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Abstract

The COVID-19 pandemic has brought out both
the best and worst of language technology (LT).
On one hand, conversational agents for infor-
mation dissemination and basic diagnosis have
seen widespread use, and arguably, had an im-
portant role in fighting against the pandemic.
On the other hand, it has also become clear that
such technologies are readily available for a
handful of languages, and the vast majority of
the global south is completely bereft of these
benefits. What is the state of LT, especially
conversational agents, for healthcare across the
world’s languages? And, what would it take to
ensure global readiness of LT before the next
pandemic? In this paper, we try to answer these
questions through survey of existing literature
and resources, as well as through a rapid chat-
bot building exercise for 15 Asian and African
languages with varying amount of resource-
availability. The study confirms the pitiful state
of LT even for languages with large speaker
bases, such as Sinhala and Hausa, and identifies
the gaps that could help us prioritize research
and investment strategies in LT for healthcare.

1 Introduction

The world witnessed one of the worst pandemics in
early 2020, COVID-19, infecting over 250 million
people globally. Scientists and technologists from
various fields joined hands, lending support to deal
with this global crisis. Language Technology (LT),
particularly the conversational agents (aka chat-
bots), played a crucial role during the pandemic by
facilitating correct information dissemination (Li
et al., 2020; Maniou and Veglis, 2020) and early
disease screening (Judson et al., 2020a; Martin
et al., 2020b). Nevertheless, today practically use-
ful chatbots and other benefits of LT are available
only in a handful of languages (Joshi et al., 2020).
Despite impressive gains made by the Massively
Multilingual Transformer based Language Models
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(MMLM) (Devlin et al., 2019; Lample and Con-
neau, 2019; Aharoni et al., 2019; Conneau et al.,
2020; Xue et al., 2021) on standard NLP bench-
mark tasks (Pan et al., 2017; Conneau et al., 2018;
Yang et al., 2019; Ruder et al., 2021), the real-
world implications of such advancements remain
largely unexplored. Joshi et al. (2020) has high-
lighted such a disparity and proposed a language
hierarchy that comprises of the languages of world
classified into six classes based on their resource-
availability. In this hierarchy, Class 5 represents the
most resource-rich languages for whom benefits of
LT are readily available; and class O denotes the
most under-resourced languages.

In this paper, we ask the following two questions:
(1) Today, in which languages can we build practi-
cally useful LT systems, especially chatbots, that
could serve as beneficial assistants during the pan-
demic? (2) How should we prioritize research and
resource building investments so that LT is globally
ready before the next pandemic?

In order to answer these questions, we review
the existing literature and resources on COVID-
19 chatbots, and classify them based on the lan-
guages they support and the solutions they provide.
Quite unsurprisingly, the survey reveals a strong
disparity in LT solutions between resource-rich and
resource-poor languages. In order to quantify this
gap and measure the pandemic-readiness of various
languages today, we select 15 Asian and African
languages (except English) with various degrees of
resource-availability, and attempt to build COVID-
19 FAQ bots for them. Since building an end-to-end
chatbot is a substantial engineering effort, we scope
the problem down to building an intent classifier for
these languages, which forms the core of the Natu-
ral Language Understanding (NLU) unit. We also
experiment with entity recognition for a subset of
these languages. Our code and datasets have been
made publicly available to foster future research.’

'nttps://github.com/kabirahuja2431/
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Our study shows that despite using the best avail-
able commercial multilingual chatbot frameworks
(e.g., Google Dialogﬂowz, Microsoft Bot Frame-
work (MS Bot)3), advanced Machine Translation
(MT) systems4, and state-of-the-art massively mul-
tilingual language models (mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020)), there
is a 20-30% drop in performance for class O - 2
languages as compared to English. The drop is
large for all the African languages (e.g., Hausa and
Somali) and some of the Asian languages (e.g.,
Marathi and Sinhala). Note that our experiments
were limited to languages which are supported by
at least one of the chatbot frameworks, MT sys-
tems or MMLMs. There are thousands of other
languages which are supported by none. We have
experimented with one such language (Kikuyu) and
observed near random performance. Therefore, we
hypothesize that such languages are not at all ready
for the next pandemic.

We extrapolate our findings at global scale and
construct a global LT readiness map for pandemic-
response and healthcare. Based on this map as
well as error analysis of the chatbot experiments,
we identify a set of research problems as well as
resource-prioritization strategies which we believe
are key to ensure global LT readiness before the
next pandemic. More specifically, the purpose
of our work is about comparing the systematic
inequalities that exist across different languages
while deploying chatbots for emergency situations,
as well as showing that certain geographical re-
gions are in a disadvantaged position because even
the languages that are spoken by a large portion
of their population are ill-supported by current LT.
Finally, we provide recommendations on how this
gap can be bridged by suggesting investment strate-
gies for building LT systems which is otherwise a
tough ethical question.

The rest of the paper is organized as follows:
Sec 2 presents the literature survey on LT response
to COVID-19, specifically focusing on chatbots
built for the pandemic. Sec 3 describes the chatbot
building experiments, where in 3.1 we motivate
the choice of languages for the experiment, in 3.2
and 3.5 we discuss the intent and entity detection
experiments respectively. In Sec 4 we present the

Covidl9HealthBots
2https ://cloud.google.com/dialogflow
3https ://dev.botframework.com/

4https ://translate.google.co.in/
,https://www.bing.com/translator

global LT readiness map and in Sec 5, we conclude
with our recommendations.

