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Abstract

We consider few-shot out-of-distribution
(OOD) intent detection, a practical and im-
portant problem for the development of task-
oriented dialogue systems. Despite its impor-
tance, this problem is seldom studied in the
literature, let alone examined in a systematic
way. In this work, we take a closer look at
this problem and identify key issues for re-
search. In our pilot study, we reveal the rea-
son why existing OOD intent detection meth-
ods are not adequate in dealing with this prob-
lem. Based on the observation, we propose
a promising approach to tackle this problem
based on latent representation generation and
self-supervision. Comprehensive experiments
on three real-world intent detection benchmark
datasets demonstrate the high effectiveness of
our proposed approach and its great poten-
tial in improving state-of-the-art methods for
few-shot OOD intent detection. The source
code can be found at https://github.com/
liam0949/Few-shot-Intent-OOD.

1 Introduction

Intent detection is an important component of task-
oriented dialogue system, which aims at accu-
rately identifying the intent behind user utterances.
Out-of-distribution (OOD) intent detection aims to
solve a (K+1)-way classification problem with K
in-distribution (ID) intent classes and an additional
OOD class representing malformed or unsupported
queries. In practice, OOD intent detection is often
performed in data-scarcity scenarios, e.g., at the
early development stage of a dialogue system when
labeled data is not sufficient, or for dialogue sys-
tems developed for minority language users where
it is difficult to find suitable annotators.

Despite its practical importance, few-shot OOD
intent detection is a highly challenging problem,
which is seldom studied in the literature and has
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Figure 1: The challenge of few-shot out-of-distribution
intent detection. OOD stands for out-of-distribution
examples and ID stands for in-distribution examples.

not been investigated in a systematic way. Recent
advances in OOD intent detection (Zhang et al.,
2021a; Zhan et al., 2021; Lin and Xu, 2019) com-
monly assume that there are adequate ID exam-
ples available for training, without considering the
few-shot scenario. To our best knowledge, the only
work on this topic is by Zhang et al. (2020), who try
to tackle few-shot OOD intent detection via transfer
learning by fine-tuning RoBERTa (Liu et al., 2019)
on large-scale natural language inference datasets.

In this work, we take a closer look at few-shot
OOD intent detection and consider a strict setting,
where only few-shot in-distribution labeled exam-
ples are available during training and no external
resources can be exploited, since the requirement
of additional resources hinders the applicability of
the model. Under this simplified yet more challeng-
ing setting, state-of-the-art OOD intent detection
algorithms fail to achieve acceptable performance.
In Figure 1, we illustrate the key challenge for
few-shot OOD detection. As shown in Figure 1,
since ID classes are under-represented by few-shot
ID examples, a model based on density estima-
tion (Zhang et al., 2021a) or (K + 1)-way discrim-
inative training (Zhan et al., 2021) tends to learn
a conservative decision boundary and hence there
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are large margins between the real and learned de-
cision boundaries. Real ID examples situate in the
margins will be inaccurately assigned to the OOD
class, leading to poor performance.

Therefore, the key for few-shot OOD intent de-
tection is to improve the model performance on
ID examples. To address this issue, we propose to
enrich the training set to improve the representative-
ness of ID intent classes and provide more useful
learning signals. We explore the feasibility of gen-
erating synthetic ID examples in a self-supervised
manner. In particular, we train a denoising autoen-
coder (DAE) (Vincent et al., 2008) in the latent
representation space only using the few labeled
ID examples. The trained decoder of DAE is then
used to efficiently sample synthetic ID examples.
With the enlarged training set, we follow Zhan et al.
(2021) to train a (K +1)-way classifier by simulat-
ing OOD examples with the enlarged training set.
Our contributions are summarized as follows:

• We pioneer in studying a practical but more
challenging few-shot OOD intent detection
problem and identifying the key challenge for
this problem.

• We propose a promising approach for solving
few-shot OOD intent detection based on latent
representation generation and (K + 1)-way
discriminative training, which requires no ad-
ditional resources for training and validation.

• We conduct comprehensive experiments on
three realistic intent detection datasets to ver-
ify the effectiveness and robustness of our
method in diverse few-shot OOD intent de-
tection scenarios.

2 Related Work

Out-of-Distribution Intent Detection. Out-of-
distribution (OOD) intent detection (or out-of-
domain intent detection) has attracted much atten-
tion in research communities, due to its significant
importance to the robustness of dialogue systems.
The primary challenge of this task is that there is
no labeled OOD example available for training and
validation. As such, the majority of OOD intent
detection algorithms relies on manually selecting
an appropriate threshold.

