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Abstract

Training with noisy labelled data is known to be
detrimental to model performance, especially
for high-capacity neural network models in low-
resource domains. Our experiments suggest
that standard regularisation strategies, such as
weight decay and dropout, are ineffective in
the face of noisy labels. We propose a simple
noisy label detection method that prevents error
propagation from the input layer. The approach
is based on the observation that the projection
of noisy labels is learned through memorisa-
tion at advanced stages of learning, and that
the Pearson correlation is sensitive to outliers.
Extensive experiments over real-world human-
disagreement annotations as well as randomly-
corrupted and data-augmented labels, across
various tasks and domains, demonstrate that our
method is effective, regularising noisy labels
and improving generalisation performance.

1 Introduction

Modern deep neural networks (DNNs) have mil-
lions or billions of trainable parameters, far more
than the number of examples they are trained on.
To avoid over-fitting, they are heavily reliant on
large-scale training, including data derived through
methods such as self supervision, data augmenta-
tion, and self labelling (Devlin et al., 2019; Wei
and Zou, 2019; Wang et al., 2020c). However, such
methods inevitably introduce noise, through biased
data, unnatural inputs, or incorrect labels.

Weak perturbations applied to inputs can im-
prove model performance by forcing DNNs to
learn noise-invariant latent representations (Tang
and Eliasmith, 2010; Goodfellow et al., 2016). But
training with noisy labels has been shown to be
detrimental to generalisation performance across
tasks including image classification (Tanaka et al.,
2018), dialogue generation (Akama et al., 2020),
and entity–relation extraction (Chen et al., 2020).
DNNs fit noisy labels by “memorising” each ex-

ample — over-fitting corrupted training sets, and
yielding poor generalisation (Arpit et al., 2017).

Given this background, our focus in this paper
is on how to alleviate memorisation and improve
generalisation when training with noisy labels. Pre-
vious related work has proposed three directions:
(1) regularisation techniques (Arpit et al., 2017); (2)
augmenting the loss function with an explicit rep-
resentation of the distribution of noise (Sukhbaatar
et al., 2015; Patrini et al., 2017); and (3) explicit de-
tection of noisy labels (Tanaka et al., 2018; Nguyen
et al., 2020; Lee and Chung, 2020; Desmond et al.,
2020). However, the vast majority of this work has
focused on classification tasks, and there has been
very little work in the context of regression tasks
and low-resource domains. In this work, we fill the
gap by targeting noisy label regularisation for text
regression, in the form of semantic text similarity
(STS), sentiment analysis, and machine translation
quality assessment.

Our work makes three contributions: (1) em-
pirical clarification of the role of explicit regu-
larisation in noisy label training in a regression
setting; (2) proposal of an effective noisy la-
bel detection method for continuous labels; and
(3) extensive experiments across various regres-
sion tasks under both real-world and synthetic
noisy labels, including state-of-the-art results on
MedSTS. The code associated with this paper
is available at: https://github.com/yuxiaw/

Regularise-Regression-Noisy-Labels.

2 Related Work

2.1 Regularisation of Noisy Labels in
Classification Settings

Regularisation: Explicit regularisation techniques
such as dropout, weight decay, or data augmenta-
tion can help to alleviate over-fitting, improving
model generalisation (Arpit et al., 2017; Tanaka
et al., 2018). They do not, however, prevent classi-

https://github.com/yuxiaw/Regularise-Regression-Noisy-Labels
https://github.com/yuxiaw/Regularise-Regression-Noisy-Labels
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fier degradation caused by noisy labels (Harutyun-
yan et al., 2020). Gradient descent with early stop-
ping and its variants are provably robust to noisy
labels (Li et al., 2020; Hu et al., 2020). While
empirically verified to be effective for image clas-
sification, their performance in textual regression
tasks is unknown.

Noise Distribution Matrix: An alternative ap-
proach is to correct the loss function with a noise
distribution transition matrix (Sukhbaatar et al.,
2015; Patrini et al., 2017; Yao et al., 2019; Tanno
et al., 2019). Formally, let l and lGT be the noisy
and ground-truth labels. The noise transition matrix
T is defined as tij = p(l = j|lGT = i), where the
element of the i-th row and the j-th column tij repre-
sents the probability of mis-annotating golden class
i to incorrect label j. The cross entropy loss is mod-
ified to L(θ, X, Y ) = 1

n

∑n
n=1 log(y

⊺
i s(θ,xi)),

where s(θ, ·) is the classifier. In classification tasks,
the probability of misclassification between classes
p(l = j|lGT = i) is well-defined. However, it is
not clear how to define the matrix T for continuous
output variables in a regression setting.

Noisy Label Detection has been explored ex-
tensively in classification settings, especially for
images, but has received very little attention for tex-
tual regression problems. Noisy instances are typi-
cally identified based on model prediction (Zheng
et al., 2020; Ye et al., 2021), such as comparing
predicted labels (pseudo-labels) lP with annotated
labels lA during training (Tanaka et al., 2018; Berth-
elot et al., 2019; Nguyen et al., 2020; Lee and
Chung, 2020; Desmond et al., 2020), and the label
distribution confidence (Liu et al., 2020). How-
ever, exact label match (lA = lP ) is too strict a
requirement for regression tasks. We relax the cri-
terion to a range controllable by a threshold τ , i.e.
|lA − lP | < τ . This makes it identical to the loss-
based criterion (lA − lP )2 < τ in regression using
mean-squared error loss (MSE). Specifically, in-
stances that result in small loss can be considered
to be clean (Shen and Sanghavi, 2019).