2 Literature Survey

In the recent years, NLP for Healthcare has wit-
nessed a major uptake and an impressive volume
of work has significantly pushed the research for-
ward by developing sophisticated domain-specific
language models (Alsentzer et al., 2019; Lee et al.,
2020; Ji et al., 2021). These models have been
adopted to serve different axes of healthcare such as
patient provider communication (Min et al., 2020;
Si et al., 2020), information dissemination (Maniou
and Veglis, 2020), and self-care management and
therapy (Morris et al., 2018; Kadariya et al., 2019;
Park et al., 2019; Kamita et al., 2019). The role of
healthcare chatbots becomes crucial along all these
axes because of the recent adoption of telehealth
technology services (Bhat et al., 2021).

Chatbots have received a considerable interest
during the recent COVID-19 pandemic. Due to
the worldwide spread and severity of the virus and
subsequent global response, we believe that the
study of COVID-19 chatbots can provide us an
accurate picture of the global-readiness of LT. We
surveyed COVID-19 chatbots that are mentioned
in the literature and/or deployed in the real-world” .

2.1 Use-Cases and Technological Support

From the survey, two primary use-cases of COVID-
19 chatbots emerge — (1) information dissemina-
tion: answering pandemic-related questions asked
by the users (Li et al., 2020; Desai, 2021; Prasan-
nan et al., 2020; Mehfooz et al., 2020; Trang and
Shcherbakov, 2021), and (2) symptom-screening:
assessing risk factors associated with the symptoms
provided by the user for quick diagnosis (Ferreira
et al., 2020; Martin et al., 2020a; Judson et al.,
2020b; Quy Tran et al., 2021). Existing commercial
frameworks such as DialogFlow, Watson Assistant
and MS Bot have been used primarily for building
a majority of these chatbots (Li et al., 2020; Sophia
and Jacob, 2021). However, open-source bot frame-
works like Rasa (Quy Tran et al., 2021; Nguyen
and Shcherbakov, 2021) have also been gaining

’Besides healthcare, NLP has also proved beneficial in
providing aid during natural disasters like earthquakes and
floods (Lewis, 2010; Rudra et al., 2015; Ghosh et al., 2019;
Tsai et al., 2019; Basu et al., 2019). Strassel and Tracey
(2016) leveraged existing LT for resource-poor languages to
fight against the natural disasters. Though this study is limited
to pandemic readiness, we believe the state of LT for disaster-
readiness across the globe would be very similar.
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(d) Coverage of languages across different classes in the bots
deployed by governmental agencies , provider organizations
etc.

Figure 1: Bots developed (for both research and public deployment) for different language classes and their coverage.

traction in the community. The inbuilt NLU en-
gines supported by these frameworks makes chat-
bot development easy, hence there is a significant
uptake in utilizing these to develop new chatbots.
Pre-trained LMs were also leveraged for COVID
symptom identification (Oniani and Wang, 2020)
and question answering (Park et al., 2020).

2.2 Language Diversity

Which languages are supported by these COVID
bots? Of the 20 COVID-related bots mentioned
in the existing literature and 34 others deployed
by different countries to combat the pandemic, 26
(= 50%) are exclusively for English, followed by
German having 10 deployed bots. In Figure 1, we
show the distribution of the chatbots by the lan-
guage classes defined in (Joshi et al., 2020). As
expected, for all the cases, we observe that chatbots
were available primarily and almost exclusively for
languages in class 5. We observe a slightly higher
presence of class 4 and 3 languages in research
papers on COVID chatbots (Fig. 1a). For instance,
there are three research papers each for Hindi and
Vietnamese, both class 4 languages. (Mabrouk
et al., 2021) has been recently introduced to help in
information dissemmination about covid in African
languages. To the best of our knowledge, we could
not find any publication or deployed bot for class
0 languages. This skew is more prominent when
we consider the coverage of languages of different
classes, i.e., the fraction of languages in each class
for which at least one COVID-19 conversation sys-
tem was developed (Figure 1b and 1d). This lack

of attention to a large number of languages has also
been highlighted by Anastasopoulos et al. (2020)
who strongly advocated for the development of lan-
guage resources for improving access to COVID-
19 related information in 26 lesser-resourced lan-
guages, particularly from Africa and South and
South-East Asia.

3 Rapid Chatbot Building Exercise

How quickly can one build a pandemic response
chatbot in a language based on the best publicly
available systems? In order to answer this ques-
tion we have to understand the pandemic-readiness
of various languages. To do this, we made an at-
tempt to build chatbots for answering frequently
asked questions about COVID-19 using Google Di-
alogflow, Microsoft Bot Framework (MS Bot), as
well as two of the most popular Massively Multi-
lingual Language Models (MMLM) — mBERT and
XLM-R. Since building an end-to-end chatbot is
complex, we chose to conduct rapid prototyping
experiments for intent recognition in 16 languages,
and entity recognition in 3 languages.

3.1 Language Selection Criteria

For our experiments, we chose a few languages
from each language class (Joshi et al. (2020)) such
that at least one language per class is supported by
either of the two commercial chatbot frameworks,
leading to the set: English, Chinese from Class 5,
Hindi, Korean from Class 4, Bengali, Malay from
Class 3, Swahili, Hausa, Marathi, Amharic, Zulu
from Class 2, Assamese, Gujarati, Kikuyu, Somali

4322



from Class 1, and Sinhala from Class 0.
3.2 Intent Recognition

Intent Recognition is an essential component of
conversational systems. Given a user query, the
task is to classify it into one of the pre-defined
intent categories (Braun et al., 2017).

