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Abstract

Semantic role labeling (SRL) is a fundamen-
tal yet challenging task in the NLP community.
Recent works of SRL mainly fall into two lines:
1) BIO-based; 2) span-based. Despite ubiq-
uity, they share some intrinsic drawbacks of not
considering internal argument structures, po-
tentially hindering the model’s expressiveness.
The key challenge is arguments are flat struc-
tures, and there are no determined subtree real-
izations for words inside arguments. To remedy
this, in this paper, we propose to regard flat ar-
gument spans as latent subtrees, accordingly re-
ducing SRL to a tree parsing task. In particular,
we equip our formulation with a novel span-
constrained TreeCRF to make tree structures
span-aware and further extend it to the second-
order case. We conduct extensive experiments
on CoNLL05 and CoNLL12 benchmarks. Re-
sults reveal that our methods perform favorably
better than all previous syntax-agnostic works,
achieving new state-of-the-art under both end-
to-end and w/ gold predicates settings.

1 Introduction

Semantic role labeling (SRL) is a fundamental yet
challenging task in the NLP community, involving
predicate and argument identification, as well as
semantic role classification. As SRL can provide
informative linguistic representations, it has been
widely adopted in downstream tasks like question
answering (Berant et al., 2013; Yih et al., 2016),
information extraction (Christensen et al., 2010;
Lin et al., 2017), and machine translation (Liu and
Gildea, 2010; Bazrafshan and Gildea, 2013), etc.

Recent works of SRL mainly fall into two lines:
1) BIO-based; 2) span-based. The former views
SRL as a sequence labeling task (Zhou and Xu,
2015; Strubell et al., 2018; Shi and Lin, 2019).
For each predicate, each token is tagged with a
label starting with BIO prefixes indicating if it is at
the Beginning, Inside, or Outside of an argument.
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Figure 1: An argument example (below) and its related
subtree structure (above) for the predicate “closed”.

The latter (He et al., 2018a; Ouchi et al., 2018; Li
et al., 2019), in contrast, opts to jointly predict all
predicate and argument span pairs using a span-
graph formulation.

Despite ubiquity, there are some drawbacks that
limit the expressiveness of the two methods. First,
framing predicate-argument structures as a BIO-
tagging scheme is less effective as it lacks explicit
modeling of span-level representations, so that long
adjacencies of argument phrases can be ignored
(Cohn and Blunsom, 2005; Jie and Lu, 2019; Zhou
et al., 2020d; Xu et al., 2021). Second, span-based
method seeks to pick very few (typically ă10%)
positive examples from Opn3q candidate predicate-
argument pairs, thus suffering from severe class
imbalance problem (Li et al., 2021). To alleviate
this issue, span-based method relies on heavy prun-
ing (He et al., 2018a) to reduce the searching space,
potentially impairing the performance.

Meanwhile, both formulations share some com-
mon flaws in terms of lacking explicit modeling of
internal argument structures, which appear to be
beneficial to SRL. Taking Fig. 1 as an example, in-
ternal dependencies of words (“in other European
markets”) inside the span provide strong clues for
recognizing it as a locative modifier (“AM-LOC”)
of the predicate “closed”. Besides, the predicate-
argument relation can be naturally reflected by the
dependency from the predicate to the span head-
word (“closed AM-LOC

ÝÝÝÝÝÑ in”), and we can properly
recognize the argument span boundaries by retriev-
ing all descendants of the subtree. Such observa-
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tions have motivated many attempts on utilizing
relations inside arguments (Gildea and Hocken-
maier, 2003; Johansson and Nugues, 2008a,c; Xia
et al., 2019; Li et al., 2019, inter alia). However,
stuck on the fact that span-style SRL has no de-
termined internal structure realizations, existing
works have to resort to making use of external
human-annotated syntax knowledge to bridge the
gap (Shi et al., 2020; Li et al., 2021).

Our main goal in this work is to explicitly take
internal argument structures into account mean-
while keeping our framework end-to-end. To this
end, we propose to model flat arguments as latent
subtrees, thus paving the way for reducing SRL to
dependency parsing seamlessly: we view predicate-
argument structures as partially-observed trees
where exact subtrees for each argument are not
realized yet. In this way, we reframe span-style
SRL as parsing word-to-word relations by encod-
ing all predicate-argument relations into a unified
dependency graph. Unlike span-based methods (He
et al., 2018a), a dependency graph contains no more
than Opn2q possible dependencies, so that the class
imbalance issue can be side-stepped effortlessly.
Specifically, we make use of TreeCRF (Eisner,
2000; Zhang et al., 2020), which provides a viable
way for probabilistic modeling of tree structures, to
learn the partially-observed trees and marginalize
the latent structures out during training. Unlike
canonical TreeCRF, which enumerates all possible
trees, in our setting, we have to impose many span
constraints to reflect the argument boundaries on
subtrees correctly. To accommodate this, we fur-
ther design a novel span-constrained TreeCRF to
adapt it to our learning procedure, which explicitly
prohibits invalid edges across different arguments
as well as multi-head subtrees (Nivre et al., 2014;
Zhang et al., 2021a).

There are further advantages to our reduction.
Conversion to tree structures enables us to easily
conduct global optimization (Eisner, 1996; McDon-
ald et al., 2005) in polynomial time, which has al-
ready been shown to often lead to improved results
and more meaningful predictions (Toutanova et al.,
2008; Täckström et al., 2015; FitzGerald et al.,
2015; Li et al., 2020) compared to local uncon-
strained methods. On the other hand, by drawing
on the experience in the parsing literature, we can
further extend our method to some well-studied
high-order methods (McDonald and Pereira, 2006)
without any obstacle. We experiment with sibling

factors in this work and find significant gains, in
line with many parsing works (Zhang et al., 2020;
Fonseca and Martins, 2020). Our contributions can
be summarized as follows:1

• Aware of the benefits of internal argument struc-
tures, we propose to model flat argument spans
as latent subtrees, thereby reducing SRL to de-
pendency parsing seamlessly.

• We propose a novel span-constrained TreeCRF
to learn the converted trees and further extend it
to the second-order case.

