ] (8)

where for two given vectors v and w, [v;w] de-
notes their concatenation. The resulting “hybrid”
representations, h(hbr_sp)

j and h
(hbr_dp)
j , are from
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this point on used as in the monolingual model in
order to determine the supertag distribution (Eq. 3)
and dependency head scores (Eq. 4).

Gloss Embeddings Language documentation
data seldom comes in parsed form, but often in
glossed form. For example, in the Daakaka and Dal-
kalaen data we use (cf. Section 4), each word is an-
notated with parts of speech as well as morpheme-
by-morpheme glosses, where content morphemes
are represented by English translations, and func-
tion morphemes by acronyms indicating their func-
tion (see bottom of Figure 1 for an example). These
glosses contain valuable information for parsing,
as they put words into morphosyntactic classes
and contain specific lexical information as well.
We experiment with making this information avail-
able to the parser by concatenating the character-
based word embeddings with character-based part-
of-speech and morpheme-by-morpheme gloss em-
beddings.

Self-training Self-training is a technique used to
improve learning on limited amounts of training
data. Applied to parsing, the idea is to train on what
little data is available first and use the resulting
model to parse unannotated data. Some of the
resulting parses are then selected and added to the
training data. The expanded training data is used to
train a new model. This process can be repeated for
multiple “rounds” of self-training (McClosky et al.,
2006; Reichart and Rappoport, 2007; Huang and
Harper, 2009; Kurniawan et al., 2021). Selection
of the added data is crucial; generally the idea is to
add those instances where the parser is especially
confident and that are thus likely to be correct.

4 Experimental Setup

Data Our choice of data is mainly driven by the
availability of RRG-annotated resources. RRG-
bank (Bladier et al., 2018) contains a subset of the
English Wall Street Journal Corpus (Marcus et al.,
1993) annotated with RRG trees. RRGparbank
(Evang et al., 2021; Bladier et al., 2022) contains
George Orwell’s novel 1984 in the original English
as well as translations to French, German, Russian,
and Farsi, along with sentence alignments between
English and every other language. The English data
as well as parts in other languages are annotated.
In addition, we use 6 499 sentences in Daakaka,
first published as von Prince (2013a) and described
in von Prince (2015), which come with glosses,

part-of-speech tags, and English translations, and
1 871 of which have been annotated with RRG trees
following the RRGparbank annotation guidelines.
Furthermore, we use 3 393 sentences in Dalkalaen,
first published as von Prince (2013b), also includ-
ing glosses and English translations, of which 102
sentences have been annotated with RRG trees.

We use all English trees in RRGbank and RRG-
parbank to train the English source model. For
German, French, Russian, Farsi, Daakaka, and Dal-
kalaen, we focus on sentences with 25 tokens or
less that are 1:1-aligned with an English sentence
(for Daakaka and Dalkalaen, this is almost all sen-
tences). Of these, we use 80% for training, 10%
for development, and 10% for testing. Note that
low resource language corpora are often oral cor-
pora, and they therefore tend to contain shorter sen-
tences. This is the reason why only very few of the
Daakaka and Dalkalaen sentences are longer than
25, and this is also why a sentence length limit of
25 simulates this low resource scenario adequately.
For Dalkalaen, we use the unannotated sentences
for self-training, while the 101 annotated sentences
are used for testing. In the case of Daakaka, we ran
experiments with and without gloss embeddings
(in addition to the token embeddings), while for
Dalkalaen we always used gloss and token embed-
dings.

We randomly downsample the training data ac-
cording to the degree of “low resource-ness” we
are simulating in each experiment.

English Source Model The English source
model uses FastText word embeddings (Bo-
janowski et al., 2017). We tuned its hyperparame-
ters using 80% of the data for training and 10% for
validation. We then trained it on the entire English
dataset.

Word Alignments For all sentence pairs (a sen-
tence in the target language and the aligned English
sentence), we computed a soft word alignment ma-
trix using efmaral (Östling, 2015) with default
settings (code modified to output matrices). For the
experiments using gloss embeddings, we align to
the glosses instead of the target-language words.