The first line of works (Hendrycks and Gimpel,
2017; Shu et al., 2017; Ryu et al., 2018, 2017) uses
some statistic as the confidence score of whether

an example is OOD or not. Hendrycks and Gimpel
(2017) pointed out that the negative probability
outputted by the softmax function can be a good
confidence metric for OOD detection. Shu et al.
(2017) defined a binary classification task for every
in-domain class and used the maximum probability
among all these binary classifiers as the confidence
score. Ryu et al. (2018) developed an adversarial
training strategy inspired by GAN for OOD intent
detection. The discriminator in GAN was trained
to assign lower scores to OOD examples. Ryu
et al. (2017) employed an autoencoder trained on
in-domain examples and used the reconstruction
score as the OOD indicator. However, all these
methods require manual effort in selecting a proper
threshold for OOD discrimination.

The second line of works (Lin and Xu, 2019;
Zhang et al., 2021a; Yan et al., 2020) proposes to
learn decision boundaries for OOD examples under
some assumption of data distribtuion, e.g., mixture
of Gaussians. OOD examples are assumed to lie
in the low-density areas of utterance distribution.
Yan et al. (2020) proposed to model the in-domain
examples by a mixture of Gaussians distribution
and select a margin to constrain the variance of
each in-domain Gaussian component. Zhang et al.
(2021a) also made the mixture of Gaussian assump-
tion on in-domain data distribution but proposed
to automatically learn the variance of the Gaussian
components.

Different from previous methods, a recent work
by Zhan et al. (2021) proposed to directly learn
a (K + 1)-way classifier in an end-to-end man-
ner. They created OOD learning signals during
training by leveraging external data or construct-
ing simulated OOD examples with self-supervised
information.

Few-shot OOD Intent Detection. Few-shot
OOD intent detection considers OOD intent de-
tection in low-resource scenarios. It aims at de-
veloping a reliable OOD detector with only a few
examples per each in-distribution class. Undoubt-
edly, this is a highly challenging task given that
few-shot intent detection is already a big chal-
lenge (Zhang et al., 2020). At this point, this task is
under-explored and has never been investigated in
a strictly low-resourced setting. The most related
work is DNNC proposed in Zhang et al. (2020),
which tries to mitigate the data-scarcity problem
by fine-tuning RoBERTa on external large natural
language inference datasets. In this paper, however,



we consider using the few-shot labeled examples
as the only training resource.

General-purpose Few-shot OOD Detection.
There is also little research on general-purpose few-
shot OOD detection. To our knowledge, recent
works are Jeong and Kim (2020) and Wang et al.,
both of which adopt episodic training on a large set
of few-shot classification tasks for transfer learning.
Clearly, this is very different from the problem
setting of this paper, as we do not use training
resources other than the given few-shot labeled
examples.

3 Problem Statement and Pilot Study

Out-of-distribution (OOD) intent detection aims
at improving the robustness of a dialogue system
with respect to utterances with unknown (or unsup-
ported) intents. The key challenge of OOD detec-
tion is that real OOD samples are inaccessible dur-
ing training and validation. Given an in-distribution
(ID) set of K known classes, yi ∈ {yk}Kk=1, the
OOD detection task considers another special OOD
class yOOD to represent any malformed or unsup-
ported utterances. Hence, given the input space
X × Y , the goal of OOD intent detection is to
learn a (K + 1)-way classifier fϕ(·) : X → Y to
minimize the expected risk:

R(f) = E(1[fϕ(xi) ̸= yi)]), (1)

where yi ∈ {y1, · · · , yK , yOOD} and the expecta-
tion is taken over the joint distribution of p(x, y).
1 is an indicator function.

Few-shot OOD intent detection is a more chal-
lenging setting with the assumption that there are
only a few labeled in-distribution (ID) examples
available during training. In this paper, we con-
sider a strict but practical setting by assuming that
there are no additional resources (e.g., labeled or
unlabeled auxiliary datasets) available to aid the
training of the classifier fϕ(·) or during fine-tuning
pre-trained language models. Typically, for each
ID class in {yk}Kk=1, there are only ∼ 5 or ∼ 10
labeled examples per class.