• Experiments on CoNLL05 and CoNLL12 bench-
marks reveal that our proposed methods outper-
form existing works significantly, achieving new
state-of-the-art results under the syntax-agnostic
setting.

2 Overview

In span-style SRL, an argument of a predicate cor-
responds to one word or multiple continuous words.
In the latter case, each word in the argument span
is treated as equal, and the internal structure of a
multi-word argument, i.e., the relationship between
words inside the argument, is usually overlooked
due to the lack of corresponding annotations.

In this work, we propose to explicitly model in-
ternal structures of multi-word arguments and treat
arguments as latent subtrees. Our approach deals
with each predicate separately, and assumes each
corresponds to a single-root tree. Consequently,
each argument subtree is attached to the predicate.
During the training process, all possible structures
are enumerated and accumulated to compose the
argument representation. While decoding, we seek
to find a 1-best tree and recover arguments from the
subtrees belonging to the resulting structure. We
highlight four key points.

i Our approach is syntax-agnostic. The tree struc-
tures are modeled and predicted solely to serve
the SRL task without referring to any linguistic
syntax knowledge.

ii The predicate identification subtask is handled
as a simple classification procedure.

iii For argument identification, argument bound-
aries are decided by subtrees attached to the
predicate, and edge labels are used for role dis-
ambiguation.

iv We adopt a consistent scoring architecture for
the two subtasks and train them jointly.

1Our code is publicly available at https://github.
com/yzhangcs/crfsrl.

https://github.com/yzhangcs/crfsrl
https://github.com/yzhangcs/crfsrl
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They1 want2 to3 do4 more5 .6

A0 A1

(a) Original structure: arguments of the predicate are located
in the upper half-plane of the sentence and do not overlap
with each other.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
∅

(b) Training: convert the predicate-argument structure to a de-
pendency tree with (dotted) latent annotations; non-argument
spans are assigned “∅” for distinction.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
∅

(c) Decoding: realize a tree rooted at the predicate with the arc
labeled as “PRD”; (dashed) arcs labeled as “∅” are discarded.

They1 want2 to3 do4 more5 .6

PRD

A0 A1

(d) Recovery: collapse all (dashed) subtrees governed by the
predicate into flat argument spans.

Figure 2: Illustration of our SRLÑTree conversion (Fig. 2a and Fig. 2b), and its inverse TreeÑSRL process (Fig. 2c
and Fig. 2d). We emphasize the predicate “want” in the figures for clarity. The two arguments with roles “A0” and
“A1” are framed by red and blue rectangles, respectively.

2.1 SRL Ñ Tree Conversion

Formally, given an input sentence x “ x1, . . . , xn,
we first seek to obtain tree structures for each predi-
cate p P x, which are taken as materials of training
a parser. We define a directed acyclic dependency
tree t by assigning a head h P tx0, x1, . . . , xnu to-
gether with a relation label r P R to each modifier
m P x, where a dummy word x0 is attached before
x as the pseudo root node.2

For predicate p, the first step is to link x0 to p.
To facilitate predicate identification, we assign a
special label PRD (resp. ∅ for non-predicate) to
the dependency x0 Ñ p. Then, we make all corre-
sponding latent argument subtrees descendants of
p. As we showcase in Fig. 2a, this takes advantage
of the non-overlapping constraint for arguments
belonging to the same predicate (Punyakanok et al.,
2004; Li et al., 2019). For an argument with a
consecutive word span xi, . . . , xj and a semantic
role r P R, we restrict all possible subtrees are
single-rooted at a potential headword h within the
span, which is also not realized yet. The semantic
role r is assigned as the label of the dependency
pointing from p to the headword. We adopt a sim-
ilar strategy for non-argument spans, except that
we set the label to ∅ for distinction and remove the
single-root restriction.

By enumerating all possible subtrees and comb-

2In this work, we assume all dependency trees are projec-
tive, i.e., without any crossing arcs. This property allows us to
associate the subtree with its continuous argument span (Kong
et al., 2015).

ing them together, the resulting tree set Tp is ex-
ponential in size. During training, we develop a
span-constrained Inside algorithm to perform the
enumeration (§ 3.2). Fig. 2b gives a brief example
of the conversion process.

2.2 Tree Ñ SRL Recovery

Supposing we have trained a parsing model, during
the decoding phase, what we need is to recover
predicate-argument structures from the outputs of
the parser.

We first find all predicates via simple local label
classification: a word p is recognized as a predi-
cate if the dependency x0 Ñ p is labeled as PRD.
Subsequently, we obtain the highest-scoring tree
t˚ (Fig. 2c) for p using Eisner algorithm (Eisner,
2000) with complexity Opn3q:

t˚ “ arg max
t:x0

PRD
ÝÝÑpPt

spx, tq (1)

where spx, tq is the tree score, and the tree is re-
stricted to be rooted at p. Arguments for the pred-
icate are then recovered by collapsing subtrees
headed by p into flat spans.

Concretely, we take each modifier h of p as the
headword of a potential argument. If the label r of
p Ñ h is not “∅”, i.e., non-argument, then an entire
argument span comprises h and its descendants
and takes r as the semantic role. The resulting
SRL output is the collection of all predicates and
corresponding recovered arguments. A recovery
example is demonstrated in Fig. 2d.
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3 Methodology

Now we elaborate the architecture of our proposed
model for training the parser. Following Dozat and
Manning (2017); Zhang et al. (2020), our model
consists of a contextualized encoder and a (second-
order) scoring module. We further propose a span-
aware TreeCRF to compute the probabilities of the
converted partially-observed trees.

3.1 Neural Parameterization
Given the sentence x “ x0, x1, . . . , xn, we first
obtain the hidden representation of each token xi
via a deep contextualized encoder.

h0,h1, . . . ,hn “ Encoderpx0, x1, . . . , xnq (2)

In this work, we experiment with two alternative en-
coders, i.e., BiLSTMs (Gal and Ghahramani, 2016)
and pretrained language models (PLMs) (Devlin
et al., 2019). More setting details are available in
§ A.

