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Abstract
We propose a new unsupervised method for
lexical substitution using pre-trained language
models. Compared to previous approaches that
use the generative capability of language mod-
els to predict substitutes, our method retrieves
substitutes based on the similarity of contextu-
alised and decontextualised word embeddings,
i.e. the average contextual representation of a
word in multiple contexts. We conduct exper-
iments in English and Italian, and show that
our method substantially outperforms strong
baselines and establishes a new state-of-the-art
without any explicit supervision or fine-tuning.
We further show that our method performs par-
ticularly well at predicting low-frequency sub-
stitutes, and also generates a diverse list of sub-
stitute candidates, reducing morphophonetic
or morphosyntactic biases induced by article–
noun agreement.1

1 Introduction

There has been growing interest in developing auto-
matic writing support systems to assist humans to
write documents. One relevant task to this research
goal is lexical substitution, where given a target
word and its surrounding context, a system sug-
gests a list of word substitutions that can replace
the target word without changing its core meaning.
For instance, given the target word great and the
context He is a great artist, the model might sug-
gest alternative words such as outstanding, terrific,
or distinguished. Writers can use such suggestions
to improve the fluency of their writing, reduce lexi-
cal repetition, or search for better expressions that
represent their ideas more creatively.

As with other NLP tasks, recent studies have
shown that masked language models such as BERT
(Devlin et al., 2019) perform very well on lexical
substitution, even without any task-specific super-
vision. A common approach is to employ language

1Code is available at: https://github.com/
twadada/lexsub_decontextualised.

models as generative models and predict substitutes
based on their generative capability. However, this
approach has some limitations. First, it is extremely
difficult for language models to predict rare words
— especially those that are segmented into multi-
ple subword tokens — since the models inevitably
assign them very low probabilities. Second, word
prediction is highly affected by morphosyntactic
constraints from the surrounding context, which
overshadows the (arguably more important) ques-
tion of semantic fit. For instance, if the target word
is increase in the context ... with an increase in ...,
language models tend to suggest words that also
start with a vowel sound due to the presence of
an before the target word, missing other possible
substitutes such as hike or boost. In fact, this prob-
lem is even more pronounced in languages where
words have grammatical gender (e.g. Italian nouns)
or a high degree of inflection (e.g. Japanese verbs).

In this paper, we propose a new approach that
explicitly deals with these limitations. Instead of
generating words based on language model predic-
tion, we propose to find synonymous words based
on the similarity of contextualised and decontextu-
alised word embeddings, where the latter refers to
the “average” contextual representation of a word
in multiple contexts. Experiments on English and
Italian lexical substitution show that our fully un-
supervised method outperforms previous models
by a large margin. Furthermore, we show that
our model performs particularly well at predicting
low-frequency words, and also generates more di-
verse substitutes with less morphophonetic or mor-
phosyntactic bias, e.g. as a result of article–noun
agreement in English and Italian.

2 Method

2.1 Our Approach

Given a sentence that contains a target word x and
its surrounding context c, we first feed the sentence

https://github.com/twadada/lexsub_decontextualised
https://github.com/twadada/lexsub_decontextualised
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into a pre-trained transformer model (Vaswani
et al., 2017) such as BERT and generate the con-
textualised representations of x: f ℓ(x, c) ∈ Rd,
where ℓ (≤ L) denotes the layer of the model. We
propose to predict substitutes of x by retrieving
words that have similar representations to f ℓ(x, c).
To this end, we calculate S(y|x, c): the score of y
being a substitute of x in context c, as follows:

S(y|x, c) = cos(f(y), f(x, c)), (1)

f(x, c) =
∑
ℓ∈Z

f ℓ(x, c),

f(y) =
1

N

N∑
i

∑
ℓ∈Z

f ℓ(y, c′i),

where f(y) ∈ Rd denotes the decontextualised
word embedding of y; Z is a set of selected lay-
ers; and cos(a, b) denotes the cosine similarity
between a and b. To obtain f(y), we randomly
sample N sentences (c′1, c

′
2..., c

′
N ) that contain y

from a monolingual corpus, and take the average
of the contextualised representations of y given c′i:
f ℓ(y, c′i). We pre-compute f(y) for each word y
in our pre-defined vocabulary Ṽ , which consists of
lexical items (i.e. no subwords) and contains dif-
ferent words from the pretrained model’s original
vocabulary V . If y is segmented into multiple sub-
words (using the pretrained model’s tokeniser), we
average its subword representations — this way we
can include low-frequency words in Ṽ and gener-
ate diverse substitutes. We obtain f(x, c) and f(y)
by summing representations across different layers
ℓ ∈ Z to capture various lexical information.2