Pilot study. To illustrate the challenges of few-
shot OOD intent detection, we conduct a pilot study
on a commonly used OOD intent detection dataset
CLINC150 (Larson et al., 2019) using two recent
state-of-the-art approaches (Zhang et al., 2021a;
Zhan et al., 2021) for few-shot OOD intent de-
tection. To simulate the few-shot scenario, in the
experiment, only 5 labeled examples in each ID

Methods Acc. Macro-F1 ID-F1 OOD-F1

25% ADB 77.91 53.09 52.22 86.29
DCL 86.53 48.78 47.63 92.22

50% ADB 69.36 56.91 56.64 77.17
DCL 74.60 50.58 50.15 82.45

75% ADB 70.43 67.17 67.12 73.09
DCL 65.50 54.25 54.11 70.22

Table 1: A pilot study on few-shot OOD intent detec-
tion. DCL (Zhan et al., 2021) and ADB (Zhang et al.,
2021a) are two recent state-of-the-art approaches for
OOD intent detection. ID-F1 indicates macro f1-score
on the in-distribution classes. OOD-F1 stands for f1-
score on the out-of-distribution class.

class are used for training. The results are sum-
marized in Table 1. For OOD detection, we ran-
domly select 25%, 50% and 75% intent classes as
in-domain classes and assign the remaining classes
to the OOD category. Experimental details are
elaborated in Section 5.

We can observe that both of the two methods
yield unsatisfactory performance. Specifically, the
performance on the ID classes is poor and way
lower than that on the OOD class. When there are
only 25% ID classes (∼ 38), the gap between the
ID and OOD classes in f1-score is the largest (up
to 44+). Although moderate overall accuracy is
achieved, such OOD intent detection model can
only provide services to users worse than random
choices, since the majority of user utterances are
rejected as OOD inputs. It also indicates that the
overall accuracy may not be a good performance
measure for this task. These observations show
that in the few-shot scenario, existing OOD intent
detection algorithms can be easily biased towards
the OOD class, due to inadequate representations
of the ID classes. Hence, directly applying them to
few-shot OOD intent detection will lead to sub par
performance.

The primary challenge identified from this pi-
lot experiment for few-shot OOD intent detection
is then how to improve the performance on in-
distribution classes and achieve a good balance
in performance between ID and OOD classes.

4 Methodology

4.1 Utterance Representation

Let D = {(xi, yi)}Ni=1 be the training set, where
xi denotes an input token sequence with size m,
i.e., [x0i , · · · , x

m−1
i ]. For each input xi, we use

BERT as the encoder to map xi into a sequence
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Figure 2: An overview of our proposed framework.

of hidden states hi, i.e., BERT:X → H and hi ∈
R(m+1)∗768. Note that for every sentence, BERT
adds a spacial token [CLS] at the beginning of the
sequence. Following common practice, we use the
average pooling of the hidden sequence hi as the
representation of an utterance:

zi = Avg.Pool([hCLS
i , h0i , · · · , hm−1

i ]).

Then, we obtain a mapped training set Dtr =
{(zi, yi)}Ni=1. We instantiate few-shot OOD de-
tector fϕ(·) by replacing the pre-trained heads of
BERT with a simple linear mapping layer.

4.2 Our Proposed Model
As shown in Figure 2, we propose a two-stage
model for few-shot OOD intent detection. In the
first stage, we learn a stochastic reconstruction
function to generate synthetic ID samples in the rep-
resentation space to enrich the in-distribution train-
ing set. In the second stage, we adopt a (K + 1)-
way discriminative training procedure for OOD
detection by simulating OOD examples based on
the enlarged in-distribution training set. Notice that
throughout the two stages, we only use the few
labeled in-distribution data without exploiting ex-
ternal labeled intent detection data or fine-tuning
corpus.

4.2.1 Stage I: Generating Synthetic
In-distribution Data

To improve the performance of in-distribution (ID)
classes, our solution is to learn a latent denoising
autoencoder (DAE) (Vincent et al., 2008) in the
latent representation space Z of BERT, to enrich
the in-domain training set by generating synthetic
examples with the reconstructor of the DAE.

Our key idea is to learn an approximator for the
distribution of the latent representation of ID utter-

ances (p(z)), from which we can sample synthetic
ID examples. We aim to learn a generator with
sampling efficiency and guaranteed consistency in
approximating the true distribution as the training
size N → ∞. We can thereby enrich the ID train-
ing examples directly in the representation space Z
and save the effort of conducting data augmentation
in the input space X .