Target Models After a phase of hyperparameter
tuning on the development data (cf. Appendix A),
we trained 1) monolingual models and 2) cross-
lingual models on the (decrossed and decomposed)
training data for all target languages, except for
Dalkalaen.
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Total ≤ 25 tokens, 1:1-aligned
Source Language # Sentences # Trees # Sentences ∅ Length # Trees # Supertags
RRGbank English 49 208 3 765 n/a n/a n/a n/a
RRGparbank English 6 737 6 737 n/a n/a n/a n/a

German 6 661 5 822 5 026 13.0 4 482 3 128
French 7 261 3 243 4 550 12.9 2 339 1 815
Russian 6 669 6 001 5 638 11.2 5 315 3 293
Farsi 6 604 1 253 4 726 12.3 1 040 946

von Prince (2013a) Daakaka 6 499 1 871 6 279 10.3 1 845 1 170
von Prince (2013b) Dalkalaen 3 393 102 3 272 10.2 101 229

Table 1: Data overview. The versions of RRGbank and RRGparbank used are the 2022-03-17 snapshots.

Self-training We experiment with up to 5 rounds
of self-training. In each round, we use the current
parsing model to parse all sentences that are not
yet part of the training data. We then add the 500
output trees with the lowest weights as reported
by the A* parser to the training data. With poorly
performing initial models, it sometimes happens
that many parse failures occur and less than 500
parses are found in total. In these cases, we add all
parses.

For Daakaka and for the RRGparbank languages,
self-training starts from a parser trained on a set
of annotated trees, as described in the previous
section. For Dalkalaen, the starting point was the
parser trained on all annotated Daakaka data (train,
dev, and test), with glosses.

Evaluation We applied the neural scoring model
to the annotated part of the development/test data,
then computed RRG trees using the A* parser.
Failed parses were replaced by dummy trees con-
sisting of a SENTENCE root that directly dom-
inates POS tags taken from the highest-scoring
supertags. The resulting trees were recrossed and
compared to the manually annotated dev/test trees
using the EVALB metric (Collins, 1997), ignoring
function tags such as -PERI or -TNS. We report the
F1 score.

5 Results and Discussion

Impact of Training Data Size We are inter-
ested in low-resource scenarios, so we first look at
how the number of available training trees impacts
parser accuracy for different languages. This pro-
vides the baseline against which we will later eval-
uate our cross-lingual embedding and self-training
methods. We look at various degrees of “low
resource-ness”, simulated by randomly downsam-
pling the training set: 100 training sentences, 500,
1000, 2000, 3000, 4000, and finally the scenario
where we use as many training trees as possible

(varies by language). The blue dots in Fig. 4 show
the results. In all cases, we see a considerable
improvement in each step up to 2000 training sen-
tences, and after that (for those languages where
we have data), results improve only slightly. Note
that the f-scores in general are rather low (the best
ones around 80%) compared to state of the art con-
stituency parsing. This is due to the fact that, since
we are simulating a low resource scenario, we do
not use any pretrained word embeddings, even for
the languages where these would be available.

Impact of Cross-lingual Embeddings Fig. 4 (or-
ange crosses) also shows the effect of including
cross-lingual embeddings in the model. In general,
the less training data we have in the target language,
the more the cross-lingual information from the
aligned English sentences is helpful. Furthermore,
in none of the cases, the f-score of the cross-lingual
model is below the one of the monolingual model,
except for one slight outlier for German at training
data size 500. (Note however that on the test data,
cross-lingual transfer, with 500 or 1 000 training
sentences, is helpful for German, see Table 2.) The
only language where cross-lingual embeddings im-
prove parsing performance only very little, even
when using only 100 sentences of training data, is
Daakaka when using glosses. We think that the
reason for this is that the helpful information com-
ing from English words, in particular the implicit
information on English supertags, is already to a
certain extent provided by the glosses, therefore
the cross-lingual model does not contribute a lot of
useful additional features.

It is striking that monolingual parsing for Ger-
man with only little training data (500 or more
sentences) is better than for instance for French,
even though German has more syntactic variation
and therefore more supertags. We suspect that the
reason is that French has more ambiguities in high
frequency lexical items, in particular ambiguities
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Figure 4: Parser accuracies on the development sets at 100, 500, 1000, 2000, 3000, 4000, and all available training
sentences. Dots represent monolingual models, X’s represent cross-lingual ones.

that come with different syntactic constructions,
for instance the use of de and à as prepositions (‘of’
and ‘to’ respectively in English, ‘von’ and ‘an’ in
German) or as clause linkage markers preceding an
infinitive (‘to’ in English, ‘zu’ in German). With
more training data and pretrained embeddings as in-
put, this difference is reversed; Bladier et al. (2022)
report better parsing results on the RRGparbank
data for French and Russian than for German.