3.2.1 Dataset Creation and Characteristics

For training and evaluation, we curate a set of
147 queries categorized into one of the 14 intents:
1) Airborne (how COVID spreads by air), 2)
ClarifyCovid (difference between COVID and
other diseases), 3) Country (country-wise in-
fection statistics), 4) CovidTwice (possibility
of reinfection), 5) ExplainSymptom (COVID
symptoms) 6) Incubation (how many days
of incubation required), 7) Length (longevity
of infection), 8) Mask (ways of wearing mask),
9) Protection (ways to protect against in-
fection), 10) Quarantine (quarantine require-
ment of US), 11) Spread (how COVID spreads),
12) Testing (available COVID tests), 13)
Medication (about drugs to protect from
COVID), and 14) Treatment (about treatments
or therapies related to COVID). Examples and defi-
nitions of each intent are present in Table 3.3.

We refer to the FAQs provided by the UN (De-
partment of Operational Support, 2020) and user
queries in the dataset released by Anastasopoulos
et al. (2020), to identify the 14 types of questions
that a user may ask. We manually paraphrase the
questions to generate queries (Mean = 10.5, S.D.
= 4.36 queries per intent) for each intent in En-
glish. Two annotators with native English profi-
ciency independently classified these queries; the
inter-annotator agreement (k) was 0.89. We asked
a few native speakers of each of the selected lan-
guages to translate these 147 queries manually. The
dataset is split into train and test sets, using a strati-
fied split over the intents, giving a total of 76 and
71 queries in train and test set respectively.

3.2.2 Strategies of Developing Chatbots

We consider three training and inference strategies,
emulating the possible scenarios for developing
such chatbots in practical settings (Table 3.4).

Train on English Data: In this strategy, we
develop our bots by training them on the English
queries, and evaluate the intent detection perfor-
mance in different languages by automatically
translating the test queries into English (e.g.,
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Figure 2: Relative drops (relative to English) in intent
wise F1 scores for different languages in the Train on
Manual Translations setup (in LUIS). Negative values
indicate increase in the scores relative to English.

similar to Gupta et al. (2021)).

Train on MT Translations: Here we build target
language intent classifier models from training
data in different languages, which is obtained
by automatically translating the English training
data. The classifier is then tested on the manually
translated test data in the corresponding target
language. A similar method was adopted by
Balahur and Turchi (2012) for sentiment analysis.

Train on Manual Translations: In this setup, we
use the manual translations of the English training
dataset to train our bots in different languages. Like
the previous setups, here again we use the manu-
ally translated data to evaluate the intent detection
performance of the developed chatbots. Jennifer
Bot (Li et al., 2020) used a similar setup to extend
their English bot to Spanish. Note that this is the
most expensive setup in terms of data creation cost.

3.3 Intent Definitions and Descriptions

The different intents used for our experiments are
described in table 5. We provide definitions and
examples for each of the different intents used.

3.4 Bot Building Strategies
3.4.1 Experimental Setup

Commercial Frameworks: We use Google
Dialogflow and MS Bot Framework to train and
evaluate the FAQ bots in different languages. For
Dialogflow we use the ES Console, and for MS
Bot, we use Microsoft’s Language Understanding
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Intent Type Example in English Definition
Airborne Can the virus that causes COVID-19 be | Queries related to how much COVID is carried by air
transmitted through the air?
ClarifyCovid How do I know if it is COVID-19 or just | Queries related to difference betwen COVID and other
the flu? diseases
Incubation Can someone in incubation infect other peo- | Queries related to situations where a person is infected
ple? with COVID and is going through incubation phase
Length How long does the illness make you poorly | Queries regarding longevity of COVID infection
for?
Mask Should I wear a mask while exercising? Queries about wearing mask
Protection Ways to keep safe from COVID-19 Queries about the ways of protection from COVID
Quarantine Will I avoid coronavirus, if I self-isolate? Queries about the effect of quarantining after getting
infected with COVID
Spread Aside from inhalation, are there other ways | Queries about the spreading process of COVID
coronavirus can spread?
Testing Where can I get my test done? Queries about the testing process of COVID
CovidTwice If you get COVID-19, can you get it again? | Queries about whether COVID can infect someone
more than once
ExplainSymptom | Ihave a sharp pain here in the chest User explaining COVID related symptoms
Country How many people in Italy have COVID-19? | Querying about the statistics of infection in different
countries
Medication Do any of the drugs reduce mortality? Querying about the medication to survive from COVID
Treatment Which vaccines are good to protect against | Querying about the treatment strategies associated with
the virus? COVID
Table 1: Different intents with definitions and examples present in our dataset.
Bot Building Setup Training Strategy Testing Strategy

Train on
English Data

Train on MT
Translations
tem
Train on
Manual
Translations

queries in target language

Train set comprises of the English queries

Train set comprises of the English queries
translated to target language using MT Sys-

Train set comprises of manually written

Test set comprises of English queries where the manu-
ally written queries in target language are translated to
English using MT system

Test set comprises of manually written queries in target
language

Test set comprises of manually written queries in target
language

Table 2: Different strategies for building the chatbots.