To this end, we employ a principled distribution
estimation method – denoising autoencoder (DAE)
– to build an efficient stochastic process for sam-
pling ID examples with a consistency guaranteed
estimator for p(z). The latent DAE consists of two
components: the corruption distribution C(z̃ | z)
and the reconstruction distribution qθ(z | z̃). The
DAE can be learned by:

θ∗ = argmax
θ

E(log(qθ(z | z̃)),

where the likelihood is computed by a mean square
loss between the original embedding vector z and
the reconstructed vector ẑ as shown in Figure 2.

After obtaining the reconstruction distribution
qθ∗(z | z̃), we can sample synthetic ID examples
as follows:

ẑ ∼ qθ∗(z | z̃),
z̃ ∼ C(z̃ | z).

(2)

The corruption distribution C can be instantiated
by simple stochastic operations like Dropout (Sri-
vastava et al., 2014). By repeatedly applying the
process in Equation (2), we can obtain a synthetic
labeled ID set Drec = {(ẑi, yi)}Li=1, where the re-
constructed representation ẑi shares the same label
yi with the original uncorrupted zi. Finally, by
combining the original training set Dtr and the syn-
thetic set Drec, we get an enlarged labeled training
set DEnlarged = Dtr ∪ Drec.
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Figure 3: Illustration of the noise neutralizing effect
under the (k + 1)-way training paradigm.

4.2.2 Stage II: (K + 1)-way Discriminative
Training

As shown in the Figure 2, the second stage of our
proposed method aims at learning a (K + 1)-way
classifier in an end-to-end manner. Since only few-
shot samples are used to train the reconstruction
distribution qθ(z | z̃), the resulting qθ∗(·) may not
be a perfect estimator for the true distribution, and
the enlarged in-distribution set DEnlarged may be
noisy. Hence, it may not be the best choice to di-
rectly apply density estimation-based methods for
OOD intent detection, due to the risk of overfitting.

To better utilize the enlarged in-distribution set
DEnlarged, we adopt the (K+1)-way discriminative
training strategy proposed in Zhan et al. (2021) and
follow their idea to construct OOD learning signals
via random convex combination between represen-
tations from different in-distribution classes in the
enlarged in-distribution set. By doing so, the im-
pact of noisy synthetic in-distribution examples can
be mitigated. We demonstrate this phenomenon in
Figure 3. The linear interpolation between off-
manifold noisy synthetic in-distribution examples
tends to represent the OOD examples, since the
word embeddings of BERT has been found con-
centrating near a low-dimensional manifold of the
representation space (Ethayarajh, 2019).

Specifically, given the enlarged training set
DEnlarged, we construct an OOD set DOOD by:

zOOD
i = α ∗ zi + (1− α) ∗ zj , (3)

where yi ̸= yj , α ∈ [0, 1] is randomly sampled
from U(0, 1) and zi, zj ∈ DEnlarged.

Finally, our (K+1)-way classifier can be learned
by minmizing the loss in Equation (1) on the union
set DOOD ∪ DEnlarged.

5 Experiments

To evaluate our proposed method for few-shot out-
of-distribution (OOD) intent detection, we conduct
extensive experiments on three real-world bench-
mark datasets. By comparing with state-of-the-art
OOD intent detection methods, we find that our
method can outperform these baselines by a large
margin, especially in extreme few-shot scenarios.
Moreover, our approach yields a more consistent
performance at different few-shot OOD settings,
demonstrating the robustness of our algorithm.

5.1 Datasets and Baselines

We evaluate our method on three commonly used
OOD intent detection datasets, which are intro-
duced as follows.

• CLINC150 (Larson et al., 2019) is specifi-
cally designed for OOD intent detection. It
consists of 150 in-distribution classes with
15,000 samples for training, 3,000 for valida-
tion, and 4,500 for testing. Besides, it also
contains 1,200 annotated OOD instances, and
we put all the OOD examples into the test set.

• Banking (Casanueva et al., 2020) contains
data from the banking domain, with 13,083
samples of 77 intents. We split the dataset into
9,003 for training, 1,000 for validation, and
3,080 for testing.

• StackOverflow (Xu et al., 2015) contains data
in 20 classes, each of which contains 1,000
samples. We use 12,000 samples for training,
2,000 for validation, and 6,000 for testing.

The dataset statistics are summarised in Table 2.
To evaluate the effectiveness of our proposed

method, we compare it with the following base-
lines.