2.2 Multi-Sense Embeddings
Representing f(y) in Eqn. (1) as a simple average
of the contextualised representations of y is clearly
limited when y has multiple meanings, since the
representations will likely vary depending on its
usage. For instance, Wiedemann et al. (2019) show
that BERT representations of polysemous words
such as bank create distinguishable clusters based
on their usages. To address this issue, we first
group the N sentences into K clusters based on the
usages of y, and for each cluster k, we obtain the
decontextualised embedding fk(y) by averaging
the contextualised representations, i.e.,

fk(y) =
1

|Ck|
∑
c′∈Ck

∑
ℓ∈Z

f ℓ(y, c′),

2We also tried taking the weighted sum of the different-
layer embeddings, but we did not see noticeable improvement.

where Ck denotes the set of the sentences that be-
long to the cluster k. To obtain clusters, we apply
K-means (Lloyd, 1982; Arthur and Vassilvitskii,
2007) to the L2-normalised representations of y
in N sentences.3 We expect that if y has multi-
ple senses, fk(y) will to some degree capture the
different meanings.4 This methodology has been
shown to be effective by Chronis and Erk (2020)
on context-independent word similarity tasks. With
fk(y), we can refine the similarity score S(y|x, c)
in Eqn. (1) as follows:

S(y|x, c) = max
k

cos(fk(y), f(x, c)).

In this way, we can compare x with y based on the
sense that is most relevant to x. Furthermore, we
capture global similarity between x and y as:

S(y|x, c) = max
k

λcos(fk(y), f(x, c))

+ (1− λ)cos(fk(y), f jc(x)),
(2)

jc = argmax
j

cos(f j(x), f(x, c)), (3)

where the second term in Eqn. (2) corresponds
to the global similarity, which compares x and y
outside of context c.5 However, it still considers c
in Eqn. (3) to retrieve the cluster that best represents
the meaning of x given c.

While Eqn. (2) generally generates high-quality
substitutes, we found that it sometimes retrieves
words that share the same root word as x and yet
do not make good substitutes (e.g. pay and payer).
This is mainly due to the fact that the vocabulary Ṽ
contains a large number of derivationally-related
words, some of which are out-of-vocabulary (OOV)
in the original vocabulary V (e.g. pay ##er). To ad-
dress this problem, we add a simple heuristic where
y is discarded if the normalised edit distance6 be-
tween x and y is less than a threshold (0.5 for our
English and Italian experiments).7

2.3 Reranking
In Eqn. (2), the context c affects the representation
of x but not y. Ideally, however, we want to con-

3We concatenate f ℓ(y, c) across multiple layers ℓ ∈ Z.
4Note that the number of clusters K is fixed across all

words, forcing the model to “split” and “lump” senses (Hanks,
2012) to varying degrees.

5To obtain f j(x), we compute the decontextualised em-
bedding of x and apply K-means, as we do to compute fk(y).
When x is not included in our pre-defined vocabulary Ṽ , we
set λ to 1 and ignore the second term in Eqn. (2).

6The distance normalised by the maximum string length.
7We tuned this threshold based on English development

data (i.e. the development split of SWORDS).
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sider the context c on both sides to find the words
that best fit the context. Therefore, we first gener-
ate top-M candidates based on Eqn. (2), and rerank
them using the following score:

S(y|x, c) = 1

|Z|
∑
ℓ∈Z

cos(f ℓ(y, c), f ℓ(x, c)), (4)

where f ℓ(y, c) denotes the contextualised repre-
sentation of y given c, which can be obtained by
replacing x in c with y and feeding it into the model.
In Eqn. (4), we calculate the similarity at each layer
ℓ ∈ Z and take the average, which yields small yet
consistent improvements over averaging the em-
beddings first and then calculating the similarity.8

We limit the use of this scoring method to the M
candidates only, since it is computationally expen-
sive to calculate f ℓ(y, c) for every single word y in
Ṽ . Previously, a similar method was employed by
Lee et al. (2021) but they used the last layer only
(i.e. Z = {L}). We show that using multiple layers
substantially improves the performance. Following
Lee et al. (2021), we set M to 50.

2.4 Comparison to Previous Approaches

Our approach contrasts with previous approaches
(Zhou et al., 2019; Lee et al., 2021; Yang et al.,
2022) that employ BERT as a generative model and
predict lexical substitutes based on the generation
probability P (y|x, c):

P (y|x, c) = exp(Eyf
L̂(x, c) + by)∑

ý∈V exp(Eýf L̂(x, c) + bý)
, (5)

where Ey ∈ Rd denotes the output embedding of
y, which is usually tied with the input word em-
bedding; f L̂(x, c) is the representation at the very
last layer of the model;9,10 and by is a scalar bias.
While this approach is straightforward and well
motivated, its predictions are highly influenced by
morphosyntax, as discussed in Section 1. More-
over, Eqn. (5) shows three additional limitations
compared to our approach: (1) the prediction is
conditioned on the last layer only, despite previous

8In Eqn. (1), we obtained similar results by averaging the
embeddings or cosine similarities across layers.