Service (LUIS)7 framework. Dialogflow and LUIS
supports 7 and 6 out of our 16 selected languages,
respectively. For the unsupported languages, we
could only experiment with Train on English Data.

Pre-trained MMLMs: We evaluate two popular
MMLMs, namely mBERT (bert-base-multilingual-
cased) and XLMR (xim-roberta-base), for our
intent detection experiments. XLM-R supports
all but Kikuyu, Somali and Zulu, while mBERT
supports all but Ambharic, Assamese, Hausa,
Kikuyu and Zulu. For these models, we only
evaluate the Train on Manual Translations setup.
We experiment with two different approaches for
building intent classifiers with these models: 1)
Using k-Nearest Neighbors on the sentence embed-
dings obtained through the MMLM to classify the
intents as done in Caron et al. (2021), ii) Training

7https ://www.luis.ai/

an end-to-end classifier by fine-tuning the pre-
trained MMLM. We report the best scores out of
these two setups for both MMLMs (details in A.3).

Evaluation: We report the relative accuracy drop
d; for each target language [ from English (en),
defined as (A., — A;)/(Aen) X 100, where A
is the accuracy of intent classification for [ on the
held-out test set®. Thus, lower the value of §;, better
is the state-of-the-art of LT for the language (.

3.4.2 Results and Analysis

Table 3 presents the intent classification results
which reports the relative drop of the model’s ac-
curacy with respect to English. While the relative
drop d; is reported, we also mark the values with
a T wherein the absolute accuracy, A; falls below
67%. We use this as a minimum viable threshold of

8 . . .
Absolute accuracies are not reported since we do not in-
tend to compare the performances of commercial frameworks.
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Train on English Data

Train on MT Translations

Train on Manual Translations

Class Languages DF LUIS DF LUIS DF LUIS mBERT XLM-R
5 Chinese 0.60 5.00 17.50" 18.40° 0.04 (5.20) (5.63)  (8.50)
4 Hindi 12.50 0.05 16.25" 25.01"  13.02 1050 12.72f 19.15f
Korean 6.50 13.717 31.20 11.55 23.75°  10.00 563" 10.88"
3 Bengali 20.50" 13.15"7  26.25" x  11.80 X 7.04 2.13"
Malay 21.24" 11.87 19.53 X 12.50 X 477 14.89"
Swahili 28.08" 18.00 X X X x  32.39 19.15f
2 Hausa 40.97" 34.00" X x x X x 2979
Marathi 21.23' 14.00"  28.08' 287" 1625 17.76'  16.90"  29.79"
Amharic 43.06' 34.82" X X X X x  12.39"
Zulu 30.56" 11.28 X X X X X X
. Assamese  19.52° 18.00 X x x X x  29.79'
Gujarati 15.55 10.03 X 22.88" x 2288 477  19.15"
Kikuyu* 97.60" 76.87" X x x X x x
Somali 40.56 27.58" X X x X 2535 x
0 Sinhala 35.00° 19.00°  34.93 x 1565 x 61977 19.15

Table 3: §; for each language for the Intent Recognition task using the three different strategies. X indicates that
the framework does not support end-to-end chatbot development for that language. Drops that lead to accuracy
below 67% are marked by T, indicating the case where the bot mis-recognizes 1 out of every 3 queries. *Owing to
non-availability of standard MT for Kikuyu, we used Safarini6 app from Android playstore for translation. Note:
The values mentioned in the parantheses indicate that we observe relative gain instead of drop.

Lang Issue Actual Example

Misclassified Translated Example

Si Terminology Mismatch
Bn  Fluency
Hu Relevance
Hu  Fluency,
Mismatch
Hu  Terminology Mismatch

Terminology

ming?

I have hay fever though too.

Is SARS-CoV-2 airborne?

I got the virus. How long does it go on for?
How long should I wear a mask?

Is it healthy to wear a mask during swim-

I also have gonorrhea.

Does SARS-CoV-2 sit in the air?

I Nasami Cutar. How long will it take?
How long will I impose sanctions?

Is it safe, can I wear fascist sanctions
when I swim?

Table 4: Excerpts of test instances showing bottlenecks of MT systems in the Train on English Data setup.

the performance, as below this the model will mis-
classify more than 1 out of every 3 queries which
might not be useful for real world deployments. As
expected, we observe high d; for languages belong-
ing to class 3 or lower, with most of the accuracies
below the acceptable limit.

Comparison across the three setups: We ob-
serve that for classes 4 and 5, Translate on English
Data performs at par or even better than the most
expensive Train on Manual Translations setup.
This may be because the MT translations from
these languages to English is highly accurate.
On the other hand, for languages belonging to
class 3 or lower, Train on Manual Translations
led to better performance, arguably due to poorer
performance of the MT system. Unfortunately,
the Train on Manual Translations method is the
most expensive in terms of data curation cost,