Impact of Self-training Now let us look at
whether self-training improves the parsing perfor-
mance, again for monolingual as well as cross-
lingual parsing. Figure 5 plots the f-scores for the
different languages and for different sizes of train-
ing data. Overall, we oftentimes see a positive
effect of self-training, and this effect is stronger in
the extremely low and very low resource scenarios
(100 and 500 training sentences resp.). The effect
is less visible with Daakaka with glosses, but the
experiments on the test data (see below) will show
that also for this scenario, self-training is actually
helpful. It is surprising that, even when starting
with only 100 sentences, which means that many
constructions in the target language are not present
in the training data, self-training improves results,
at least for approximately the first two rounds.

In the cases where we start with 1000 training
sentences or even with all available training data

(note that these have different sizes), the effect of
self training is less clear. In some cases, parsing per-
formance even decreases slightly. This means that
the trees added during self-training do not contain
new knowledge about possible supertag combina-
tions while containing probably errors that decrease
parsing performance when used in training. Note
however that these numbers are from just one run
on the dev data. On the test data, when averaging
over several runs, self-training helps for all lan-
guages when starting with 1000 training sentences
(see below).

Zero-shot parsing with self-training We now
investigate the scenario where we want to parse
language data that has glosses and translations, but
no syntactic annotations at all, not even a seed. We
focus on the scenario where we do have access to
a seed training set for a related language that also
has translations, and glosses following a similar
schema. This is also a realistic scenario in lin-
guistic fieldwork, where linguists often investigate
multiple related languages within a region. We
take the example of Daakaka, for which we have
a moderately sized training set, and the closely re-
lated language Dalkalaen, for which we have only
created a small annotated test set (102 sentences).
We apply our cross-lingual model to this scenario
by first training our model on all Daakaka data
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scenarios after 0, 1, 2, 3, 4, and 5 rounds of self-training, adding up to 500 sentences in each round (it can be less
due to parse failures). Solid curves represent monolingual and dashed curves cross-lingual models.

(train, dev, and test), and then using the unanno-
tated Dalkalaen data for self-training. The results
are shown at the bottom of Table 2. It can be seen
that even in this “no-resource” scenario, a perfor-
mance comparable with the low-resource scenario
can be reached.

Test Results After developing our models on the
development data, we tested them on the test data.
Here, we focus on the very low resource (500 an-
notated training sentences) and low resource (1000
sentences; 851 for Farsi) scenarios. We run each
experiment five times with different random seeds
(these affect the initial model parameters and the
downsampling of the training data) and give the av-
erage f-scores in Table 2; the numbers in bold are
the best results for a specific size of training data.
The results confirm even more clearly that both
cross-lingual transfer as well as self-training im-
prove parsing results. In both cases (500 and 1 000
resp. 851 training sentences) the cross-lingual
model systematically outperforms the monolingual
model, sometimes by a large margin (see the col-
umn with 0 rounds of self-training). Furthermore,
for all languages, self-training leads to further im-

provement, though not always with the same num-
ber of self-training rounds. For French in the
case of 500 training sentences, after the first three
rounds, the maximum score is already reached, and
for Farsi and Daakaka with glosses in the very
low resource scenario, the scores decrease after 4
rounds of self-training. For the other languages and
training data sizes, continuing to 5 rounds brings
further slight improvement. In most cases, the best
score is reached with the combination of cross-
lingual parsing and self-training, except for Farsi,
where mono-lingual parsing benefits substantially
from self-training while cross-lingual parsing im-
proves only very little.