(Second-order) Tree parameterization Follow-
ing Dozat and Manning (2017), we decompose a
tree t into two separate y and r, where y is a skele-
tal tree, and r is the related strictly-ordered label
sequence. For each head-modifier pair h Ñ m P y,
we score them using two MLPs followed by a Bi-
affine layer (Cai et al., 2018):

r
head{mod
i “ MLPhead{modphiq

sph Ñ mq “ BiAF
´

rheadh , rmod
m

¯ (3)

The score of the dependency h Ñ m with label
r P R is calculated analogously. We use two extra
MLPs and |R| Biaffine layers to obtain all label
scores.

We also make use of adjacent-sibling informa-
tion (McDonald and Pereira, 2006) to enhance the
first-order biaffine parser further. Following Wang
et al. (2019); Zhang et al. (2020), we employ three
extra MLPs as well as a Triaffine layer for second-
order subtree scoring,

r
head{mod{sib
i “ MLPhead{mod{sibphiq

sph Ñ s,mq “ TriAF
´

rheadh , rmod
m , rsibs

¯ (4)

where s and m are two adjacent modifiers of h, and
s populates between h and m.

Under the first-order factorization (McDonald
et al., 2005), the score of y becomes

spx,yq “
ÿ

hÑmPy

sph Ñ mq (5)

For the second-order case (McDonald and Pereira,
2006), we further incorporate adjacent-sibling sub-
tree scores into tree scoring:

spx,yq “
ÿ

hÑm

sph Ñ mq `
ÿ

hÑs,m

sph Ñ s,mq

(6)
The probabilities of skeletal tree y and its label

sequence r are parameterized as

P py | xq “
exp pspx,yqq

Zpxq ”
ř

y1PY pxq exp pspx,y1qq

P pr | x,yq “
ź

h
r

ÝÑmPt

P pr | x, h Ñ mq

(7)
Y pxq is the set of all possible legal unlabeled trees,
and Zpxq is known as the partition function. Each
label r is independent of tree y and other labels,
thus P pr | x, h Ñ mq is locally normalized over
all r1 P R.

Finally, we define the probability of the labeled
tree t as the product of the probabilities of its two
sub-components.

P pt | xq “ P py | xq ¨ P pr | x,yq (8)

3.2 Span-constrained TreeCRF
Training objective During training, we seek to
maximize the probability of converted trees Tp for
each predicate p. Accordingly, we define the fol-
lowing loss function:

L “ ´
ÿ

p

logP pTp | xq (9)

in which P pTp | xq can be further expanded as

P pTp | xq “
ÿ

tPTp

P py | xq ¨ P pr | x,yq
loooooooooooomoooooooooooon

P pt|xq

“
1

Zpxq

ÿ

tPTp

exppspx,yqq ¨ P pr | x,yq
looooooooooooooomooooooooooooooon

exppspx,tqq

(10)

The proposed Inside The calculation of the de-
nominator Zpxq in Eq. 10 can be accomplished by
the canonical Inside algorithm. As for the numer-
ator, we make a slight change of the formula and
define the labeled tree score as:

spx, tq “ spx,yq ` logP pr | x,yq (11)

In this way, the numerator is exactly the summa-
tion of exponential scores of all legal labeled trees.3

3It is noteworthy that we do not assign any label to h Ñ

m P y while h R tx0, pu, i.e., any dependency inside an
argument span, thus its logarithmic label probability is set to
0 and does not contribute to tree scoring.
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R-COMB : COMB :
h ă m ď i

Dy, h Ñ m P y,

Drh˚,i if x0 Ñ h P y

s ď i ă m

h m

Ih,m

m i

Cm,i

h i

Ch,i

s i

Cs,i

i ` 1 m

Cm,i`1

s m

Ss,m

R-LINK : R-LINK2 :
h ă m

Dy, h Ñ m P y

h ă s ă m

Dy, h Ñ m P y,

h Ñ s,m Ę y if x0 Ñ h P y

h h

Ch,h

h ` 1 m

Cm,h`1

h m

Ih,m

h s

Ih,s

s m

Ss,m

h m

Ih,m

Figure 3: Deduction rules for our span-constrained In-
side algorithm (R-COMB and R-LINK) and its second-
order extension (COMB and R-LINK2). Our modified
rule constraints are highlighted in green color. The con-
dition x0 Ñ h P y means h is a predicate with x0 as
the parent. rh˚,i denotes an argument span that takes h
as the predicate and ends with i. We show only R-rules,
omitting the symmetric L-rules as well as initial condi-
tions for brevity.

This differs from the traditional case of partial tree
learning (Li et al., 2016) from two perspectives
where the common Inside algorithm is not ade-
quate to: 1) we impose span constraints to force
the converted latent subtrees to reflect argument
spans, and 2) we require the subtree ought to be
single-rooted at one potential headword in the span.

To resolve this, in this work, we propose a
span-constrained Inside algorithm to accommodate
these constraints. We illustrate the deduction rules
(Pereira and Warren, 1983) of our tailored algo-
rithm and its second-order extension in Fig. 3.4

Basically, we avoid the arc h Ñ m crossing dif-
ferent argument spans by prohibiting merging to
the relevant incomplete span Ih,m (R-LINK). To
prevent multiple headwords in the same argument,
inspired by Zhang et al. (2021a), for predicate h,
we only allow merging to the complete span Ch,i

if i is at the endpoint of an argument (R-COMB).

4We refer interested readers to § B for more details on the
exact meaning of the operations in the Inside algorithm.

#Train #Dev #Test #OOD #roles
CONLL05 39,832 1,346 2,416 2,399 54
CONLL12 75,187 9,603 9,479 - 63

Table 1: Data statistics for CoNLL05 and CoNLL12
datasets.

For the second-order case, we further prohibit the
subtree h Ñ s,m once s and m are located in the
same argument (R-LINK2), since this case implies
that the argument can be split into two more smaller
headed spans with respect to s and m, which is not
what we expect.

Time complexity analysis The proposed span-
constrained Inside shares the same asymptotic time
complexity of Opn3q as its canonical counterpart
(Eisner, 2000). Besides, we draw on the recent
development of parallelization techniques (Eisner,
2016; Zhang et al., 2020; Rush, 2020) and fur-
ther reduce the complexity of the parallelized al-
gorithm to Opn2q on GPUs. In practice, we find
that our models are efficient enough compared to
BIO-based and Span-based models. We make com-
prehensive speed comparisons in § 4.3.