hence may be the hardest to implement in the
midst of a pandemic. The problem becomes worse
because a majority of class 3 and lower languages
are not supported by current chatbot frameworks.
Even when supported, their performance is below
the acceptable limit (e.g., Marathi, Gujarati).
One of the reasons is the difficulty in correctly
identifying technical intents like Airborne and
Incubation in such low-resource languages
(Figure 2). Since a few of these low-resource
languages are present in the pre-training dataset
of mBERT and XLM-R, we can evaluate them
for Train on Manual Translations. There is a
similar pattern in accuracy drop for MMLMs,
however the accuracy begin to fall below the
acceptable limit (67%) from class 4 languages
onward. There is a remarkable drop in mBERT’s
accuracy for Sinhala (class 0). In general, we
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find mBERT to outperform XLM-R, except for
Swahili and Sinhala. This may be due to the
better representation of these languages in the
pre-training corpus of XLM-R (CommonCrawl
Corpus). This strongly indicates the importance
of the pre-training dataset size for developing LT,
both in terms of absolute size as well as relative
size to other languages (Wu and Dredze, 2020).
As expected, the performance in Train on MT
Translations setup is the worst among the three;
except for Korean in LUIS, all values lie below the
acceptable limit, which could be a compounded
effect of poor translation quality and inferior NLU
solutions. To conclude, all languages in class 3-5
had at least one solution yielding an acceptable
accuracy, while all languages in class 0-2, except
Gujarati, Sinhala and Zulu, had no acceptable
solution.

Lost in Translation: Table 4 shows the intent
misclassification errors due to the errors in MT
translations. The manual translation in the target
language correspond to the ‘Actual Example’ in
English, and the phrase translated back to English
for the Train on English Data setup is reported
under the ‘Misclassified Translated Example.” We
categorize the translation errors as Terminology
Mismatch, Fluency and Relevance (Li et al.,
2020). We find that domain-specific terms often
get translated incorrectly into English (4). In a
few cases, the translations result in unnatural
queries resulting in loss of fluency, such as Does
SARS-CoV-2 sit in the air?. All these factors lead
to poor performance of Train on English Data
setup for low-resource languages. We find that
Terminology Mismatch is the most common issue
affecting the performanceg. Interestingly, technical
terms like incubation does not exist in a few of
our target languages, hence the manually written
test queries in these languages just had the English
term written in that language’s script. In such cases,
we found lesser performance drop compared to
languages when equivalent vocabulary exists in the

While investigating the correlation between the transla-
tion quality (BLEU (Papineni et al., 2002)) between the refer-
ence original English query and the back-translated English
string from each manually written query in target language)
and the intent classification results, we did obtain a positive
spearman correlation coefficient with the value of 0.36. and a
p-value 0.21. With a p-value of 0.21 the correlation is not sta-
tistically significant which we suspect might be due to BLEU
not being a great measure of translation quality (Sulem et al.,
2018) to measure the subtleties discussed above.

target language. E.g., high drops in F1-score for
intents like “Quarantine"”" and “Incubation"
in Hausa (76%, 100% respectively) and Ambharic
(56%, 100%) justify this, whereas for Zulu, where
the human translator used English terms in their
queries resulted in much lower drop in F1 scores
(20%, 0%). See appendix for the intent-wise F1
scores for different languages.

Implications: Based on our experimental results,
we wish to explore how to prioritize the resource-
investment strategies to push the state of current LT
forward. Resource-poor languages mostly under-
perform across all the three set-ups, so then should
we invest more towards developing better transla-
tion systems or focus more on improving the cur-
rent NLU solutions for different languages? We
observe that a good quality translation system can
support building bots from scratch in a new lan-
guage, and often performs on-par with the Train on
Manual Translations setup for high-resource lan-
guages (e.g., Korean, Hindi) and sometimes even
for low-resource languages (e.g., Gujarati). Build-
ing bots from scratch in a new language is resource-
intensive, requiring rapid prototyping, which may
be infeasible during a crisis since massive data
collection efforts need to be made. Therefore, a
generic way to ensure pandemic-readiness in a lan-
guage is by ensuring reasonably accurate MT sys-
tems similar to that for class 4 languages. Improv-
ing representation of low-resource languages in
the pre-training datasets of existing multilingual
models (specifically on domain-specific corpora as
done by (Gu et al., 2021; Zhang et al., 2020)) is yet
another way to ensure preparedness, as it can lead
to improved performance of the MMLMSs on these
languages (Wu and Dredze, 2020). Unlabelled lan-
guage data for low resource languages can also be
leveraged to build Machine Translation systems in
these languages when used in conjunction with the
parallel data in high resource languages for train-
ing massively multilingual models. (Siddhant et al.,
2022; Bapna et al., 2022).

3.5 Entity Recognition

We also evaluate the developed chatbots on another
core task of NLU, i.e. entity recognition (Ali, 2020)
on English, Hindi and Bengali. To train and evalu-
ate different COVID bots on this task, we use a set
of 200 user related queries (obtained by augment-
ing existing dataset of 147 queries). Entity types
were identified from a subset of labels from the
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Figure 3: World map showing the Readiness of each country in terms of fighting the next pandemic using LT.

CORD-19 NER dataset (Lu Wang et al., 2020), and
the queries were accordingly tagged by two native
speakers of Bengali and Hindi. Overall, our dataset

had a mix of medical and non-medical entities. The
final set of medical entity types consists of: Covid

(COVID-related entities), PhysicalScience
(technical terms related to bio-molecular mech-
anism of the disease), and Disease (any form
of illness or symptoms). The non-medical en-
tity types are: BodyPart (name of the body
part), Country (country name), Duration
(Iength in days), Protection (ways to protect
against COVID, such as ‘mask’, ‘gloves’), and
InfoSource (source of information). Country
(country name). For generating the equivalent trans-
lations, we manually aligned the entity tags in two
languages: Hindi (supported by DialogFlow and
LUIS) and Bengali (supported by DialogFlow). In
majority of the cases, we observe that domain-
specific entities such as incubation, ACE-2
Cells, biochemical assays are hard to
predict by these models on languages other than En-
glish. For instance, for Covid entity, we observe
significant F1-score drop of 24.6% for Hindi and
42.9% for Bengali. However, for non-medical enti-
ties, these models were found to perform compar-
atively better, e.g., drop in Fl-score on Country
tag was 5.2% for Hindi and 8.9% for Bengali.