• MSP (Hendrycks and Gimpel, 2017): It lever-
ages the probabilities outputted by the softmax
function for out-of-domain detection. As cor-
rect samples tend to have higher probability
scores, samples below a threshold are classi-
fied as outliers. We set the threshold as 0.5 in
our experiment.

• DOC (Shu et al., 2017): It shares a similar
idea with MSP in assuming that in-distribution
examples tend to have higher probability
scores. It uses the maximum probability



Dataset # Vocab Avg. Length # Training # Class Avg. Sample per Class
(proportion) (5%) (10%)

CLINC150 5864 8.34 15000 150 5 10
Banking 4327 11.99 9003 77 6 12

StackOverflow 16519 8.35 12000 20 30 60

Table 2: Dataset statistics.

dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 40.13 55.17 54.76 17.74 29.31 31.99 52.30 42.92 78.92
DOC 11.05 8.62 44.37 15.79 25.61 20.98 65.54 44.4 58.54
SEG 36.09 51.90 62.64 39.53 52.27 58.80 60.76 75.93 83.22

LMCL 34.30 52.45 60.71 39.10 48.90 54.60 56.00 69.68 83.17
Softmax 33.98 52.48 62.11 32.77 43.74 52.84 54.21 71.27 81.55

ADB 53.09 56.91 65.65 37.74 45.91 55.26 60.31 77.92 81.14
DCL 48.78 50.58 54.25 33.92 39.10 45.59 78.98 82.37 83.01
Ours 62.19 64.79 68.30 48.23 58.92 63.14 80.48 84.04 84.25

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 54.34 71.56 77.31 43.50 48.62 68.34 41.66 59.73 75.95
DOC 15.15 23.28 54.69 13.99 21.50 25.13 44.77 61.22 61.19
SEG 68.29 77.59 80.32 56.75 58.70 71.32 58.77 78.64 83.85

LMCL 66.87 76.48 79.04 54.38 63.71 67.66 55.42 77.01 85.06
Softmax 65.07 77.08 79.68 53.27 60.20 68.94 57.86 77.30 83.47

ADB 68.05 74.96 77.75 51.12 66.16 70.50 69.55 81.30 83.83
DCL 68.65 72.74 70.81 55.74 61.10 65.77 78.61 82.46 83.80
Ours 72.43 78.15 82.17 60.99 67.89 73.79 81.07 83.99 85.11

Table 3: Overall macro f1-score including the OOD class for few-shot OOD intent detection with different
proportion (0.25, 0.5 and 0.75) of in-distribution classes. p indicates the ratio of selected few-shot in-distribution
examples. For each setting, the best result is marked in bold.

from m 1-vs-rest sigmoid classifiers for m ID
classes respectively as the confidence score.

• LMCL (Lin and Xu, 2019): It leverages local
outlier factor(LOF) to identity samples which
are far away from the clusters in the embed-
ding space as outliers. The model learns dis-
criminative features by largin margin cosine
loss.

• Softmax (Lin and Xu, 2019): It is a variant of
LMCL where the large margin cosine loss is
replaced by the softmax loss to learn discrimi-
native features.

• SEG (Yan et al., 2020): It uses a Gaussian
mixture model to enforce ID embeddings to
form ball-like dense clusters in the feature
space. Moreover, it injects semantic infor-
mation into the Gaussian mixture model by

assigning the embeddings of class labels or
descriptions to be the means of the Gaussians.

• ADB (Zhang et al., 2021a): It proposes to
learn a decision boundary for each in-domain
class for OOD intent detection. Samples re-
side outside of the boundaries are identified
as outliers, while in-distribution examples are
classified based on their distance to centroids
of each class.

• DCL (Zhan et al., 2021): It treats outliers
as an additional class and proposes a K + 1
training paradigm for OOD intent detection.
Samples in the outlier class are obtained from
external datasets and synthesized through con-
vex combinations of in-distribution features.



dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 38.85 54.85 54.63 14.38 28.32 31.79 55.15 40.97 80.44
DOC 8.99 7.72 44.18 12.35 24.48 20.62 62.89 42.89 58.92
SEG 36.88 52.50 63.18 39.30 52.83 58.80 60.65 76.11 84.06

LMCL 35.20 53.14 61.24 37.15 49.41 55.02 55.15 71.51 84.17
Softmax 34.68 53.10 62.61 33.56 44.22 53.26 54.25 72.36 82.65