6 Conclusions

In this paper, we investigated constituency parsing,
more precisely RRG parsing, for low-resource lan-
guages in a scenario where English translations,
a limited set of annotated sentences in the target
language and possibly also glosses are available.
RRG is a theory that is widely used in typologi-
cal research. We extended an existing RRG parser
into a cross-lingual parser, exploiting the parallel
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language German French
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 68.9 70.1∗ 70.9∗ 71.5∗ 71.9∗ 72.2 62.6 64.9∗ 65.0 66.3∗ 66.3 66.4
very low, cross 69.0 70.2∗

† 72.0∗
† 73.3∗

† 73.5∗
† 74.0† 69.9† 70.4† 71.6∗

† 71.9† 72.1† 72.2†
low, mono 74.3 74.7∗ 75.1 75.8∗ 75.8 76.0 69.4 70.6∗ 71.4∗ 71.5 72.0∗ 72.0
low, cross 74.7† 76.1∗

† 77.5∗
† 77.7† 78.2∗

† 78.3† 74.1† 74.4† 75.3† 75.9∗
† 75.7† 75.4†

language Russian Farsi
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 65.8 67.3∗ 68.0∗ 68.6 69.2∗ 69.2 66.7 69.7∗ 70.2 71.1 71.8 71.0
very low, cross 69.9† 70.4∗

† 71.4∗
† 71.9† 72.0∗

† 72.2† 69.2† 70.4 70.9 71.2 70.5 70.0
low, mono 71.7 73.1∗ 73.4 73.9∗ 74.3 74.4 71.3 74.1∗ 75.1∗ 74.8 74.9 75.7
low, cross 74.3† 75.1∗

† 75.3† 75.9∗
† 75.9† 76.0† 73.0† 73.2 73.4 74.2 73.9 73.9

language Daakaka Daakaka+glosses
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 63.0 62.8 64.7∗ 64.9 65.1 65.1 67.9 69.5∗ 70.1∗ 70.7∗ 70.9 70.5
very low, cross 66.0† 67.0∗

† 67.7† 68.3† 68.4† 68.8† 70.2† 70.7† 71.7∗
† 72.2∗

† 72.4† 72.2†
low, mono 67.6 68.1∗ 68.7 68.7 69.2 69.5 71.9 71.5 72.4∗ 72.9 73.4∗ 73.3
low, cross 70.4† 70.8† 70.8† 71.2∗

† 71.1† 71.3† 73.1† 73.7∗
† 74.3† 74.2† 74.5† 74.7†

language Dalkalaen+glosses
self-training 0 1 2 3 4 5
zero, cross 69.0 71.8∗ 72.4 73.0∗ 73.6 73.2

Table 2: Test results for the very low and low resource scenarios for German, French, Russian, Farsi, and Daakaka,
as well as the zero resource scenario for Dalkalaen. All f-scores are averaged over 5 runs with different random
initializations. ∗indicates that the result is significantly better (p ≤ .05) than the corresponding result with one less
round of self-training according to a permutation test (cf. Dror et al., 2018). †indicates the same for cross-lingual
results compared to the corresponding monolingual model.

English data and unsupervised word alignments.
Furthermore, we also adopted self-training, i.e., it-
eratively expanding the training data by adding the
most confident new parses in each round. Our
experiments showed that both self-training and
cross-lingual parsing yield substantial and in al-
most all cases complementary improvements. Fur-
ther experiments showed that even when only trans-
lations and glosses but no annotated sentences are
available, self-training starting from a cross-lingual
parser for a related language, based also on tokens
and glosses, leads to considerable improvements
and surprisingly good results.
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mono cross

character-level LSTM embedding layers
character size 25 25
depth 1 1
output size for words 300 300
output size: glosses 100 (0) 100 (0)
output size: POS 100 (0) 100 (0)
output dropout 0.1 0.1

common contextualization layer
input size 500 (300) 500 (300)
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

contextualization layer for taggers
input size 400 800
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

contextualization layer for biaffine layer
input size 400 800
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

auxiliary POS tagging layer
input size 400 400

supertagging layer
input size 400 400

biaffine dependency parsing layer
input size 400 400
hidden size 100 100
output size 100 100
dropout 0.1 0.1

A* decoder (partage-twg)
top-n tags given 15 15
top-n dep. heads 15 15
β probability cutoff factor (Clark and Curran, 2007) 0.01 0.01

Table 3: Hyperparameters in monolingual and cross-lingual models. Numbers in parentheses apply to models with
no gloss embeddings. Contextualization layers for the cross-lingual model have twice as big inputs because they
concatenate source-language and target-language representations.