2.2 Detect Noisy Labels in Regression

To our knowledge, the only research addressing
noisy labels in a textual regression setting is: (1)
Wang et al. (2022), who select high-disagreement
labels using the predictive variance of uncertainty
models; and (2) Takamoto et al. (2020), who iden-
tify outliers based on the absolute difference be-
tween teacher model predictions and target labels.

Noise filtering also relates to data sampling in
active learning. It aims to select the most infor-
mative/useful data points from an unlabelled pool,
leveraging the least labelling effort to reach the best
performance.

Sampling in Active learning: Regression tasks
are also under-researched in the active learning lit-
erature (Elreedy et al., 2019; Zhang et al., 2020).
Cai et al. (2013) sample data associated with the
maximum gradient of the loss function, typically
based on squared error, and Sugiyama (2006) aims
to minimise the conditional expectation of the gen-
eralisation error. These are akin to the loss criteria
in noisy label identification.

Separately, Wu (2019) considers representative-
ness and diversity in initial data collection and
sequential query selection, and Wu and Huang
(2022) select the most beneficial samples to label
based on three emotion primitives: valence, arousal,
and dominance for affect estimation. However,
these methods are too domain-specific to adapt to
general-purpose regression tasks.

3 Task and Datasets

In this paper, we investigate text regression across
three separate tasks, and a total of 10 datasets.

3.1 Tasks
The three tasks we target in this research are STS,
sentiment analysis, and machine translation quality
estimation, which we outline below.

Semantic textual similarity (STS) assesses the
degree of semantic equivalence between two (short)
texts (Corley and Mihalcea, 2005). The aim is
to predict a similarity score for a sentence pair
(S1, S2), generally in the range [0, 5], where 0
indicates complete dissimilarity and 5 indicates
equivalence in meaning. As an example:

S1: Total minutes spent in timed codes: 10 mins.
S2: Total minutes spent in timed codes: 33 mins.

is labelled 4, as the two texts differ only in very
specific content (underlined).

Sentiment analysis (SA) rating involves predict-
ing a sentiment score for a review S, in the range 1
(extremely negative) to 5 (extremely positive).

Machine translation quality estimation, based
on the direct assessment (DA) approach (Graham
et al., 2017), aims to predict a normalised quality
score for text pair (S1, S2), where S2 is machine
translated from S1. As such, it is similar to STS,
but differs in that it is cross-lingual.
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3.2 Datasets

We evaluate on different-sized datasets across vari-
ous domains for STS and SA, and two identically-
sized datasets for DA, as summarised in Table 1.

For STS, we use: three large-scale general
datasets — STS-B (Cer et al., 2017), SICK-R
(Marelli et al., 2014), and STS-G (Wang et al.,
2020c); and two small clinical data sets — Med-
STS (Wang et al., 2018) and N2C2-STS (Wang
et al., 2020a).

For SA, we use: a large-scale product review
dataset — Yelp (Sabnis, 2018); and two small
datasets of movie and paper reviews — 10Movie
(Benlahbib, 2019) and PeerRead (Kang et al.,
2018). We augment 10Movie with 700 examples
from IMDB movie reviews (Maas et al., 2011) (see
Appendix A.1 for details of the label conversion
process), and also augment PeerRead with 399
Spanish paper reviews (Keith et al., 2017) which
we automatically translate into English.

For DA, we employ two language pairs from
WMT2020 (Specia et al., 2020), namely ru-en and
ro-en, which are low- and medium-resource lan-
guage pairs, respectively.

As evaluation metrics, we use Pearson’s corre-
lation (r) and Spearman’s correlation (ρ) between
the predicted and gold standard scores.

3.3 Notation and Loss Function

Throughout this paper, raw examples, column vec-
tors, and matrices are denoted in lower-case italics,
bold, and upper-case italics, respectively (e.g. x,
x and X). θencoder and θreg represent parame-
ters of the transformer encoder and task-specific
regression layers, and f(θ, ·) refers to the whole
model. Assuming a dataset with N instances
D = {(x1, y1), · · · , (xi, yi), · · · , (xN , yN )},
where (xi, yi) is the ith instance of D, yi ∈
[0, 5], xi = s(θencoder, xi) is the embedding
of xi. The loss function is the empirical
risk of the mean square error (MSE): L =
1
N

∑N
i=1 (f(θ, xi)− yi)

2.

4 Case Study

We first examine the susceptibility of DNNs to over-
fit random labels (Zhang et al., 2017), based on the
clinical N2C2-STS data set using BERT (Devlin
et al., 2019). Then we conduct ablation experi-
ments using various regularisation techniques, to
observe whether they can reduce the degradation
caused by noisy labels.

Dataset Size (Train, Test, Dev) Range Domain

SICK-R (2014) 4500, 4927, 500 [1, 5] general
STS-B (2017) 5749, 1379, 1500 [0, 5] general
STS-G (2020) 28518, —, — [0, 5] general
MedSTS (2018) 750, 318, — [0, 5] clinical
N2C2-STS (2019) 1642, 412, — [0, 5] clinical

Yelp (2018) 5000, —, — [1,5] product
10Movie+IMDB (2019) 1400, 300, — [1,5] movie
PeerRead+Spanish (2018) 1638, 290, — [1,5] paper

WMT ru-en (2020) 7000, 1000, 1000 [0, 100] low-resource
WMT ro-en (2020) 7000, 1000, 1000 [0, 100] med-resource

Table 1: STS/SA rating/DA datasets. “Train”, “Test”,
“Dev” = number of text pairs; “Range” = label range. In
practice, DA is normalised by z-scoring.