9Note that this does not always correspond to the last layer
of transformer: fL(x, c). E.g., BERT calculates f L̂(x, c) by
applying a feed forward network and layer normalisation to
fL(x, c), whereas for XLNET, f L̂(x, c) = fL(x, c).

10When x consists of multiple subwords, the representa-
tion of the first or longest token is usually used.

studies showing that different layers capture dif-
ferent information, with the last layer usually con-
taining less semantic information than the lower
or middle layers (Bommasani et al., 2020; Tenney
et al., 2019); (2) y is represented by the single vec-
tor Ey, which may not work well when y has multi-
ple meanings — we alleviate this by clustering the
embeddings (Section 2.2); and (3) the model is not
capable of generating OOV words, unless we force
the model to decode multiple subwords, e.g. by
using multiple mask tokens or duplicating x. Our
approach, in contrast, can include rare words in
the pre-defined vocabulary Ṽ and generate diverse
substitutes (Section 4.4).

3 Experiments

3.1 Data and Evaluation
We conduct experiments in two evaluation settings:
generation and ranking. In the generation setting,
systems produce lexical substitutes given target
words and sentences, while in the ranking setting,
they are also given substitute candidates and rank
them based on their appropriateness.

For the generation task, we base our experiments
on SWORDS (Lee et al., 2021), the largest En-
glish lexical substitution dataset, which extends
and improves CoInCo (Kremer et al., 2014) by in-
troducing a new annotation scheme: in CoInCo,
the annotators were asked to come up with sub-
stitutes by themselves, whereas in SWORDS, the
annotators were given substitute candidates pre-
retrieved from a thesaurus, and only had to made
binary judgements (“good” or “bad”).11 A word is
regarded as acceptable if it is judged to be good
by more than five out of ten annotators, and con-
ceivable if selected by at least one annotator. In
this way, SWORDS provides more comprehensive
lists of substitutes, including many low-frequency
words that are good substitutes and yet difficult for
humans to suggest — these words are of particular
interest to us. For the evaluation metrics, the au-
thors use the harmonic mean of the precision and
recall given the gold and top-10 system-generated
substitutes.12 As gold substitutes, they use either
the acceptable or conceivable words, and calculate
the corresponding scores Fa and Fc, respectively.

11The annotators were asked if they would consider using
the substitute candidate to replace the target word as the author
of the context.

12More precisely, their evaluation script lemmatises the
top-50 substitutes first and then extracts the top-10 distinct
words.
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They also propose to measure those scores in both
strict and lenient settings, which differ in that in the
lenient setting, candidate words that are not scored
under SWORDS are filtered out and discarded.

In the ranking task, we evaluate models on the
traditional SemEval-2007 Task 10 (“SemEval-07”)
data set (trial+test) (McCarthy and Navigli, 2007),
as well as SWORDS. For the evaluation metric, we
follow previous work in using Generalized Average
Precision (GAP; Kishida (2005)):

GAP =

∑N
i=1 I(αi)pi∑R
i=1 I(βi)β̄i

, pi =

∑i
k=1 αk

i
, (6)

where αi and βi denote the gold weight of the
i-th item in the predicted and gold ranked lists
respectively, with N and R indicating their sizes;
I(αi) is a binary function that returns 1 if αi > 0,
and 0 otherwise; and β̄i is the average weight of
the gold ranked list from the 1st to the i-th items.
In our task, the weight corresponds to the aptness
of the substitute, which is set to zero if it is not
in the gold substitutes. Following previous work
(Melamud et al., 2015; Arefyev et al., 2020), we
ignore multiword expressions in SemEval-07.13

3.2 Models
As shown in Eqn. (2), our approach requires only
the vector representations of words and hence
is applicable to any text encoder model. There-
fore, we test our method with various pre-trained
models, including five masked language models:
BERT (Devlin et al., 2019), mBERT, SpanBERT
(Joshi et al., 2020), XLNET (Yang et al., 2019),
and MPNet (Song et al., 2020); one encoder-
decoder model: BART (Lewis et al., 2020); and
two discriminative models: ELECTRA (Clark
et al., 2020) and DeBERTa-V3 (He et al., 2021).14

We also evaluate two sentence-embedding models:
MPNet-based sentence transformer (Reimers and
Gurevych, 2019) and SimCSE (Gao et al., 2021),
both of which are fine-tuned on semantic down-
stream tasks such as MNLI and achieve good per-
formance on sentence-level tasks. Finally, we also
evaluate the encoder of the fine-tuned mBART on
English-to-Many translation (Tang et al., 2021).
Note that the discriminative models and embed-
ding models (e.g. NMT-encoder, SimCSE) cannot
generate words and hence are incompatible with
the previous approach described in Section 2.4.