4 Experiments

We measure our proposed first-order CRF and
second-order CRF2O models on two SRL bench-
marks: CoNLL05 and CoNLL12. Full implemen-
tation details are given in § A.

Data Table 1 lists the statistics of the datasets.
For CoNLL05, we follow standard splits of Car-
reras and Màrquez (2005): sections 02-21 of WSJ
corpus as Train data, section 24/23 as Dev/Test data,
and three sections (CK01-03) of the Brown corpus
as out-of-domain (OOD) data. For CoNLL12, fol-
lowing He et al. (2018a), we extract data from
OntoNotes (Pradhan et al., 2013) and follow the
data splits of the CoNLL12 shared task (Pradhan
et al., 2012).5 We adopt the same splits for both
end-to-end and w/ gold predicates settings. We use
the official scripts provided by CoNLL05 shared
task6 for evaluation.

4.1 Main results

Table 2 gives our main results. By default, our mod-
els work in an end-to-end fashion, i.e., predicting

5The list of file IDs for Train/Dev/Test data is available on
the task webpage.

6https://www.cs.upc.edu/~srlconll

https://cemantix.org/conll/2012/download/ids/english/coref/
https://www.cs.upc.edu/~srlconll
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CoNLL05 CoNLL12
Dev WSJ Brown Dev Test
F1 P R F1 P R F1 F1 P R F1

He et al. (2017) 80.30 80.20 82.30 81.20 67.60 69.60 68.50 75.50 78.60 75.10 76.80
He et al. (2018a) 81.60 81.20 83.90 82.50 69.70 71.90 70.80 79.40 79.40 80.10 79.80
Li et al. (2019) - - - 83.00 - - - - - - -
Zhou et al. (2020a) 82.27 - - - - - - - - - -
CRF 83.70 83.18 85.38 84.27 70.40 72.97 71.66 81.03 79.47 82.80 81.10
CRF2O 83.91 83.26 86.20 84.71 70.70 74.16 72.39 81.16 79.27 83.24 81.21
Li et al. (2019)ELMo - 85.20 87.50 86.30 74.70 78.10 76.40 - 84.90 81.40 83.10
Zhou et al. (2022)BERT 86.79 87.15 88.44 87.79 79.44 80.85 80.14 84.74 83.91 85.61 84.75
CRFBERT 86.82 86.98 88.28 87.63 79.19 80.92 80.05 85.35 84.47 86.24 85.35
CRF2OBERT 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
CRFRoBERTa 87.31 87.20 88.67 87.93 79.29 81.48 80.38 86.08 84.98 86.86 85.91
CRF2ORoBERTa 87.46 87.35 89.34 88.33 79.95 82.32 81.12 86.34 85.30 87.02 86.15

w/ gold predicates
He et al. (2017) 81.60 83.10 83.00 83.10 72.90 71.40 72.10 81.50 81.70 81.60 81.70
Ouchi et al. (2018) 82.50 84.70 82.30 83.50 76.00 70.40 73.10 82.90 84.40 81.70 83.00
Tan et al. (2018) 83.10 84.50 85.20 84.80 73.50 74.60 74.10 82.90 81.90 83.60 82.70
Strubell et al. (2018) - 84.70 84.24 84.47 73.89 72.39 73.13 - - - -
Zhou et al. (2020a) 83.16 - - - - - - - - - -
Zhang et al. (2021b) 84.45 85.30 85.17 85.23 74.98 73.85 74.41 82.83 83.09 83.71 83.40
CRF 84.42 85.38 85.56 85.47 75.05 74.05 74.55 83.22 83.21 83.85 83.53
CRF2O 84.65 85.47 86.40 85.93 74.92 75.00 74.96 83.39 83.02 84.31 83.66
Strubell et al. (2018)ELMo 85.26 86.21 85.98 86.09 77.10 75.61 76.35 83.23 84.39 82.21 83.28
Shi and Lin (2019)BERT - 88.60 89.00 88.80 81.90 82.10 82.00 - 85.90 87.00 86.50
Jindal et al. (2020)BERT - 88.70 88.00 87.90 80.30 80.10 80.20 - 86.30 86.80 86.60
Zhang et al. (2021b)BERT 87.38 87.70 88.15 87.93 81.52 81.36 81.44 86.27 86.00 86.84 86.42
Zhou et al. (2022)BERT 87.54 89.03 88.53 88.78 83.22 81.81 82.51 86.97 87.26 87.05 87.15
Conia and Navigli (2020)BERT - - - - - - - - 86.90 87.70 87.30
Blloshmi et al. (2021)BART - - - - - - - - 87.80 86.80 87.30
CRFBERT 87.76 88.93 88.58 88.76 82.87 81.67 82.27 87.33 87.45 87.56 87.51
CRF2OBERT 88.05 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.52 87.79 87.66
CRFRoBERTa 88.21 89.29 88.99 89.15 83.22 82.42 82.82 87.97 87.99 88.22 88.11
CRF2ORoBERTa 88.49 89.45 89.63 89.54 83.89 83.39 83.64 88.29 88.11 88.53 88.32

Table 2: Results on CoNLL05 and CoNLL12 data. All results are averaged over 4 runs with different random seeds.

all predicates and their associated arguments simul-
taneously. However, we note that reporting the
results of using gold predicates is a more prevalent
practice in the SRL community (He et al., 2018a;
Shi and Lin, 2019). Therefore, for comprehensive
comparisons, in addition to listing most end-to-end
results of previous works we are aware of, we also
conduct experiments with gold predicates, which
is achieved by only parsing trees rooted at the pre-
specified predicates.7

The two major rows show the results of end-
to-end and w/ gold predicates settings, indicating
very consistent trends. We can clearly see that un-
der the end-to-end setting, our LSTM-based CRF

models outperform previous works by a large mar-
gin on all datasets. The second-order CRF2O fur-
ther improves over CRF by 0.2, 0.4 and 0.7 F1

7We eliminate the invalid x0 Ñ p simply via setting the
dependency score to ´8.

scores on three CoNLL05 datasets, respectively.
On CoNLL12, CRF2O shows smaller but steady
gains. As revealed in § 4.2, we attribute the im-
provements brought by CRF and CRF2O to better
performing at global consistency and long-range
dependencies.