Hypothesis Arpit et al. (2017) empirically
showed that explicit regularisation, especially
dropout coupled with adversarial training, can re-
duce memorisation of noise without reducing a
model’s ability to learn. Zhang et al. (2017), on
the other hand, argued that it is neither necessary
nor sufficient for controlling generalisation error in
deep learning. Overall, explicit regularisation may
improve generalisation performance, but does not
explicitly deal with noisy labels.

4.1 Experiment

Regression Model Structure: The regression
model used here and in Section 6 takes the hid-
den state of the [CLS] token output for the single
sentence or sentence pair from BERT, h ∈ Rd.
This is fed through a two-layer MLP, structured as:

h′ = tanh(Wh+ b) (1)

ŷ = w⊺h′ + b (2)

where ŷ is the predicted score, and W ∈ Rd×d,
b,w ∈ Rd, and b ∈ R are trainable parameters of
task-specific layers, denoted as “CLS-BERT”.

Corrupted Training Set: To generate partially-
noisy training data, we corrupt training set D by
randomly selecting M instances and replacing
their labels with s ∈ [0, 5] sampled from a uni-
form distribution, forming noisy subset Dnoisy,
leaving the clean partition Dclean. Thus the cor-
rupted training set is D′ = Dnoisy ∪Dclean (where
|D| = |D′| = N ).

Experimental Setup: We randomly split the
1,642 instances in the N2C2-STS training set into
1,242 and 400 instances, as training set D and a
validation set. M = α · N is decided by noise
ratio α ∈ {0.2, 0.4, 1.0} to generate three cor-
rupted training sets, denoted corrupt2, corrupt4,
and corrupt10, respectively, with corresponding
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Figure 1: The loss (left) and r (right) on N2C2 train and validation sets over four different degrees of corrupted
training set: clean (D), corrupt2, corrupt4 and corrupt10.

clean partitions denoted as clean2, clean4 and ⊘
below. Note that the same validation set is used for
all experiments in this section and Section 6.1.

The model is trained on bert-base-uncased, op-
timising with a linear scheduler with warmup pro-
portion = 0.1, train batch size = 16, learning rate =
2e-5, and training epochs = 20.

4.1.1 Results
BERT is structured with layer normalisation and
residual connections (He et al., 2016), noting that
pre-training has been shown to be beneficial for
generalisation by alleviating exposure bias. We are
thus interested in whether using pre-trained BERT
is robust to the effects of random noisy labels.

Using the baseline regression model, we fine-
tune over the varyingly-corrupted training sets,
each for 20 epochs. As per Figure 1, training with
noisy labelled data is detrimental to generalisation
performance, and more training exacerbates the
effect, especially for noisier data.

As we increase the amount of noise, the training
loss decreases and the model takes longer to con-
verge. Particularly on fully-corrupted training set
corrupt10, the training loss rises first and then starts
to fit random labels, taking eight epochs to reach
the same training accuracy as the clean set D in
the first epoch. This shows that pre-trained BERT
can reduce fitting to random labels early in training,
and in general slows down convergence. However,
since the random labels are fixed across epochs,
iterating over the training set multiple times leads
to (over)fitting the random labels perfectly.

4.2 Explicit Regularisation

We use the following regularisation techniques:

• Early stop (“ES”): return the trained model
where the lowest validation error is obtained
(based on Pearson’s correlation).

• Weight decay (“WD”): update parameters
by θt = (1 − β)θt−1 − αgt, where β ∈
{0.01, 0.05, 0.1} is a weight decay coefficient,
α is the learning rate, and gt is the gradient at
update step t.

• Dropout (“DP”): replace Eq (1) with h′ =
dropout(tanh(Wh+ b)).

• Data augmentation: perform data augmen-
tation via back translation (“BT”) or segment
reordering (“SR” = randomly permute the or-
der of segments separated by commas or semi-
colons) following Wang et al. (2020b).

• Cross Domain Pre-fine-tuning: fine-tune the
model with general-purpose STS-B (“STSB”)
training set for 3 epochs before fine-tuning on
the clinical STS data.

4.2.1 Results
We present the results in Table 2. Comparing
rows 1 and 2 (no regularisation vs. early stopping),
early stopping improves performance over both
clean and corrupted training data, especially on
corrupt4. Therefore we combine it with the other
strategies. Weight decay (WD) (rows 3–5) has neg-
ligible impact, but markedly improves corrupt2
through dropout and data augmentation (rows 6–8
and 11–13), and corrupt4 through back-translation
(rows 7 and 12). Pre-fine-tuning provides large
gains in accuracy on both clean and corrupted data
sets (row 9), especially coupled with early stopping,
weight decay and dropout (rows 10 and 14).