4 Measuring Global Readiness

Although our current work focuses on analyzing
pandemic-preparedness of only 16 languages, here
we try to generalize our findings to other lan-
guages by introducing a Readiness Score for ev-
ery language which empirically measures the pre-

paredness of current LT to serve its speakers in
a pandemic-like emergency situation. The def-
inition of readiness is based on the assumption
that one has access to the best available LT by
considering the highest intent detection accuracy
of A] for a language across different frameworks
and training setups. We then define the readiness
of a language [ as its relative accuracy with re-

spect to English as r; = m%
denotes the best case accuracy on English, and
Arandom 18 the accuracy of a random classifier:
Avandom = 100/numberO fIntents.

We would like to interpolate r; for all the lan-
guages of the world, and hence would need more
training examples than the 16 languages that we
currently have. We select a set of 11 proxy lan-
guages (details in Appendix A.5). This has been
done in order to ensure the coverage of the fea-
tures of major language families in the world "’
while training the model. For these languages, we
compute proxy accuracies A; by building and eval-
uating chatbots on MT translated data. We then
train a Gaussian Process Regression model for pre-
dicting readiness scores with the r; values for the
27 languages as our training set. We use geograph-
ical and genetic features from the URIEL database
(Littell et al., 2017) to represent the languages. The
predictive model, which has an average absolute
prediction error of 5%, is then used to estimate
the readiness scores of 116 new languages sup-
ported by major MMLMs (mBERT and XLLM-R)
and/or translators (Google and Microsoft). For all

*
, where A,,

1OEthnologue 24 (2021): https://en.wikipedia.
org/wiki/List_of_language_families

4327



https://en.wikipedia.org/wiki/List_of_language_families
https://en.wikipedia.org/wiki/List_of_language_families

other languages, we set r; = 0, as one can expect
near random performance without any LT, as we
did see for Kikuyu (Table 3). The estimated fi-
nal r; scores for all the languages were used to
extrapolate the pandemic-readiness of each coun-
try ¢, as follows. We use the country-wise lan-
guage and speaker demographic data'' to calculate
the country-wise readiness (similar to Blasi et al.
(2021)), rc = ) jep. Scir1, Where L. is the set of
languages spoken in country ¢, and s, is the frac-
tion of ¢’s population forming native speakers of
the language [. The r. values were clustered to gen-
erate five classes (Extremely ill-prepared: 0-0.33,
[ll-prepared: 0.33-0.74, Moderately prepared: 0.74-
0.83, Well prepared: 0.83-0.92, Fully prepared:
0.92-1) using Jenks’ natural breaks optimization
(Jenks, 1967). These classes were used to generate
a readiness heatmap of the world (Fig 3).

Observations: From Figure 3, one can observe
that South and East African countries are Ex-
tremely ill-prepared, due to the high dominance
of low-resource languages. For instance, people
in Zambia’s speak Bemba, Chewa and Luzi, all of
which are severely under-resourced. As pointed
out in Anastasopoulos et al. (2020), these regions
might also be worse-hit in a pandemic situation,
and therefore, require immediate attention. For
[ll-prepared regions such as Bolivia in South Amer-
ica, and Guatemala in Latin America, r; values
are slightly better due to the abundance of Span-
ish speakers, however there is a sizeable popu-
lation speaking under-served languages such as
Q’eqchi and Guarani. Countries that fall within
fully to moderately prepared categories typically
have large native speaker population of one or more
of the class 5 languages (English, French, Chinese,
Arabic) and/or well-supported languages (e.g., Ko-
rean, Bengali, Malay). It is important to note that
while approximating readiness of a language, we
assumed same value for all its diverse linguistic
variants and dialects, which in certain cases results
in overestimation of r.. High 7. for north and
central African countries (e.g., Libya, Egypt and
Sudan) might be due to sizeable population of a
resource-rich language Arabic. However, Arabic
has several dialects, which vary from the Modern
Standard Arabic at various linguistic levels, and
consequently the performance of LT systems for
such dialects also vary considerably (Zbib et al.,

“Infoplease Languages Spoken in Each Country of the
World: https://bit.ly/3HoAs9K

2012; Alsharhan and Ramsay, 2020). It holds true
for Spanish and Portuguese spoken in Latin Amer-
ica (Lipski, 2014) and French dialects of Western
Africa.

5 Conclusion and Recommendation

From our chatbot development experiences, we un-
cover a set of interesting insights to arrive at the
following recommendations which can improve the
state of preparedness of languages to develop use-
ful technologies during the next pandemic.

— Our experiments showed that low-resource In-
dian languages (such as Marathi, Bengali) were
benefited due to the presence of a geographically
and/or linguistically closely related well-resourced
language (Hindi). This notion of such “bridge" lan-
guages has been explored before in the context of
MT (Paul et al., 2013) and zero/few-shot transfer in
MMLMs (Lauscher et al., 2020). We recommend
the community to target bridge languages for the
regions that are currently poorly prepared from an
LT perspective.