The results under the w/ gold predicates setting
are presented in the second major row. Many PLM-
based results comparable to ours are available in
this setting. Among them, the BIO-based parser of
Shi and Lin (2019) achieves 88.8, 82.0 and 86.5 F1

scores on CoNLL05 WSJ, Brown and CoNLL12
Test data. The dependency (word)-based parser
of Zhou et al. (2022) achieves 88.78, 82.51 and
87.15 F1 scores. Meanwhile, the results of our
first-order CRF model with BERT is 88.76˘0.18,
82.27˘0.26 and 87.51˘0.11. The performance gap
between CRF and recent state-of-the-art parsers
are negligibly small. We note that we do not uti-
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Dev Test
P R F1 CM F1 CM

BIO 86.80 86.38 86.59 69.24 88.22 71.95
SPAN 87.68 86.75 87.21 68.43 88.44 70.22
CRF 87.89 87.62 87.76 71.59 88.76 73.01

FIRST 87.44 86.60 87.02 70.35 87.81 71.14
LAST 86.99 87.00 86.99 70.29 87.67 71.08
FLAT 85.63 82.26 83.91 63.41 83.32 62.22

CRF2O 88.02 88.09 88.05 72.57 89.02 73.74

Table 3: Finetuning results on CoNLL05 Dev and Test
data under the setting of w/ gold predicates.

lize any word/predicate embeddings as well as
LSTM layers for simplicity, which may potentially
hinder the results. Despite this fact, our second-
order CRF2O achieves 89.02˘0.17, 82.58˘0.47, and
87.66˘0.05, which outperforms the systems of Shi
and Lin (2019) by 0.2, 0.6 and 1.2 F1 scores and
achieves new state-of-the-art on both CoNLL05
and CoNLL12 datasets. This implies that imposing
stronger structure constraints can still bring remark-
able improvements for span-style SRL even when
empowered with very expressive encoders. In the
bottom lines, we provide the results of utilizing
RoBERTa, we can see that CRF and CRF2O aug-
mented with RoBERTa can obtain further gains on
top of BERT.

We highlight that we do not include any syntax-
aware work (Xia et al., 2019; Zhou et al., 2020a)
in Table 2, which has shown to deliver substantial
gains for SRL (see further discussions in § C). It
is still an open question to be investigated whether
the benefits brought by our methods are orthogonal
to linguistic syntax knowledge. We focus on pure
syntax-agnostic models in this paper. So we do not
list the results of this line of works in order to make
fair comparisons.

4.2 Analysis

To better understand which empowers our proposed
CRF and CRF2O and in what aspects they are help-
ful, we conduct detailed analyses on CoNLL05 Dev
data. Considering that there exist many differences
in model/training settings, we re-implemented the
following two methods based on two widely used
libraries HanLP8 (He and Choi, 2021) and SuPar9

for fair comparisons:
• BIO: BIO-based method of Zhou and Xu (2015).

Following Zhang et al. (2021b), we employ
linear-chain CRF (Lafferty et al., 2001) to con-
8https://github.com/hankcs/HanLP
9https://github.com/yzhangcs/parser

duct global inference during training.
• SPAN: span-based method of He et al. (2018a).

We borrow the settings of Strubell et al. (2018)
and make use of Biaffine layers for span scoring.

We adopt the same experimental setups for all im-
plementations, i.e., finetuning on BERT and assum-
ing all predicates are given. Results are shown in
Table 3. It is clear that under the same settings, our
CRF expands the advantages over BIO and SPAN,
and CRF2O further improves the performance.

Impact of latent subtrees First of all, we con-
sider three variants of our first-order CRF to verify
the necessity of modeling arguments as latent trees:
1) FIRST, similar to CRF but always takes the first
word as argument headword; 2) LAST, denoting the
last word accordingly; 3) FLAT, similar to FIRST

but directly attach other argument words to the first
word. The first two variants fix the position of argu-
ment headwords. In Table 3, we observe that FIRST

and LAST perform quite similarly and steadily infe-
rior to CRF. This agrees with Zhang et al. (2021b),
highlighting the importance of headwords in rec-
ognizing arguments. In contrast to CRF, FLAT

completely excludes latent representations during
training and restricts the height of the converted
trees to 2. We can see that FLAT achieves 83.91 F1

on Dev, a dramatic performance drop against CRF

(87.76). Overall, as we expect, it seems that totally
latent argument representations empower CRF a
lot, performing best compared to other variants.

Structural consistency To quantify the benefits
of our methods in making global decisions for SRL
structures, we report the percentage of completely
correct predicates (CM) (He et al., 2018a) in Ta-
ble 3. We show that BIO with linear-chain CRF
significantly outperforms SPAN, but still falls short
of our CRF by 1.5. By explicitly modeling sibling
information, CRF2O provides stronger structure
constraints and goes further beyond CRF by 0.9.
In terms of the performance broken down by argu-
ment length, as shown in Fig. 4a, SPAN lags largely
behind BIO over lengthě8. We guess this is mainly
because of their aggressive argument pruning strat-
egy. And as expected, CRF and CRF2O demon-
strate steady improvements over BIO and SPAN.
We owe this to the superiority of our formulations
in modeling subtree structures, thus providing more
powerful argument representations and rich inter-
and intra-argument dependency interactions.

https://github.com/hankcs/HanLP
https://github.com/yzhangcs/parser
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Figure 4: F1 scores breakdown by argument length
(Fig. 4a) and predicate-argument distance (Fig. 4b).

Long-range dependencies Fig. 4b shows the re-
sults broken down by predicate-argument distance.
It is clear that the gaps between BIO and other meth-
ods become larger as the distance increases. This
is reasonable since BIO lacks explicit connections
for non-adjacent predicate-argument pairs, whereas
ours provides direct word-to-word bilexical map-
pings. SPAN shows competitive results but is still
inferior to ours. we speculate this is due to their
inferiority in ultra-long arguments, as illustrated in
Fig. 4a.

4.3 Efficiency

Table 4 compares different models in terms of pars-
ing speed. We obtain the speed of previous works
by rerunning their released code. For fair compar-
isons, all models are run on Intel Xeon E5-2650 v4
CPU and Nvidia GeForce GTX 1080 Ti GPU, and
do not use any PLM layers.