13We run the evaluation code at https://github.
com/orenmel/lexsub with the no-mwe option.

14See Appendix A for the details of all models.

Models
Lenient Strict

Fa Fc Fa Fc

HUMANS 48.8 77.9 – –
CoInCo 34.1 63.6 – –

GPT-3 34.6 49.0 22.7 36.3
BERT-K15 32.4 55.4 19.2 30.4

(w/o rerank)15 31.8 54.9 15.7 24.4
BERT-M 30.9 48.3 16.2 25.4

(w/o rerank) 30.9 48.1 10.7 16.5
Zhou et al. (2019)15 32.0 55.4 17.4 27.5
Yang et al. (2022)16 31.9 54.9 16.7 28.4

OURS

BERT 33.2 64.1 21.1 34.9
(w/o rerank) 33.0 63.8 20.7 34.4

(w/o rerank, heuristic) 33.6 64.0 20.2 32.4

mBERT 27.0 52.7 12.4 22.6
SpanBERT 32.6 61.4 20.9 34.0

MPNet 33.8 63.8 22.0 34.1
XLNet 34.4 65.3 23.3 37.4

ELECTRA 33.5 64.2 23.2 36.7
DeBERTa-V3 33.6 65.8 24.5 39.9
BART (Enc) 33.6 62.8 21.9 34.8
BART (Dec) 33.5 60.5 21.4 34.0

BART (Enc-Dec) 33.7 64.9 23.5 37.2
SBERT (MPNet) 34.6 64.0 21.8 33.5
SimCSE (BERT) 33.4 64.3 21.6 35.7
NMT (mBART) 28.7 55.6 13.4 22.2

OURS (Rank Candidates)

XLNet 35.2 72.9 – –
BART 34.8 72.4 – –

DeBERTa-V3 35.1 72.2 – –

Table 1: The results for the generation task in the lenient
and strict settings. The best scores are boldfaced.

We use the same vocabulary Ṽ for all models,
which consists of the 30,000 most common words17

in the OSCAR corpus (Ortiz Suárez et al., 2020).
We set the number of sentences we sample from
OSCAR to calculate the decontextualised embed-
dings, i.e. N , to 300; the clustering size K to 4; and
λ in Eqn. (2) to 0.7. For the set of transformer lay-
ers, Z, we employ all layers except for the first and

15These results differ slightly from the reported scores in
Lee et al. (2021), due to a bug in their code.

16Updated from the original scores by the authors after
they fixed some critical issues in their evaluation setup.

17We discard tokens that contain numerals, punctuation, or
capital letters. As such, Ṽ includes more lexical items (with
less noise and no subwords) than the original vocabulary V .

https://github.com/orenmel/lexsub
https://github.com/orenmel/lexsub
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last two, i.e. {3, 4, ..., L− 2}. We tune all hyper-
parameters on the development split of SWORDS.

3.3 Results

Table 1 shows the results on SWORDS, along with
baseline scores from previous work (with some bug
fixes, as noted). The first row, HUMANS, indicates
the agreement of two independent sets of annota-
tors on (a subset of) SWORDS, and approximates
the upper bound for this task. The second row,
CoInCo, shows the accuracy of the gold standard
substitutes in CoInCo, which are suggested by hu-
man annotators without access to substitution can-
didates18 — this approximates how well humans
perform when asked to elicit candidates themselves.
The remainder of the rows above OURS denote
baseline systems, all of which employ generative
approaches. The first baseline uses GPT-3 (Brown
et al., 2020), and achieves the state-of-the-art in
the strict setting. It generates substitutes based on
“in-context learning”, where the model first reads
several triplets of target sentences, queries, and
gold-standard substitutes retrieved from the devel-
opment set, and then performs on-the-fly inference
on the test set. As such, it is not exactly comparable
to the other fully unsupervised models. BERT-K
generates substitutes based on Eqn. (5) by feed-
ing the target sentence into BERT, and BERT-M
works the same except that the target word is re-
placed by [MASK]. Both models further rerank the
candidates based on Eqn. (4), using the last layer
only; we show the performance without reranking
as “w/o rerank” in Table 1. Yang et al. (2022) and
Zhou et al. (2019) also use BERT to generate sub-
stitutes, and rerank them using their own method.