In sum, explicit regularisation improves gener-
alisation performance, not just on corrupted data
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ID Train set D corrupt2 corrupt4 clean2 clean4
setting r ρ loss r ρ loss r ρ loss r ρ loss r ρ loss

1 baseline .835 .830 0.603 .754 .740 0.858 .639 .636 1.212 .845 .835 0.570 .836 .818 0.598
2 ES .859 .837 0.614 .809 .797 0.710 .762 .724 0.953 .858 .835 0.529 .851 .822 0.592
3 ES + WD (0.01) .857 .835 0.518 .810 .799 0.677 .762 .724 0.953 .854 .835 0.535 .852 .816 0.532
4 ES + WD (0.05) .857 .835 0.613 .818 .805 0.670 .760 .722 0.955 .852 .831 0.559 .853 .818 0.544
5 ES + WD (0.1) .857 .837 0.603 .808 .803 0.680 .769 .731 0.952 .852 .830 0.561 .854 .825 0.569
6 ES + DP .858 .839 0.570 .831 .799 0.717 .758 .726 0.849 .857 .828 0.519 .840 .818 0.626
7 ES + BT .858 .838 0.526 .833 .810 0.673 .775 .734 1.124 .850 .825 0.551 .847 .823 0.650
8 ES + SR .855 .836 0.526 .832 .796 0.615 .761 .749 0.999 .858 .838 0.541 .849 .823 0.630
9 ES + STSB .867 .842 0.491 .846 .817 0.745 .783 .778 0.890 .857 .823 0.533 .852 .822 0.571
10 ES + WD (0.1) + STSB .867 .843 0.488 .850 .822 0.724 .783 .778 0.890 .857 .823 0.531 .852 .822 0.571
11 ES + DP + WD (0.1) .853 .835 0.588 .837 .801 0.679 .756 .737 1.167 .855 .823 0.517 .842 .820 0.622
12 ES + DP + WD (0.1) + BT .859 .833 0.508 .833 .802 0.631 .796 .763 0.949 .843 .830 0.587 .839 .817 0.643
13 ES + DP + WD (0.1) + SR .853 .826 0.538 .833 .787 0.589 .790 .763 1.080 .856 .835 0.524 .834 .812 0.627
14 ES + DP + WD (0.1) + STSB .864 .841 0.520 .848 .823 0.731 .779 .780 0.943 .853 .822 0.561 .845 .813 0.589

Table 2: Averaged loss, r and ρ on N2C2 validation set with various combinations of regularisation techniques (“ES”
= early stopping, “WD” = weight decay, “DP” = dropout, “BT” = data augmentation with back translation, “SR” =
data augmentation with segment reordering, “STSB” = fine-tuning over STS-B), over five different training sets (“D”
= all clean, “corrupt2” = 0.2 corrupted, “corrupt4” = 0.4 corrupted, “clean2” = clean complementary set of corrupt2,
“clean4” = clean complementary set of corrupt4). The best result in each column is bolded.

but on clean data as well. The fact that the best
accuracy is still much worse than training on fully
clean D, and also worse than on their clean compo-
nents, clean2 and clean4, also confirms that explicit
regularisation can’t control the generalisation error
caused by noisy labels. It additionally suggests that
removing noisy examples could lead to improve-
ments, which we verify in Section 5.

5 Noisy Label Detection

We propose a two-step method to identify noisy
labels from training data based on iterative pre-
dictions, followed by three different strategies for
training with noisy examples, namely: (1) DIS:
discard noisy examples; (2) REP: repair noisy la-
bels with pseudo labels; and (3) RES: resample the
same number of instances from the “clean” set, to
make up for discarded noisy examples.

5.1 Prediction criterion

We relax the requirement of exact match between
the pseudo label p̂ and the annotated label y by
measuring the absolute difference, and them to
match if the difference is within a predefined range
|y − p̂| ≤ τ , which is a tuneable hyper-parameter.
The pseudo label is obtained by averaging predic-
tions over multiple training iterations (see line 9 of
Algorithm 1).

If τ is small, precision will be low and recall
of noisy instances will be high, whereas if τ is
large, recall will be low, but precision will be high,
negatively affecting training quality. To achieve
a balance between precision and recall, we use

Algorithm 1 Train on Noisy Labelled Data

1: Input: Training and validation set Dtrain, Dval

2: Dclean ← Dtrain

3: for i in range(1, epochs) do
4: Mi ← train(Dclean)
5: if acc(Mi,Dval) ≥ acc(Mbest,Dval) then
6: Mbest ←Mi

7: end if
8: ŷi ←Mbest(x)

9: obtain pseudo labels p̂i ← 1
i

∑i
j=0 ŷj

10: get noisy candidate set by Prediction Criterion f1
11: Cclean, Cnoise = f1(Dtrain, p̂i, τ)
12: determine noisy set by Pearson Criterion f2
13: Dclean,Dnoise = f2(Cclean, Cnoise,m,K, ε)
14: Dclean by Repairing
15: Dclean ← repair(Dnoise, p̂i) ∪ Dclean

16: Dclean by Resampling
17: Dclean ← sample(Dclean, size(Dnoise)) ∪ Dclean

18: end for
19: Output: Mbest

Pearson’s correlation to assess the “noisiness” of
each noisy candidate, where a relatively small τ
ensures high recall.

5.2 Pearson correlation criterion

In Table 2, we found that the smallest loss did
not always mean the best performance r. The for-
mer is measured for an individual example, while
the latter considers correlation of the combined
set of instances. We therefore propose to use a
summary evaluation metric for selection of noisy
instances, adopting Pearson’s correlation (r) due
to its sensitivity to outliers (Wilcox, 2004; Chok,
2010; Mathur et al., 2020). That is, Pearson corre-
lation is strongly sensitive to linear relationships:
r is maximised when two variables are linearly
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related to each other, whereas Spearman correla-
tion is maximised when two variables are mono-
tonically related, whether the relationship is linear
or not. A single outlier influences the results of
r (Rousselet and Pernet, 2012).