— Drawing insights from the brittleness of MT for
domain-specific terms (airborne, incubation) or
newly-coined terms (COVID), we believe that com-
mercial and open-source bot frameworks can ben-
efit from domain adaptation techniques (Chu and
Wang, 2018), or techniques to inject new terms to
existing solutions.

Our study confirms that except English, only
a few European and Asian languages push for-
ward the state-of-the-art research in LT for health-
care. Our preliminary investigation suggests that
instead of demographic demand, it is the economic
prowess of the users of a language that drives the
investment towards developing sophisticated LT so-
lutions for a given language. For instance, Swabhili,
even though considered as the lingua franca of
Africa, is still under-served by commercial chat-
bot frameworks. Similar trends were observed for
Hausa which has a considerably large speaker base
compared to Dutch (resource—rich)lz.

We believe that these findings will play a cru-
cial role in making the community aware of the
disparity that needs to be addressed before the next
pandemic hits.

12https://en.wikipedia.org/wiki/List_
of_languages_by_number_of_ native_
speakers
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A Example Appendix

A.1 Intent Definitions and Descriptions

The different intents used for our experiments are
described in table 5. We provide definitions and
examples for each of the different intents used.

A.2 Bot Building Strategies
A.3 MMLM Training Setup

For our experiments with Multilingual Pre-trained
Transformers we consider mBERT (bert-base-
multilingual-cased) and XLMR (xlm-roberta-base)
for training intent classifiers. As mentioned in the
main text we explore two methodologies to train
and evaluate these MMLMs, a detailed description
with hyperparameters is given below:

1. KNN using Pre-trained Embeddings:
Since the scale of our data is on the lower side,
training an end-to-end classifier might be prone to
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Intent Type Example in English Definition
Airborne Can the virus that causes COVID-19 be | Queries related to how much COVID is carried by air
transmitted through the air?
ClarifyCovid How do I know if it is COVID-19 or just | Queries related to difference betwen COVID and other
the flu? diseases
Incubation Can someone in incubation infect other peo- | Queries related to situations where a person is infected
ple? with COVID and is going through incubation phase
Length How long does the illness make you poorly | Queries regarding longevity of COVID infection
for?
Mask Should I wear a mask while exercising? Queries about wearing mask
Protection Ways to keep safe from COVID-19 Queries about the ways of protection from COVID
Quarantine Will I avoid coronavirus, if I self-isolate? Queries about the effect of quarantining after getting
infected with COVID
Spread Aside from inhalation, are there other ways | Queries about the spreading process of COVID
coronavirus can spread?
Testing Where can I get my test done? Queries about the testing process of COVID
CovidTwice If you get COVID-19, can you get it again? | Queries about whether COVID can infect someone
more than once
ExplainSymptom | Ihave a sharp pain here in the chest User explaining COVID related symptoms
Country How many people in Italy have COVID-19? | Querying about the statistics of infection in different
countries
Medication Do any of the drugs reduce mortality? Querying about the medication to survive from COVID
Treatment Which vaccines are good to protect against | Querying about the treatment strategies associated with
the virus? COVID
Table 5: Different intents with definitions and examples present in our dataset.
Bot Building Setup Training Strategy Testing Strategy

Train on
English Data

Train on MT
Translations
tem
Train on
Manual
Translations

queries in target language

Train set comprises of the English queries

Train set comprises of the English queries
translated to target language using MT Sys-

Train set comprises of manually written

Test set comprises of English queries where the manu-
ally written queries in target language are translated to
English using MT system

Test set comprises of manually written queries in target
language

Test set comprises of manually written queries in target
language

Table 6: Different strategies for building the chatbots.

over-fitting. We fit a k-Nearest Neighbors (KNN)
classifier on the sentence embeddings obtained us-
ing the pre-trained model for the queries in training
data. At test time, we similarly obtain the rep-
resentation of the user query and find its nearest
neighbors among the training queries to predict its
intent. The optimal value for & was empirically
found to be 1 and for sentence embeddings, we
take the average of the representation of each token
of the sentence in the last layer of MMLM.

We also tried fine-tuning the pre-trained model
with the training queries using a Masked Language
Modelling (MLM) objective. Additionally, we also
fine-tuning on a much larger COVID-19 queries
dataset in english : COQB (Li et al., 2020) along
with our training queries, as has been pointed
by Lauscher et al. (2020) can be an effective
strategy for few shot transfer. We use 3 epochs to
fine-tune the models with a learning rate of 5e-5

and Adam-W optimizer (Loshchilov and Hutter,
2019). A masking probability of 15% was used
during the MLM training and maximum sequence
length was taken to be 32.

2. Fine-tuning an End to End Classifier :

We also try fine-tuning the MMLMs end-to-end
by adding a classification head on top of the pre-
trained network to classify the input query into one
of the 14 intents. We adapt the sequence classifi-
cation scripts for GLUE benchmark (Wang et al.,
2018) provided by hugging face'” on our dataset.
We fine-tune the classifier for 20 epochs, with the
same learning rate and optimizer as the MLM fine-
tuning in the first point with a batch size of 8.