The rows below OURS indicate the performance
of our approach using various off-the-shelf models.
Our method with BERT substantially outperforms
all the BERT-based baselines, even without the
edit-distance heuristic (Section 2.2) or reranking
method (Eqn. (4)). The best performing models are
DeBERTa-V3, XLNet, and BART (Enc-Dec), all
of which outperform the weakly-supervised GPT-3
model by a large margin in the strict setting; and
XLNet even outperforms CoInCo in the lenient set-
ting. The last three rows show the performance of
the top-3 models when they are given the candidate
words and rank them based on Eqn. (4), which
emulates how the SWORDS annotators judged

18Since all of these words are in the substitute candidates
of SWORDS, it cannot be evaluated under the strict setting.

Models S-07 SW

HUMANS — 66.2

Arefyev et al. (2020) (XLNet) 61.319 —
Michalopoulos et al. (2022) (LMs+WN) 60.3 —

Lacerra et al. (2021a) (BERT) 58.2 —
Lacerra et al. (2021a) (BERT, sup) 60.5 —

Zhou et al. (2019) (BERT) 60.520 53.515

Lee et al. (2021) (BERT) 56.6 56.9

OURS (Eqn. (4))

BERT 58.6 60.7
mBERT 45.4 52.0

SpanBERT 59.3 60.8
MPNet 61.5 59.5
XLNet 63.8 62.9

ELECTRA 64.4 62.3
DeBERTa-V3 65.0 62.9
BART (Enc) 62.9 61.9
BART (Dec) 62.6 60.8

BART (Enc-Dec) 64.1 62.7
SBERT (MPNet) 61.0 62.5
SimCSE (BERT) 58.4 60.9

NMT (mBART, Enc) 46.0 51.5

Table 2: GAP scores on SemEval-07 and SWORDS.
“LMs+WN” employs multiple language models and
WordNet, and “BERT, sup” is a supervised model.

the words. The result shows that all the models
still lag behind HUMANS, suggesting there is still
substantial room for improvement. Interestingly,
BART performs best when we average the scores
obtained by its encoder and decoder, suggesting
each layer captures complementary information.
It is also intriguing to see that the discriminative
models (DeBERTa-V3 and ELECTRA) perform
much better than BERT, albeit they are not trained
to generate words and not compatible with the pre-
vious generative approach. The sentence embed-
ding models (SBERT, SimCSE) perform no better
than the original models, which contrasts with their
strong performance in sentence-level tasks. The
multilingual models (mBERT, NMT) perform very
poorly, even though the NMT model was fine-tuned
on large English-X parallel corpora.

Table 2 shows the results for the ranking task on
SemEval-07 and SWORDS. Michalopoulos et al.
(2022) harness WordNet (Fellbaum, 1998) to obtain
synsets of the target word and also their glosses,
and employ BERT and RoBERTa (Liu et al., 2019)

19The original score reported by Arefyev et al. (2020) is
59.6, but we found we could improve this result by appending
unscored OOV words to the ranked list in random order.

20Similar to Lacerra et al. (2021a) and Arefyev et al.
(2020), we were unable to reproduce this score.
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to rank candidates. The models proposed by Lac-
erra et al. (2021a) are different from the others
in that they fine-tune BERT on lexical substitu-
tion data sets. They propose unsupervised (BERT)
and supervised (BERT, sup) models, which are
fine-tuned on automatically-generated or manually-
annotated data. Table 2 shows that our method
with BERT performs comparably with the unsu-
pervised model of Lacerra et al. (2021a) without
any fine-tuning, and outperforms Zhou et al. (2019)
and Lee et al. (2021) (except for the score of Zhou
et al. (2019) on SemEval-07, which couldn’t be
reproduced in previous work). Just like the gen-
eration task, DeBERTa-V3 achieves the best per-
formance on both data sets and establishes a new
state-of-the-art. Other models also follow a sim-
ilar trend to the generation results, e.g. BART
performs best by combining its encoder and de-
coder, and the multilingual models perform very
poorly. We hypothesise that their poor performance
is mainly caused by suboptimal segmentation of
English words. This hypothesis is also supported
by the fact that DeBERTa-V3 has by far the largest
vocabulary V of all models.21