Under this criterion, for each noisy candidate
(x, y) identified by the prediction criterion (line
13), we randomly select m clean examples from
the clean subset Cclean (the training set with noisy
candidates filtered out) and calculate the correlation
r, then add (x, y) to this set and calculate the new
correlation as r′. If a large perturbation is observed
— i.e., |r − r′| > ε, e.g. > 0.01 — x is considered
to be noisy; otherwise it is considered to be clean.

However, when most of the sampled labels are
clustered together with no obvious relationship, r
tends to be unjustified, and when points are dis-
tributed uniformly, the score is fair (see Figure 1
in Rousselet and Pernet (2012)). This is attributed
to the ordinary least square solution: one badly
positioned point can have a dramatic influence on
the results (Hubert et al., 2008). This instability
leads to a less powerful statistical test. To smooth
the number (denote as A), we project A of the
lower-order into higher-order AK by repeating this
process K times. This can mitigate the large vari-
ance and inconsistency in the correlation (Song
et al., 2021). We make the final decision by voting:
only if all K votes agree that the given training
instance is noisy is it removed.

Though the first training epoch is trained on
the whole corrupted training set, it does not im-
pact generalisation significantly, because memo-
rised features are not learned in the early stages
of training. It also benefits domains with limited
training data. That is, even when initialising with
pre-trained weights, the STS model is not accurate
enough to filter noisy labels accurately in the first
iteration, leading to a high percentage of instances
being filtered out and exacerbating data sparsity.

5.3 Time Complexity

In terms of computational efficiency on large-scale
datasets, despite the two-step detection process and
repeatedly calculating Pearson’s correlation crite-
rion K times, time complexity varies linearly —
O(N) × K. This is negligible when compared
with the training time.

6 Experiments

We first evaluate the noise detection method on
two synthetically-corrupted versions of N2C2-STS
(“N2C2”) (corrupt2 and corrupt4), where we have
perfect knowledge of the noisy and clean subset,
and then apply our methods to real-world STS, SA,
and DA datasets, where noisy labels are unknown.

6.1 Train on Randomly Corrupted Data

Setup We employ the optimal combination of
regularisation methods from Section 4 as a strong
baseline, namely row 14 of Table 2 (early stopping
+ dropout + weight decay + pre-fine-tuning), and
set wd = 0.01, tolerance = 0.75, thresholdr =
0.01, K = 5, and m = 8 for noise detection. Other
hyper-parameters are as per Section 4. Experimen-
tal results are averaged over ten runs based on ten
random seeds to account for variance for small test
sets.1

Result We highlight three findings from Table 3:
(1) on randomly corrupted labelled data, noise filter-
ing improves validation performance, particularly
for high-degree corruption, decreasing the gener-
alisation error by a large margin; (2) the strate-
gies of DIS and RES perform largely the same,
better than REP, so we use DIS in most cases in
our following experiments; and (3) precision and
recall at noise detection impact on the end-task
performance, while the second step of Pearson
correlation-based filtering critically improves preci-
sion. For example, after the first training epoch on
corrupt4 with “discard”, precision is 53.82% and
recall is 68.15%, and with the Pearson correlation
filtering the precision improves to 65.98%, leading
to the improvement in row 3.2

Discarding automatically-detected noisy la-
bels can maintain improved performance after
fast convergence. Considering corrupt4 in Fig-
ure 2, we observe that training with noisy labels
for more iterations reduces the validation perfor-
mance, and the loss also peaks. Through discarding
noisy examples by our method during training, the
performance can be improved and maintained, and
the loss correspondingly drops. This finding is es-
pecially vital in the absence of a clean validation
set. In such cases, early stopping becomes invalid,

1For reproduction purposes, we use seeds = [30 32 40 42
43 45 90 101 3405 3407] for all small test sets.

2Precision and recall can be obtained only in the unrealistic
scenario of the noisy subset being explicitly known, and are
unavailable for real-world data.
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criterion corrupt2 corrupt4

r ρ loss r ρ loss

BASE NA 0.841 ± 0.005 0.815 ± 0.006 0.661 ± 0.048 0.797 ± 0.019 0.785 ± 0.009 0.911 ± 0.102
DIS prediction 0.844 ± 0.004 0.820 ± 0.006 0.628 ± 0.068 0.808 ± 0.012 0.791 ± 0.011 0.818 ± 0.121
DIS two-step 0.847 ± 0.004 0.824 ± 0.006 0.586 ± 0.038 0.822 ± 0.006 0.803 ± 0.006 0.687 ± 0.095
REP two-step 0.842 ± 0.005 0.816 ± 0.006 0.655 ± 0.053 0.799 ± 0.018 0.782 ± 0.013 0.861 ± 0.092
RES two-step 0.843 ± 0.006 0.822 ± 0.007 0.593 ± 0.044 0.822 ± 0.016 0.798 ± 0.013 0.653 ± 0.043

Table 3: Results on N2C2 validation set trained on partially corrupted N2C2 train sets: corrupt2 and corrupt4 under
three noisy label training strategies; “prediction” means we only use the first-step criterion; BASE = baseline.

ro-en dev ro-en test ru-en dev ru-en test

r ρ loss r ρ loss r ρ loss r ρ loss

BASE 0.834 0.791 0.309 0.832 0.778 0.290 0.629 0.612 0.512 0.645 0.612 0.531
DIS 0.841 0.807 0.319 0.838 0.793 0.292 0.640 0.617 0.576 0.653 0.627 0.599
RES 0.838 0.801 0.328 0.837 0.789 0.299 0.644 0.612 0.538 0.660 0.630 0.554

Table 4: Results for DA-style quality estimation over the two WMT language pairs.
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Figure 2: Averaged loss, r, and ρ on N2C2 validation
set with (solid line) and without (dotted line) discarding
noisy labels using corrupt4 over the first five epochs.

and we generally train for a constant number of
iterations. Identifying and filtering noisy labels can
prevent the continuous decline.