ADB 52.22 56.64 65.58 35.14 45.54 55.36 77.51 77.92 81.97
DCL 47.63 50.15 54.11 31.1 38.22 45.55 76.31 81.92 83.79
Ours 61.43 64.54 68.25 48.82 58.51 63.32 78.05 83.74 84.99

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 53.77 71.50 77.39 41.97 48.21 68.69 45.89 61.02 78.29
DOC 13.21 22.57 54.57 10.39 20.33 24.84 43.69 60.43 61.60
SEG 68.29 77.52 80.34 56.75 58.69 71.61 59.24 78.64 83.85

LMCL 66.40 76.47 79.05 53.77 63.91 68.07 55.40 77.26 85.84
Softmax 64.59 77.01 79.72 52.70 60.42 69.31 57.24 77.48 84.43

ADB 67.49 74.82 77.76 50.04 66.01 70.75 67.41 81.08 84.62
DCL 67.99 72.55 70.76 54.02 61.27 65.98 75.99 82.09 84.52
Ours 71.93 78.06 82.19 59.76 67.73 74.09 78.91 83.82 85.93

Table 4: Macro f1-score excluding the OOD class for few-shot OOD intent detection with different proportion
(0.25, 0.5 and 0.75) of in-distribution classes. p indicates the ratio of selected few-shot in-distribution examples.
For each setting, the best result is marked in bold.

5.2 Experimental Setup

To achieve a fair comparison, all the baselines and
our method use the same pre-trained BERT model
(bert-base-uncased (Wolf et al., 2019)) to encode
input sentences.

To construct few-shot OOD intent detection
tasks from the three datasets, we randomly sam-
ple 5% and 10% labeled examples per class as the
training set from each of the three datasets. Then,
we randomly select 25%, 50%. 75% of the classes
in each dataset as in-distribution (ID) classes and
set aside the respective remaining classes to the
OOD class for the test stage. Concrete numbers
of ID examples per class for each dataset can be
found in Table 2. In particular, during training and
validation, only the labeled few-shot examples of
ID classes are seen by the model.

At training stage I, we use a two-layer MLP
as qθ and optimize the parameters of qθ by
Adam (Kingma and Ba, 2015) with a learning rate
of 1e−4. The dropout rate for the corruption func-
tion is set to be 0.3 for all experiments. At training
stage II, we instantiate our (k+1)-way OOD intent
classifier fϕ by removing the pre-trained heads of
BERT and appending a single layer MLP. For op-
timizing fϕ, we adopt AdamW (Wolf et al., 2019)

as optimizer and set the learning rate as 2e−5 fol-
lowing common practice (Devlin et al., 2019).

For the synthetic ID examples, we sample 15 re-
constructed examples per real ID example. For the
simulated OOD samples, we construct 100 OOD
examples per batch during training. These values
are selected with respect to the performance on val-
idation sets. The reported results are the mean of 5
runs with different random seeds.

Following previous works (Yan et al., 2020;
Zhang et al., 2021b; Zhan et al., 2021) in OOD
intent detection, we use macro f1-score as the pri-
mary evaluation metric.

5.3 Correctness of the Synthetic
In-distribution Examples

In Figure 4, we provide a qualitative evaluation of
the generated synthetic in-distribution (ID) exam-
ples using t-SNE visualization (Van der Maaten
and Hinton, 2008). We use the BERT embeddings
of 5% labeled examples of 8 ID classes and all
out-of-distribution examples from CLINC150 and
plot them on the top of the figure. By generating
10 synthetic ID examples for each real ID example,
we have the bottom figure where we can observe
that these synthetic ID examples closely situate in
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Figure 4: t-SNE visualization of BERT embeddings.
Top: BERT embeddings without the synthetic in-
distribution examples; Bottom: BERT embeddings with
the synthetic in-distribution examples. Better view in
color and enlarged.

the vicinity of each real ID example. Since BERT
embeddings have been proved to be rich in con-
textualized semantics (Devlin et al., 2019), the dis-
tance between different embeddings can reflect the
semantic gap between them. In this regard, at a
high level, our generated ID examples can capture
the expressiveness of ID classes.

5.4 Main Results

We present the results for the aforementioned three
datasets in Table 3 and Table 4. As shown in the
two tables, our proposed method consistently out-
performs all baselines by a large margin in all set-
tings.