3.4 Results on Italian Lexical Substitution
We further conduct an additional experiment on
Italian, based on the data set from the EVALITA
2009 workshop (Toral, 2009). We report F scores
given top-10 predictions as in the English genera-
tion task, plus two traditional metrics used in the
workshop, namely oot and best, which compare the
top-10 and top-1 predictions against the gold sub-
stitutes.22 We lemmatise all the generated words to
make them match the gold substitutes, following
the SWORDS evaluation script.23 We use the same
hyper-parameters as for the English experiments,
and Table 3 shows the results. Hintz and Biemann
(2016) is a strong baseline that retrieves substi-
tute candidates from MultiWordNet (Pianta et al.,
2002) and ranks them using a supervised ranker
model. We also implement BERT-K using an Ital-
ian BERT model (Schweter, 2020), with and with-
out the reranking method. The results show that our
approach substantially outperforms the baselines,
confirming its effectiveness. However, our rerank-

21Note that V differs from Ṽ , the pre-defined vocabulary
we used for all models. Appendix A compares the size of the
model’s original vocabulary V across different models.

22We report precision only, as it is the same as recall under
those metrics when predictions are made for every sentence.

23We used the Italian lemmatiser (it_core_news_sm 3.2.0)
in spaCy (ver. 3.2.2) (Honnibal et al., 2020).

F best-P oot-P

Hintz and Biemann (2016) — 16.2 41.3
BERT-K 14.3 14.4 39.1

(w/o rerank) 15.6 17.4 43.3

OURS (BERT) 17.3 19.9 47.5
(w/o rerank) 17.5 19.1 48.4

(w/o rerank, heuristic) 17.5 17.4 48.7

OURS (ELECTRA) 19.0 21.0 51.2
(w/o rerank) 18.9 21.3 51.0

(w/o rerank, heuristic) 19.2 20.2 52.1

Table 3: The result of Italian lexical substitution.

BERT BART XLNet DeBERTa

λ = 1 34.1 26.2 32.9 35.8
λ = 0 32.8 34.1 34.1 35.6
K = 1 32.9 32.0 33.7 35.7

k is random 30.6 29.2 30.3 32.0
w/o heuristic 32.4 32.0 33.4 35.7

λ = 0.7 34.4 34.0 35.0 36.9
+ rerank 34.9 37.2 37.4 39.9

Table 4: Ablation studies of our method. The scores
denote Fc in the strict setting on SWORDS.

ing method is not as effective as in English, which
we attribute to the influence of grammatical gender
in Italian (which we return to in Section 4.2). The
heuristic improves best-P but harms F and oot-P,
meaning it removes good candidates as well as bad
ones, possibly because we used the threshold tuned
on English.

4 Analysis

4.1 Ablation Studies

We perform ablation studies on SWORDS to see
the effect of λ and the K-clustered embeddings,
and also the heuristic based on edit distance. Ta-
ble 4 shows the results. Overall, our method with
λ = 0.7 performs better than λ = 1 or λ = 0, con-
firming the benefit of considering both in-context
and out-of-context similarities. One interesting
observation is that while BERT and DeBERTa per-
form better with λ = 1 than with λ = 0, the op-
posite trend is observed for XLNet and especially
BART (and hence the optimal value for λ is smaller
than 0.7). This suggests that BART representations
are highly influenced by context, containing much
information that is not relevant to the semantics
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a an un una la/le il/i

BERT-K 94.2 56.0 93.3 92.5 93.8 92.0
(w/o r) 91.1 54.0 90.0 87.5 90.3 87.4

OURS (BERT) 88.4 24.0 81.9 89.2 92.6 85.2
(w/o r) 86.8 18.0 70.5 66.7 69.7 64.6

(w/o r, h) 86.8 44.0 62.4 65.0 69.4 60.7

Gold 86.8 26.9 55.6 63.3 69.0 67.0

Table 5: The percentage of generated and gold substi-
tutes whose initial sound or grammatical gender agrees
with the corresponding English or Italian articles. “r”
and “h” denote rerank and heuristic, respectively. The
closest numbers to Gold are underlined.

of the target word; we further confirm this in the
next section. When we set the cluster size K to 1,
the performance of all the models drops sharply,
indicating the effectiveness of the clustered em-
beddings. When we retrieve the cluster of y at
random instead of the closest one to x in Eqn. (2),
the performance decreases substantially, suggest-
ing each cluster captures different semantics. The
heuristic consistently improves the performance,
filtering out derivationally-related yet semantically-
dissimilar words to the target word. Lastly, our
reranking method substantially improves the per-
formance of all the models, demonstrating that it
is important to incorporate the target context c into
both the target and candidate word representations.

4.2 Effects of Morphosyntactic Agreement

Compared to previous generative approaches, our
method does not depend on the generation proba-
bilities of language models, and hence we expect it
to be less sensitive to morphosyntactic agreement
effects. To investigate this, we analyse the perfor-
mance on noun target words which immediately
follow one of the following articles: a or an in En-
glish, and una, la, le, un, il or i in Italian. The first
three Italian articles are used with feminine nouns,
and the rest with masculine ones. Our hypothesis
is that generative methods will be highly biased
by these articles, despite the gold standard being
semantically annotated, and thus largely oblivious
to local morphosyntactic agreement effects.