6.2 Training on Real-world Noisy Labels

Real-world label noise is a natural outcome of the
dataset collection process, and emanates from three
primary sources (Algan and Ulusoy, 2021): (1)
conflicting opinions of multiple annotators due to
diverse interpretations and varying level of exper-
tise, e.g. machine translation quality assessment;
(2) inherent uncertainty due to domain complexity
such as in the clinical domain; and (3) to collect
large amounts of data, textual regression tasks tend
to resort to various data augmentation strategies,
which is known to result in noisy labels.

6.2.1 Human Disagreement Labels
DA datasets contain examples with highly ambigu-
ous labels due to its subjectivity and the nature of

language ambiguity (Wang et al., 2022). Disagree-
ments among annotators very often persist even
if more ratings are collected and more context is
provided to the raters (Pavlick and Kwiatkowski,
2019). To evaluate the effectiveness of identifying
high-disagreement labels, we perform our noise
detection method on two DA language pairs: ru-en
and ro-en.

Setup: We fine-tune BERT based on bert-base-
multilingual-cased with maximum sequence length
of 128 for five epochs. Hyper-parameter tolerance
is set as 1.0 in DIS for both, and 0.75 for ru-en in
RES based on the validation set. Other settings are
the same as Section 6.1.

Results: In Table 4, over both ru-en and ro-
en, employing either discarding or resampling can
improve the correlation r/ρ by more than one point
on average, indicating that the approach can filter
high-ambiguity labels that confuse the model, thus
boosting accuracy. It also shows that the lowest
loss does not always result in the best performance
in terms of r/ρ.

6.2.2 Complicated Domain Labels
In clinical STS, some examples are complicated for
clinicians to reach consensus, leading to low inter-
annotator agreement, such as Cohen’s κ = 0.6 for
N2C2 training labels. In contrast to the disagree-
ments mentioned above, the issue is more varying
levels of domain knowledge and the inherent com-
plexity of mapping textual similarity onto a single
scalar. Additionally, the N2C2 ground-truth lacks
an adjudication process, and gold scores are de-
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ID Train Data PreF DIS r ρ loss

1 N2C2 train NA NA 0.860 ± 0.008 0.805 ± 0.009 0.759 ± 0.038
2 N2C2 train stsg No 0.860 ± 0.003 0.816 ± 0.005 0.746 ± 0.017
3 N2C2 train stsg Yes 0.878 ± 0.010 0.810 ± 0.007 0.585 ± 0.077
4 SR train stsg No 0.868 ± 0.005 0.816 ± 0.009 0.825 ± 0.035
5 SR train stsg Yes 0.885 ± 0.010 0.824 ± 0.014 0.595 ± 0.082

Table 5: Averaged loss, r/ρ on the N2C2 test set w/o
noise-filtering using N2C2 train and segment-reordered
N2C2 train based on CLS-BERT pre-fine-tuned (PreF)
on large-scale general STS corpus STS-G.

rived by simple averaging of scores from two anno-
tators (Mahajan et al., 2020). We aim to recognise
strong-disagreement labels from the original N2C2
training data and the segment reordered version
(see Section 4.2), to improve generalisation.

Setup: We employ a larger-scale general-
purpose STS labelled dataset STS-G (Wang et al.,
2020c) to learn a general-domain STS model.
Other settings are the same as Section 6.1, except
for training epoch=3.

Results: Comparing rows 1 and 2 in Table 5,
pre-fine-tuning on STS-G doesn’t improve perfor-
mance, and just diminishes the standard deviation.
By applying noise-filtering, the loss decreases and
correlation improves appreciably (row 3). We spec-
ulate that STS-G is large enough to capture general
STS task properties, so multiple iterations of train-
ing on the N2C2-STS training set don’t lead to
any gains, but stabilise at a local minimum. Noisy
label training helps escape the local minimum by
filtering suspected examples, bringing about the
large drop in loss, and boosting performance. Fine-
tuning over segment-reordered training data aug-
ments corruption, making noisy labels more notice-
able and easier to detect, thus resulting in the best
r/ρ (row 5).

Analysis: Can our method recognise high-
disagreement labels? Is detection more accurate
with segment-reordered text? As noisy labels are
unknown, and individual labels from different an-
notators are not available either, we manually anal-
ysed the first 400 instances in the training set,
finding 44 labels that we don’t agree with, 16 of
which overlap with the detected noisy labels with
N2C2 original training data after the first epoch
(prec.=0.43, recall=0.36). In the setting of SR, we
observed the overlap with our annotations increases
to 24 (prec.=0.43, recall=0.55), so the final result
improves with an increase in detection accuracy.

6.2.3 Data-Augmented Labels
We apply our method to denoising instances gener-
ated through data augmentation, either through syn-
thetic generation based on annotation guidelines,
or through rule-based conversion.