We can clearly see that our CRF and CRF2O can
parse about 242 and 214 sentences per second re-
spectively, much faster than all previous works. In
line with Strubell et al. (2018), our CRF and CRF2O

consume 5,000 tokens (roughly 200 sentences) per
mini-batch. However, Strubell et al. (2018) use up
to 12 Transformer layers, much deeper than our
3-layer BiLSTM encoder. This explains their less
efficiency from the side, as encoder layers might
take up a major part of the running time, while
the relative more efficient Viterbi decoding does
not dominate the time-consuming. Moreover, our
models are based on highly parallelized implemen-
tations (Zhang et al., 2020). We speculate that the
model speed of Strubell et al. (2018) can be further
improved with dedicated optimization. As for He
et al. (2018a); Li et al. (2019), we adopt their de-
fault setting of 40 sentences per batch. They need
to obtain the representations of all candidate argu-
ment spans, leading to high GPU memory usage.
This limits us to enlarge the batch size further and

Sents/s
Strubell et al. (2018) BIO 50
He et al. (2018a) SPAN 49
Li et al. (2019) SPAN 20

Ours

CRF 242
CRF2O 214
CRFBERT 136
CRF2OBERT 113

Table 4: Speed comparison on CoNLL05 Test data. We
also list the speed of our TreeCRF models using BERT
(CRFBERT and CRF2OBERT).

significantly slows down the parsing speed. In the
bottom lines of Table 4, we can see that our CRF

and CRF2O enhanced with BERT achieve speeds
of 136 and 113 sentences per second respectively.
Overall, we can conclude that our proposed CRF

and CRF2O are efficient enough and readily appli-
cable to real-life systems.

5 Related Works

Span-style SRL Pioneered by Gildea and Juraf-
sky (2000), syntax has long been considered indis-
pensable for span-style SRL (Punyakanok et al.,
2008). With the advent of the neural network era,
syntax-agnostic models make remarkable progress
(Zhou and Xu, 2015; Tan et al., 2018; Cai et al.,
2018), mainly owing to powerful model architec-
tures like BiLSTM (Gal and Ghahramani, 2016)
or Transformer (Vaswani et al., 2017). Meanwhile,
other researchers also pay attention to the utiliza-
tion of syntax trees, including serving as guidance
for argument pruning (He et al., 2018b), as input
features (Marcheggiani and Titov, 2017; Xia et al.,
2019; Mohammadshahi and Henderson, 2021), or
as supervisions for joint learning (Swayamdipta
et al., 2018). However, to our best knowledge, very
few works have been devoted to mining internal
structures of shallow SRL representations. As ex-
ceptions, He et al. (2018a); Zhang et al. (2021b)
take into account headwords while recognizing ar-
guments. Beyond this, this work proposes to model
full argument subtree structures rather than merely
headwords and find more competitive results.

Parsing with latent variables Henderson et al.
(2008, 2013) design a latent variable model to de-
liver syntactic and semantic interactions under the
setting of joint learning. In more common situa-
tions where gold treebanks may lack, Naradowsky
et al. (2012); Gormley et al. (2014) use LBP for
the inference of semantic graphs and treat latent
trees as global factors (Smith and Eisner, 2008)
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to provide soft beliefs for reasonable predicate-
arguments structures. This work differs in that
we make hard constraints on syntax tree structures
to conform to the SRL structures, and take only
subtrees attached to predicates as latent variables.
The intuition behind latent tree models (Meila and
Jordan, 2000; Chu et al., 2017; Kim et al., 2017) is
to utilize tree structures to provide rich structural in-
teractions for problems with prohibitive high com-
plexity. This idea is also common in many other
NLP tasks like text summarization (Liu and Lapata,
2018), sequence labeling (Zhou et al., 2020d), and
AMR parsing (Zhou et al., 2020c).

Reduction to tree parsing Researchers have in-
vestigated several ways to recover SRL structures
from tree structures, due to their high coupling na-
ture (Palmer et al., 2005). Early efforts of Cohn
and Blunsom (2005) derive predicate-arguments
from pruned phrase structures by using a CKY-
style TreeCRF to learn parameters. Johansson and
Nugues (2008a) and Choi and Palmer (2010) in-
vestigate retrieving semantic boundaries from de-
pendency outputs. Their devised heuristics rely
heavily on the quality of output trees, leading to
inferior results. Our reduction is also inspired by
works on other NLP tasks, including named entity
recognition (NER) (Yu et al., 2020), nested NER
(Fu et al., 2021; Lou et al., 2022), semantic pars-
ing (Sun et al., 2017; Jiang et al., 2019), and EUD
parsing (Anderson and Gómez-Rodríguez, 2021).
As the most relevant work, Shi et al. (2020) also
propose to reduce SRL to syntactic dependency
parsing by integrating syntactic-semantic relations
into a single dependency tree by means of joint la-
bels. However, their approach shows non-improved
results, possibly due to the label sparsity problem
and high back-and-forth conversion loss. Also, they
use gold treebank supervisions, while ours does not
rely on any hand-annotated syntax data.

6 Discussions and Future Works

The basic idea of this work is to mimic SRL struc-
tures with a combination of multiple latent trees.
This new perspective sheds light on some natu-
ral extensions of our work to other tightly related
semantic parsing tasks, e.g., AMR (Zhang et al.,
2019a) and UCCA (Jiang et al., 2019).10 Tasks
fall into this type exhibit very flexible graph rep-
resentation schemes (e.g., reentrancy and disconti-

10We thank an anonymous reviewer for pointing out the
connection.

nuity) (Zhang et al., 2019b), which are intractable
by principled decoding algorithms like dynamic
programming. We believe that employing struc-
tured inference in spirit of our approaches can
provide considerable help in getting rid of greedy
span/dependency selections and finding globally
optimal structures.