Table 5 shows the percentage of top-10 predicted
candidates that agree with the article.24 It demon-

24We retrieve Italian gender information us-
ing a dictionary API (https://github.com/
sphoneix22/italian_dictionary), and En-
glish phonetic information using CMUdict (https:
//github.com/cmusphinx/cmudict) accessed via

Models a an

BERT-K 94.2 56.0
BERT-M 99.5 88.0

BERT 88.4 24.0
SpanBERT 97.9 46.0

MPNet 91.6 52.0
XLNet 83.2 38.0

BART (Enc) 89.5 62.0
BART (Dec) 91.1 46.0

BART (Enc-Dec) 89.5 58.0
DeBERTa-V3 86.8 32.0

ELECTRA 88.4 36.0

Table 6: The percentage of substitutes whose initial
sound agrees with the corresponding English articles.

strates that the prediction of BERT-K is highly af-
fected by the proceeding article as expected, result-
ing in substitutes which don’t satisfy this constraint
being assigned low probabilities. In contrast, the
results of our method are more balanced and close
to the gold standard.25 Conversely, our reranking
method actually increases the bias greatly, sug-
gesting that the contextualised embeddings f ℓ(x, c)
and f ℓ(y, c) in Eqn. (4) become similar when x and
y collocate similarly with the words in the context
c — overall, this leads to better results, but actually
hurts in cases of local agreement effects biasing the
results. This is one reason why reranking was not
as effective in Italian as in English, as agreement
effects are stronger in Italian.

Table 6 shows the result when we use differ-
ent pre-trained models in English. First, it shows
that BERT-M is more sensitive to the articles than
BERT-K, indicating the strong morphophonetic
agreement effect on the masked word prediction.
Among the pre-trained language models used by
our method, SpanBERT and BART are the most
sensitive to the article a and an, respectively. This
suggests that the embeddings f(x, c) obtained from
these models are highly sensitive to the context c,
partly explaining why BART performs very poorly
with λ = 1, as shown in Section 4.1. Lastly, Table 7
shows examples of predicted substitutes when the
article an comes before the target word. It shows
that BERT-K and OURS with BART tend to re-
trieve words that start with a vowel sound, as quan-

NLTK (Steven et al., 2009).
25Note that the big jump in results for an is based on a

small number of instances (5 sentences).

https://github.com/sphoneix22/italian_dictionary
https://github.com/sphoneix22/italian_dictionary
https://github.com/cmusphinx/cmudict
https://github.com/cmusphinx/cmudict
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Context
The loan may be extended by the McAlpine group for an additional year with an
increase in the conversion price to $2.50 a share.

Gold (Conceivable)
boost, gain, raise, hike, rise, swell, surge, upsurge, enlargement, growth, addition,
escalation, expansion, upgrade, cumulation, swelling, exaggeration, step-up

BERT-K increased, rise, enhancement, increasing, addition

OURS (BERT) rise, raise, change, reduce, reduction
OURS (BART) rise, uptick, hike, improvement, upping
OURS (DeBERTa-V3) boost, rise, raise, hike, reduction

Context
Under an accord signed yesterday, the government and Union Bank of Finland
would become major shareholders in the new company, each injecting 100 million
Finnish markkaa ($23.5 million).

Gold (Conceivable) arrangement, agreement, pact, contract, deal, treaty

BERT-K understanding, agreement, pact, arrangement, agreeing

OURS (BERT) agreement, pact, treaty, understanding, deal
OURS (BART) agreement, deal, pact, arrangement, treaty
OURS (DeBERTa-V3) pact, agreement, deal, arrangement, treaty

Table 7: Top-5 predictions when the article an comes before the target word (increase or accord). Gold shows a list
of “conceivable” words sorted by their annotated scores (with “acceptable” words shown in italic, and multiword
expressions omitted from the table). Words included in Gold are boldfaced.

Figure 1: Layer-wise performance (Fc) on SWORDS.

titatively described in Table 6.