Clinical STS with Synthetic Labels Wang et al.
(2020b) show that a hierarchical convolutional net-
work based on BERT (“HConvBERT”), in which
the BERT-base bottom eight encoder layers are
frozen and only parameters of the top four lay-
ers are updated, is beneficial to training over a
small-scale data set. Since the size of clinical STS
datasets is small, we experiment with HConvBERT
(hconv) in addition to CLS-BERT (cls).

Synthetic Data Generation: To generate clin-
ical sentences, following Wang et al. (2020c),
we sample discharge summaries from MIMIC-
III (Johnson et al., 2016) and segment them into 27
parts based on section subtitles (topics). We select
the topics of medications, illnesses, diagnoses, and
follow-up instructions at which the clinical proxy is
not expert, and split into sentences. As medication-
related examples emphasise specific medication
names, different rules are applied than for other
topics. All medication sentences are grouped by
medication name; this is always their first word. If
S1 and S2 are sampled from the same name group,
a similarity score of 3 is assigned, with +0.5 for
every increase of 0.2 in l/L1 and l/L2, where l is
the number of shared tokens between S1 in length
of L1 and S2 in L2. Otherwise, it is labelled as 1.

For other topics, when sampling sentences from
two different topics, the label is set to the range
[0, 1]. Sentences sampled from the same topic are
theoretically in the range [1, 5], but in practice are
generally in the range [1, 2] because high similar-
ity under random pairing is unlikely. To obtain
pairs in the range [2, 4.5], we randomly sample two
sentences from the same topic, and use one as a
“template” (S1). We then randomly replace a se-
quence of d words in the template with the same
position (word index) sequence of the second sen-
tence, forming S2. This pair (S1,S2) is labelled
as 4.5 if only 10% words are replaced in S1, i.e.
d/L1=0.1, and 4, 3.5, 3 and 2 with more words
replaced, d/L1=0.2, 0.3, 0.4 and 0.5, respectively.

In total, we generate 1534 cases (“syn1534”),
including 416 medication cases (200 in range [1, 2]
and 416 in range [3, 5]) and 1118 cases of other
topics (200 in range [0, 1], 200 in range [1, 2] and
718 in range [2, 5]).
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Train Data Model PreF DIS r ρ loss

N2C2 train cls NA NA 0.860 ± 0.008 0.805 ± 0.009 0.759 ± 0.038
N2C2 train cls stsb NA 0.852 ± 0.006 0.813 ± 0.007 0.792 ± 0.054
+ syn1534 cls stsb No 0.854 ± 0.004 0.799 ± 0.004 0.788 ± 0.039
+ syn1534 cls stsb Yes 0.868 ± 0.003 0.785 ± 0.005 0.669 ± 0.040
N2C2 train hconv stsb NA 0.872 ± 0.003 0.828 ± 0.003 0.717 ± 0.026
+ syn1534 hconv stsb No 0.867 ± 0.002 0.817 ± 0.005 0.760 ± 0.018
+ syn1534 hconv stsb Yes 0.882 ± 0.003 0.805 ± 0.007 0.669 ± 0.076

MedSTS train cls NA NA 0.833 ± 0.004 0.764 ± 0.006 0.411 ± 0.024
MedSTS train hconv stsb NA 0.850 ± 0.001 0.784 ± 0.004 0.372 ± 0.012
+ syn700 hconv stsb No 0.856 ± 0.002 0.789 ± 0.002 0.360 ± 0.019
+ syn700 hconv stsb Yes 0.858 ± 0.003 0.801 ± 0.006 0.357 ± 0.026

Table 6: Averaged loss, r and ρ on the N2C2 test set
(upper half) and MedSTS test set (bottom half) w/o
noise-filtering trained w/o synthetic data.

r ρ loss

Paper
BASE 0.664 ± 0.007 0.664 ± 0.006 1.203 ± 0.036
FT 0.674 ± 0.003 0.679 ± 0.003 1.223 ± 0.035
FT+DIS 0.681 ± 0.006 0.686 ± 0.005 1.192 ± 0.025

Movie
BASE 0.791 ± 0.010 0.760 ± 0.006 0.533 ± 0.024
FT 0.810 ± 0.006 0.774 ± 0.005 0.510 ± 0.018
FT+DIS 0.815 ± 0.005 0.777 ± 0.006 0.526 ± 0.032

Table 7: r/ρ on PeerRead (top) and 10Movie (bottom)
test set w/o noise-filtering using PeerRead+Spanish and
10Movie+IMDB for paper and movie domains based on
HConvBERT fine-tuned on Yelp (BASE), FT=fine-tune.

The STS model is first fine-tuned on STS-B to
capture general-domain effects, then on the N2C2
training set combined with syn1534, and the Med-
STS training set combined with a random sub-set
of syn1534 of size 700 (“syn700”), to match the
size of the MedSTS training set (750).

Results: Table 6 shows that combining
synthetically-generated sentence pairs with gold-
standard training data can improve performance,
and discarding noisy labels results in further gains
in accuracy on both N2C2-STS (upper half) and
MedSTS (bottom half). We exceed previous state-
of-the-art results on MedSTS r = 0.848 (Peng
et al., 2019) → r = 0.858. Further, pre-trained
HConvBERT performs better than CLS-BERT.

Domain SA rating with Converted Labels Ad-
ditionally, we evaluate denoising on SA rating.
Two small-scale SA datasets in the academic pa-
per and movie domains are augmented through
rule-based conversion and machine translation (see
Section 3), which inevitably introduce noise into
the training sets.