For every language we use the best accuracies

13https ://huggingface.co/transformers/
v2.9.1/examples.html
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Medical Non-Medical
Lang Bot Covid PhysicalScience Disease BodyPart Country Duration Protection InfoSource
Hi DF 24.6 50.1 +3 32 7.52 52 11.3 +30.1
LUIS 24.56 +41 94 21 5.31 +4 12.06 +72.72
Bn DF 429 43.1 52 34 6.3 8.9 204 8.34

Table 7: Relative drop in entity-type wise Fl-score in Entity Recognition task using DialogFlow (DF) and LUIS.

obtain from either of these two strategies 4 All the
experiments were run on 4 NVIDIA V-100 GPUs
with 32 GB memory.

A4 Language Readiness Analysis

Results and Analysis

Initially, we have plotted the readiness measures
of each language used in our training data on the
scatter plot in Figure 5 with the language class on
X-axis and readiness measure in Y-Axis. It clearly
shows that the African languages such as Somali,
Amharic, Hausa, Zulu are below the trend-
line in terms of readiness. In fact, some of
the European languages such as Icelandic,
Hungarian, Estonic, Finnish also re-
quire some attention. Primarily, we observe that
the readiness measure is not a direct function of the
language class from this plot. As we can see that
even though majority of the class 4 and 5 are near
the trend line, the observation is similar for Class 1
as well.

Therefore, we also resort to understanding how
much does the trend hold true for the language
families of these corresponding languages? So, we
approximate each of the language family by taking
the average scores of each language falling into that
class and plot those in Figure 6. It was interesting
to observe that the English-major language fam-
ilies such as Austroasiatic, Koreanic
and Sino-Tibetan are well-served, and con-
sequently lie above the trend line. Overall,
Indo-European language families are well near
the trend line and then the resource-poor language
families are Afroasiatic, Niger-Congo
and Uralic, the worst being the Afroasiatic
language family.

A.5 Details on Language Readiness Prediction

In section 4, we discussed the estimation of
readiness values of different languages. We first

14technically 4, as in the KNN case we consider no fine-
tuning, fine-tuning on Train Queries, and fine-tuning on Train
and COQB queries

extended our 16 languages that we considered
for intent recognition experiments with proxy
scores for an additional 11 languages, namely,

French (fr) , Arabic (ar), German
(de), Spanish (es), Portuguese
(pr), Vietnamese (vi), Hungarian (hu),
Finnish (fi), Czech (cs), Estonian

(et),and Icelandic (is). Finally, it covers
six primary language families in the world, such
as: 1) Indo-European, 2) Sino-Tibetan,
3) Afroasiatic, 4) Niger-Congo, 5)
Koreanic and 6) Austroasiatic. To
estimate the readiness values of the remaining 116
languages supported by the Translators (Google
and Bing) and MMLMs (mBERT and XLMR), we
used the available readiness data for the 27 to build
a regression model. We used Gaussian Processes
to model the readiness prediction problem, due
its efficiency on the small sized datasets. Radial
Basis Function (RBF) with added noise level
for each instance (White Kernel), was used, and
the length scale of RBF and noise level were
tuned using L-BFGS algorithm with 5 restarts
for the optimizer. The model selection was done
using a Leave One Out strategy, where we move
one language to validation set and train on the
remaining, repeating this for all the languages and
measuring average accuracy. Besides Gaussian
Process Regression (GPR), we also experimented
with Linear Regression, Lasso Regression and
XGBoost (Chen and Guestrin, 2016), but observed
inferior validation accuracies.

A.6 Global Pandemic Readiness
Measurement

In section 4 of the paper, we have talked about
how to actually take the speaker-base values into
account while calculating the readiness scores for
each country in the world and the final r; scores
obtained on all the languages are used to extrapo-
late the readiness of each country c in the world.
We had also experimented in a way such that all
the languages spoken in the country are weighted
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Figure 5: World Map showing the Readiness of each country in terms of combating the next pandemic using LT.
Their Levels of Preparedness are shown as legends in the bottom left corner. This map was generated by providing
uniform weightage to all the languages spoken in a country, i.e. excluding the percentage of speaker-base for a
particular language in a country (Readiness measure calculated using Equation 2).
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Figure 6: shows the readiness scores of the languages
which are used in our training data for readiness mea-
surement using GPR
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Figure 7: shows the readiness scores of the language
families of the corresponding languages which are used

in our training data for readiness measurement using
GPR

equally while calculating the readiness of a country.
This is similar to the linguistic utility defined by
Blasi et al. (2021) in their work for a country ¢ we

calculate linguistic readiness .7 as:

> m (1)

leL.

ling 1
r =
‘ L]

The rémg values have been plotted in Figure 5.
Based on our observations on these values we make
the following observations highlighting the differ-
ence between demographic and linguistic readiness
of different countries.

Observations: The map shown in 5 provides us
an idea of how each country in the world would
be able to effectively combat the pandemic by
leveraging LT solutions. However, this is when
we are actually considering uniform speaker-base
for each language in a country. Overall, it can
be observed that some of the Asian countries like
India falls in the moderately prepared zone now
which was initially treated as well prepared. This
is due to the presence of class 4 language Hindi
(having a readiness score of 0.9536) with a consid-
erably high speaker-base (46.19%). Also, similar
trend is observed in Canada (home to the speakers
of various languages like English, French,
Punjabi,
Cantonese,

Italian,
Arabic,

Spanish, German,
Tagalog).
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