We prefer to reduce SRL to dependency-based
tree parsing rather than another paradigm, i.e.,
constituency parsing, partly because dependen-
cies provide a more transparent bilexical governor-
dependent encoding of predicate-argument rela-
tions (Hacioglu, 2004). We also do not pursue the
way of jointly modeling dependencies and phrasal
structures with lexicalized trees (Eisner and Satta,
1999; Yang and Tu, 2022; Lou et al., 2022) as our
approach enjoys a lower time complexity of Opn3q.
Nonetheless, we admit potential advantages of this
kind of modeling (Liu et al., 2022) and leave this
as our future work.

There are other interesting perspectives deserve
further explorations: given that span-style SRL sub-
stantially benefits from our formulation of recover-
ing SRL structures from trees, can the induced de-
pendency trees learn plausible syntactic structures?
Or in other words, can they agree with linguistic-
motivated annotations (Marcus et al., 1993)? We
conduct thorough analyses in spirit of Gormley
et al. (2014); Li et al. (2021) and give affirmative
answers. Due to space limitations, we refer readers
to § D and § E for details.

7 Conclusions

In this paper, we propose to reduce span-style SRL
to dependency parsing by viewing flat phrasal argu-
ments as latent subtrees, and design a novel span-
constrained TreeCRF to accommodate the span
structures. Taking inspirations from the parsing lit-
erature, we also build a second-order extension and
find further gains. Our models are syntax-agnostic
and do not rely on any external linguistic syntax
knowledge. Experimental results show that, our
proposed methods outperform all previous compa-
rable works, achieving new state-of-the-art on both
CoNLL05 and CoNLL12 benchmarks. Extensive
analyses confirm that our approach enjoys some
merits of global structural constraints, meanwhile
maintaining acceptable time complexity. Further-
more, we find our modeling of latent subtrees pro-
vides effective assistance in terms of long-range
dependencies and global consistency.
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A Implementation Details

In this work, we set up two alternative model ar-
chitectures, i.e, LSTM-based and PLM-based. For
the LSTM-based model, we directly adopt most
settings of Dozat and Manning (2017) with some
adaptions. The input vector of each token xi P x
is the concatenation of three parts,

ei “

”

ewordi ; elemma
i ; echari

ı

where ewordi and elemma
i are word and lemma em-

beddings, and echari is the outputs of a CharLSTM
layer (Lample et al., 2016). We set the dimension
of lemma and CharLSTM representations to 100 in
our setting. We next feed the input embeddings into
3-layer BiLSTMs (Gal and Ghahramani, 2016) to
get contextualized representations with dimension
800.

h0,h1, . . . ,hn “ BiLSTMspe0, e1, . . . , enq

Other dimension settings are kept the same as bi-
affine parser (Dozat and Manning, 2017). Follow-
ing Zhang et al. (2020), we set the hidden size of
Triaffine layer to 100 for CRF2O additionally. The
training process continues at most 1,000 epochs
and is early stopped if the performance on Dev
data does not increase in 100 consecutive epochs.
In practice, we observe that the training procedure
is often stopped within 300 epochs („12 hours),
which is efficient enough.

For PLM-based models, we opt to directly fine-
tune the PLM layers without cascading word em-
bedding and LSTM layers for the sake of simplicity.
We use “bert-large-cased” for BERT, and
“roberta-large” for RoBERTa respectively.
We train the model for 20 epochs with roughly
1,000 tokens per batch and use AdamW (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with
β1 “ 0.9, β2 “ 0.9 and λ “ 0 for parameter opti-
mization . The learning rate is 5 ˆ 10´5 for PLMs,

Algorithm 1 The Second-order Inside Algorithm.
1: Define: I, S, C P Rnˆnˆb

2: � b is batch size
3: Initialize: Ci,i “ 0, 0 ď i ď n
4: for w “ 1 to n do � span width
5: Parallelization on 0 ď i; j “ i ` w ď n

6:

Ii,j Ð logpexppCi,i ` Cj,i`1q

`
ÿ

iărăj

exppIi,r ` Sr,j ` spi, r, jqqq

` spi, jq

7:

Ij,i Ð logpexppCj,j ` Ci,j´1q

`
ÿ

iărăj

exppIj,r ` Sr,i ` spi, r, jqqq

` spj, iq
8: Si,j Ð log

ř

iďrăj exppCi,r ` Cj,r`1q

9: Ci,j Ð log
ř

iărďj exppIi,r ` Cr,jq

10: Cj,i Ð log
ř

iďrăj exppIj,r ` Cr,iq

11: end for
12: return C0,n

and 10´3 for the rest components. We adopt the
warmup strategy in the first 10% of the training
steps, and then apply a linear decay to the learning
rate in the remaining steps.

B The Inside Algorithm

We give the pseudocode of the common second-
order Inside algorithm (McDonald and Pereira,
2006) in Alg. 1 as additional explanations to
Fig. 3. The difference between the common second-
order Inside algorithm and our proposed span-
constrained one lies in the rule constraints green
highlighted in Fig. 3.

In Line 3, Ci,i corresponds to the axiom items

i i
with initial score 0. Line 6 corresponds to

two merge operations in Fig. 3. The incomplete

span Ii,j (
i j ) is obtained by summing over ei-

ther all pairs of complete span Ci,i and Cj,i`1 (R-
LINK) or pairs of the incomplete span Ii,r and
the sibling span Sj,r (R-LINK2). In Line 8, the

sibling span Si,j (
i j

) is obtained by summing

over all pairs of complete span Ci,r and Cj,r`1

(COMB). Line 9 describes the similar merging op-
eration on all pairs of the incomplete span Ii,r and
the complete span Cr,j , resulting a complete span

https://arxiv.org/abs/2112.02970
https://arxiv.org/abs/2112.02970
http://arxiv.org/abs/2011.05009
http://arxiv.org/abs/2011.05009
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337
https://huggingface.co/bert-large-cased
https://huggingface.co/roberta-large
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WSJ Brown
P R F1 P R F1