Following the experimental setting of clini-
cal STS with corrupted labels, we first fine-tune
the regressor using the large-scale Yelp dataset
(5,000 instances) based on HConvBERT, referred

to as “HConvYelp”, then adapt it to the respective
datasets by continuous fine-tuning combined with
noise filtering. The results in Table 7 show that em-
ploying noise-filtering consistently improves per-
formance for both datasets, particularly for the pa-
per reviews, which are most domain-removed from
the product reviews.

6.3 Overall Take-away

Through extensive experiments over randomly-
corrupted and real-world noisy labels, we have
demonstrated that our denoising method is effec-
tive at preventing memorisation, regularising noisy
labels and improving generalisation performance
on various regression tasks. The limitation of our
method is that, while it is effective at detecting ex-
treme outliers, it struggles to detect instances with
weak disagreement, due to the fact that Pearson’s
correlation is stable over distributions with mod-
erate skewness (Chok, 2010). As such, it shows
more impressive improvement in knowledge-rich
domains like clinical notes and academic papers
than general-purpose domains (see Section A.2).

7 Conclusion

Regularisation strategies improve model generali-
sation performance in a range of contexts, but are
not able to effectively address generalisation degra-
dation caused by training with noisy labels. In
this paper, we have proposed a noisy label training
method for text regression tasks, based on identify-
ing noise through iterative prediction and targeted
evaluation criteria, followed by discarding or re-
pairing of noisy labels. Extensive experiments on
three rating tasks demonstrate the effectiveness of
our approach.
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A Appendix

A.1 Collecting Labels for Regression
Unlike computer vision tasks, which can make use
of messy user tags or search engines and social me-
dia, it’s hard to obtain usable continuous labels for
semantic understanding tasks. Textual regression
tasks tend to resort to data augmentation strategies
or synthetic generation approaches to obtain labels.

IMDB Label Conversion: IMDB binary-class
labels are converted to a rating score by label as-
signment rules — a negative label corresponds to
random selection from [1, 1, 5, 2, 2, 5] and a posi-
tive label from [3, 3.5, 4, 4.5].

PeerRead Label: In the PeerRead training set,
the ultimate score for rejection or acceptance of a
paper is based on more than ten individual aspects
such as originality and clarity, but often fewer than
5 aspect scores are available. Scores from other an-
notated aspects are averaged to fill in these missing
aspects, introducing bias.

A.2 General STS with Heterogeneous Labels
We investigate the performance of our method in
combining two heterogeneously-labelled datasets
(SICK-R and STS-B), expanding the training set
size but introducing noise.

STS-B is labelled in the range [0, 5] in accor-
dance with the standard STS formulation, while
SICK-R is annotated in the range [1, 5] with an
emphasis on semantic relatedness rather than se-
mantic similarity, leading to label misalignment in
both label semantics and range between the two
datasets. For example, completely irrelevant cases
are scored 1.0 in SICK-R but 0 in STS-B, and for:

S1: A brown dog is attacking another
animal in front of the man in pants.
S2: Two dogs are fighting.

the gold score is 3.5 in SICK-R, but for STS-B the
score would be in [1, 2].

Two alternatives exist to incorporate SICK-R
into STS-B training: (1) fine-tuning jointly over
combined training sets; and (2) fine-tuning first on
STS-B, then on SICK-R. We investigate both. Con-
sistent with the findings of Section 4, we pre-fine-
tune over “STS-B”, with training epochs=3, lr=2e-
5, and without early stopping. We experiment with
the full SICK-R training set (“SICK-R-full”) and a
subsample of 3000 instances (“SICK-R-3000”).

As presented in Table 8, using noise detection
and discarding noisy instances can improve the per-

Train Data Manner Discard r ρ loss

STS-B NA NA 0.900 0.896 0.444
STS-B + SICK-R-3000 joint No 0.900 0.896 0.440
STS-B + SICK-R-3000 joint Yes 0.901 0.896 0.438
STS-B + SICK-R-3000 separate No 0.874 0.881 1.515
STS-B + SICK-R-3000 separate Yes 0.888 0.890 1.241

STS-B + SICK-R-full joint No 0.901 0.897 0.445
STS-B + SICK-R-full joint Yes 0.903 0.898 0.430
STS-B + SICK-R-full separate No 0.886 0.882 1.402
STS-B + SICK-R-full separate Yes 0.889 0.889 1.167

Table 8: Averaged loss, r and ρ on STS-B validation set
w/o noise discarding combining SICK-R-3000 (sampled
3000 instances from SICK-R train set) or SICK-R-full
(full train set) by joint and separate fine-tuning.

formance under both joint and separate fine-tuning.
Overall, in this scenario, from a strong baseline,
the improvement is modest even though the train-
ing data volume is doubled in the case of the full
SICK-R training set. This is largely because the
“clean” data from SICK-R for STS-B purposes is
mostly distributed in the range of [4, 5], i.e., highly
related pairs are also highly similar in the meaning,
but this is generally the range where STS predic-
tions are reliable, based on STS-B training. Put
differently, even though the noise filtering method
was able to discard noisy labels, it was ineffectual
due to a lack of clean instances in the critical range
[2, 4] where STS-B models perform poorly (Maha-
jan et al., 2020).

This provides a valuable insight: it is vital to
integrate examples in label ranges where the model
is deficient. Further, given our findings, only joint
fine-tuning is used in Section 6.