Table 3 presents the results in overall macro f1-
score on (K + 1) classes including the OOD class.
The results in this table can be interpreted as the
overall performance of the model. We first inspect
the challenging case, where only 5% labeled exam-
ples per class are sampled for training as shown in
the top of Table 3. We can observe that our method
leads to large improvements on all three datasets. In
the most challenging case (only 25% of classes in
each dataset are selected as in-distribution classes),
the improvement is more than 9% on CLINC150
and 8% on Banking than the second best results.
Moreover, in the 50% and 75% cases, the improve-
ments are also significant. For example, in the
50% case of Banking, the gap between our method

Figure 5: Effect of the number of synthetic in-
distribution examples.

and the second best one is around 6.6%. These
results verify the effectiveness and consistency of
our model in extreme data-scarcity scenarios. As
the ratio of labeled examples per class increased
to p = 10%, it can be seen that the baselines are
improved by a large margin compared with the
case of p = 5%. However, our method can still
achieve consistent improvement. This validates
the robustness of our method under various data-
scarcity scenarios.

In Table 4, we summarize the results in macro
f1-score of in-distribution classes to demonstrate
the effectiveness of synthetic ID examples in our
method. It can be seen that in all settings, the per-
formance gains are consistent with the results in
Table 3, which indicates that the synthetic ID ex-
amples sampled from the DAE can help to improve
the classification performance on ID classes.

CLINC150, p=5%
Method ID-F1 Overall-F1

25% SEG 36.88 36.09
SEG + Ours 63.65 64.25

50% SEG 52.50 51.90
SEG + Ours 71.97 72.13

75% SEG 63.18 62.64
SEG + Ours 70.67 70.72

Table 5: Results of SEG (Yan et al., 2020) and SEG with
our synthetic ID examples (SEG + Ours). ID-F1 stands
for in-distribution f1-score, and overall-F1 indicates the
macro f1-score for all classes including the OOD class.
Better results are marked in bold.

5.5 Effectiveness of the Synthetic
In-distribution Examples

First, we study the impact of the number of syn-
thetic in-distribution (ID) examples. We conduct
experiments on the 5% labeled ratio case. As
shown in Figure 5, we vary the number of syn-



thetic ID examples per class from 0 to 500. In the
range of [0,100], the classification performance in-
creases gradually for all cases (0.25, 0.5 and 0.75).
It shows the expressiveness of the synthetic ID ex-
amples. However, in the range of [100,500], we
observe a slow performance drop in all cases. This
is probably because the ID generator is learned
from few-shot data and may generate inaccurate ID
examples.

To further verify the effectiveness of our syn-
thetic generator, we incorporate the synthetic ID ex-
amples to a strong baseline SEG (Yan et al., 2020)
and present the results under the p = 5% setting
of CLINC150 in Table 5. With our enlarged ID
training set, the performance of SEG can also be
improved significantly.

5.6 Robustness of the (K + 1)-way Training
Paradigm

In this subsection, we conduct experiments to eval-
uate the robustness of the (K + 1)-way training
paradigm with synthetic in-distribution (ID) exam-
ples.

As shown in Figure 6, we vary the corruption
rate (from 0% to 100%) of the learned latent de-
noising autoencoder (DAE) (trained by 30% cor-
ruption rate). Notice that 100% corruption rate
indicates that no useful reconstruction information
is passed to the DAE. We can observe that in the
0.5 (orange line) and 0.75 (green line) cases, the
learned (K + 1)-way classifier can maintain a sur-
prisingly consistent performance compared with
the 0.25 (purple line). Especially, with 90% cor-
ruption rate, the synthetic in-distribution (ID) ex-
amples are much less accurate than those with 30%
or 40% corruption rate, but the performance does
not drop to an unacceptable level. This verifies
the noise neutralization effect of the (K + 1)-way
training manner discussed in Section 4.

6 Conclusion

In this paper, we have investigated few-shot OOD
intent detection under a more challenging setting.
We have conducted a pilot study to identify the key
challenge for this problem, which is in improving
the in-distribution (ID) expressiveness during train-
ing. To this end, we have proposed a promising
approach to enrich the ID training set by sampling
from a denoising autoencoder trained with only a
few examples. The enlarged training set enables to
train a well-performing (K+1)-way classifier. Our

Figure 6: Effect of the rate of corruption on the learned
denoising autoencoder. The experiment is conducted on
CLINC150 under the p = 5% setting.

proposed approach has been validated by extensive
experiments on real-world benchmarks.
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