SA♢ 84.17 83.28 83.72 72.98 70.10 71.51
SA♢

ELMo 86.21 85.98 86.09 77.10 75.61 76.35
G2G♣

BERT 86.40 87.79 87.08 78.76 80.06 79.40
LIMIT♣

BERT 86.62 89.12 87.85 79.58 83.05 81.28
ParsingAll♣BERT 86.77 88.49 87.62 79.06 81.67 80.34
ParsingAll♣XLNet 87.65 89.66 88.64 80.77 83.92 82.31
CRFBERT 86.98 88.28 87.63 79.19 80.92 80.05
CRF2OBERT 87.00 88.76 87.87 79.08 81.50 80.27
CRFRoBERTa 87.20 88.67 87.93 79.29 81.48 80.38
CRF2ORoBERTa 87.35 89.34 88.33 79.95 82.32 81.12

w/ gold predicates
ParsingAll♣BERT 89.04 88.79 88.91 81.89 80.98 81.43
ParsingAll♣XLNet 89.89 89.74 89.81 85.35 84.57 84.96
TANL♢

T5 - - 89.30 - - 82.00
CRFBERT 88.93 88.58 88.76 82.87 81.67 82.27
CRF2OBERT 89.00 89.03 89.02 82.81 82.35 82.58
CRFRoBERTa 89.29 88.99 89.15 83.22 82.42 82.82
CRF2ORoBERTa 89.45 89.63 89.54 83.89 83.39 83.64

Table 5: Comparisons with other less comparable works
on CoNLL05 WSJ and Brown data. ♣ means using lin-
guistic syntax knowledge; ♢ means different evaluation
methods. SA: Strubell et al. (2018); ParsingAll: Zhou
et al. (2020a); LIMIT: Zhou et al. (2020b); G2G: Mo-
hammadshahi and Henderson (2021); TANL: Paolini
et al. (2021).

Ci,j (
i j

) (R-COMB). Line 7 and Line 10 is

the symmetric L-rules, which are omitted in Fig. 3.

C More Comparisons

In Table 5, for reference, we list the results of some
works with different experimental settings and
therefore less comparable. For example, Paolini
et al. (2021) and Strubell et al. (2018)11 adopt
different evaluation metrics, resulting in slightly
higher F1 values than official tools. Nonetheless,
we find that our CRF2O with RoBERTa achieves
89.54 F1 on WSJ data under the w/ gold pred-
icates setting, showing very competitive results
when compared with T5-based model of Paolini
et al. (2021). Zhou et al. (2020a) propose a
joint-learning framework, integrating both (de-
pendency/constituency) syntactic parse trees and
dependency-based SRL resources to enhance their
models. Their ablation studies show that using syn-
tax trees brought an overall improvement of 1.6
F1 score on CoNLL05 Dev data. We believe that

11Under the end-to-end setting, different from the standard
pratice (He et al., 2018a), Strubell et al. (2018) only ran the
evaluation tool once, resulting in slightly higher precision
values. See discussions in their code issue.

P R F1

CRF 75.28 75.24 75.26
CRFBERT 84.70 84.39 84.54

w/ gold syntax
Johansson and Nugues (2008c) - - 84.32
Li et al. (2019)ELMo - - 89.20
CRFBERT 93.56 93.22 93.39

Table 6: Results for dependency-based evaluation on
CoNLL09 Test data under w/o. and w/ gold syntax
settings.

we could achieve similar or even higher results
than their syntax-aware XLNet-based models by
incorporating human-annotated syntax knowledge.
However, exploring different ways of injecting syn-
tax is not the core of this paper. We take this as our
future work.

D Dependency-based evaluation

Observing that our CRF model can conveniently
determine dependencies from predicates to span
headwords as by-products of constructing argu-
ments, we therefore conduct dependency-based
evaluation on CoNLL09 Test data (Hajič et al.,
2009) to measure the quality of induced depen-
dencies. As CoNLL09 data shares the same text
content with CoNLL05, we directly make use of
the model trained on CoNLL05 to obtain the re-
sults of CoNLL09 Test. Following Johansson and
Nugues (2008b); Li et al. (2019), we also compare
our CRF outputs with the upper bound of utilizing
gold syntax tree to determine the headwords of pre-
dicted arguments. Since CoNLL05 contains only
verbal predicates, we discard all nominal predicate-
argument structures under the guidance of POS
tags starting with N*. Word senses and self-loops
are removed as well.

Results are listed in Table 6, from which we
can draw some observations: 1) after using BERT,
CRF outperforms LSTM-based model (75.26) by
a large margin, implying BERT provides fruitful
prior knowledge for dependency induction; 2) our
CRF with BERT achieves 84.54 F1 on CoNLL09
Test, exhibiting very promising performance even
when compared to models using gold syntax (Jo-
hansson and Nugues, 2008b; Li et al., 2019). This
indicates that the dependencies induced by CRF are
highly in line with gold dependency-based annota-
tions, illuminating potential extensions of our work
on supervised dependency-based SRL.

https://github.com/strubell/LISA/issues/9
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Rules Models WSJ

Stanford

NL-PCFGs (Zhu et al., 2020) 40.5
NBL-PCFGs (Yang et al., 2021) 39.1
StructFormer (Shen et al., 2021) 46.2
CRF 48.0
CRFBERT 65.4

w/ gold POS tags (for reference)

Collins

DMV (Klein and Manning, 2004) 39.4
MaxEnc (Le and Zuidema, 2015) 65.8
NDMV (Jiang et al., 2016) 57.6
CRFAE (Cai et al., 2017) 55.7
L-NDMV (Han et al., 2017) 59.5
NDMV2o (Yang et al., 2020) 67.5

Table 7: Grammar induction results of our CRF model
under different head-finding rules.

E Grammar Induction

To gain further insights, we make use of the scores
defined in Eq. 5 to extract full dependency tree
structures. Surprisingly, we find they are highly in
agreement with expert-designed grammars (Mar-
cus et al., 1993) when examined on the grammar
induction task (Klein and Manning, 2004).

We show precise grammar induction results in
Table 7. The results are not comparable to typical
methods like DMV (Klein and Manning, 2004)
or CRFAE (Cai et al., 2017), as they use gold
POS tags as guidance, and we use Stanford Depen-
dencies rather than Collins rules (Collins, 2003).
Under similar settings, however, our learned task-
specific trees perform significantly better than re-
cent works.

Another interesting observation is that the gap
between the BERT-based model and the LSTM-
based model is much larger than that on SRL re-
sults. This implies LSTMs tend to be more fitted
to SRL structures, while BERT is able to provide a
strong inductive bias for syntax induction.