4.3 Layer-Wise Performance

We analyse the performance on SWORDS using
different layers in Figure 1 (w/o rerank).26 First,
we clearly see that middle layers perform better
than the first or last ones, for all models.27 The
performance of BERT peaks at layer 16, in con-
trast with previous findings that the first quarter of
layers perform best on context-independent word
similarity tasks (Bommasani et al., 2020), likely

26We perform qualitative analysis in Appendix D.
27We see a similar trend in the ranking task (Appendix B).

because lexical substitution critically relies on con-
text.28 Our method using multiple layers performs
mostly as well as using the best layer without the
need to perform model-wise layer selection (see
Table 11 in Appendix C). The last layer performs
very poorly for all models, highlighting the limita-
tion of the previous approach which uses the last
layer only (Eqn. (5)). The downward trend is partic-
ularly evident for MPNet, BART (dec), and Span-
BERT; for BART and SpanBERT, we attribute this
to the fact that their last-layer representations of the
word at position t are used to predict the next word
wt+1, or u neighbouring words {wt−u..,wt−1} or
{wt+1..,wt+u}.29 This training objective may also
lead to their sensitivity to articles before the tar-
get word, as shown in Section 4.2. Interestingly,
the sentence-embedding models (SBERT and Sim-
CSE) are no exception to the downward trend,
which is somewhat counter-intuitive given that their
last layer representations are fine-tuned (and used
during inference) to perform semantic downstream
tasks. Importantly, they do not perform better than
the original models (MPNet and BERT), although
in the ranking task, both models benefit moderately
from fine-tuning (see Appendix B).

28In fact, Tenney et al. (2019) show that high-level seman-
tic information is encoded in higher layers.

29SpanBERT does this for Span Boundary Objective.
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# Matched Words
Fc

low med high

BERT-K 121 144 2002 30.4

BERT (5k) 31 52 2017 28.1
BERT (10k) 72 111 2249 32.6
BERT (20k) 164 220 2194 34.5
BERT (30k) 241 267 2095 34.9

BART (30k) 380 274 2123 37.2
XLNet (30k) 395 292 2106 37.4

DeBERTa (30k) 429 287 2262 39.9

Table 8: The number of correctly predicted substitutes,
grouped by their frequency in monolingual data. The
number in brackets shows the size of the vocabulary Ṽ .

K 1 2 4 8 16

Fa 22.8 23.1 23.2 23.3 23.4
Fc 36.0 36.7 36.7 36.9 36.7

Table 9: Results with different numbers of clusters.

4.4 Analysis of Word Frequency

One of the strengths of our approach is that it can
generate low-frequency substitutes that are OOV
words in the original vocabulary. To confirm this,
we analyse how well our method can generate low-
frequency words from different vocabulary sizes Ṽ .
Table 8 shows the results, in which we experiment
with our BERT-based model with the vocabulary
sizes of 5k, 10k, 20k, and 30k. The columns under
“# Matched Words” show the numbers of correctly-
predicted words, grouped by frequency range: low,
med, and high denote words with frequency <50k,
50k–100k, and >100k in a large web corpus. The
table shows that our method with 30k words gen-
erates nearly twice as many low-frequency substi-
tutes as the baseline. Our method with 10k words
still outperforms BERT-K in Fc, demonstrating its
effectiveness. The last three rows show the perfor-
mance of our method using other models, further
demonstrating its ability to predict low-frequency
words.

4.5 Effects of Cluster Size

Finally, we analyse the effect of the cluster size
K for ELECTRA, as shown in Table 9. While a
larger cluster size yields better performance, the
improvement is marginal. Rather than using a fixed

K, in future work we are interested in dynamically
selecting the number of clusters per word.

5 Related Work

In the pre-BERT era, most lexical substitution
methods employed linguistic resources such as
WordNet (Fellbaum, 1998) to obtain substitute can-
didates (Szarvas et al., 2013; Hintz and Biemann,
2016). However, recent studies have shown that
pre-trained language models such as BERT out-
perform these models without any external lexi-
cal resources. For instance, Zhou et al. (2019)
feed a target sentence into BERT while partially
masking the target word using dropout (Srivastava
et al., 2014), and generate substitutes based on the
probability distribution at the target word position.
The masking strategy was shown to be effective
on SemEval-07 but not on SWORDS. Similarly,
Yang et al. (2022) feed two sentences into BERT,
concatenating the target sentence with itself but
with the target word replaced by [MASK], and pre-
dict words based on the mask-filling probability.
Michalopoulos et al. (2022) augment pre-trained
language models with WordNet and outperform
Zhou et al. (2019). Lacerra et al. (2021a) fine-
tune BERT on lexical substitution data sets that are
automatically generated using BERT. They show
that this approach is effective at ranking, and that
adding manually-annotated data further boosts per-
formance. Lacerra et al. (2021b) fine-tune BART
on human-annotated data, and make it generate
a list of substitutes given a target sentence in an
end-to-end manner. They show that this generative
approach rivals Zhou et al. (2019). Note that all of
these recent models are evaluated on English only.

6 Conclusion

We present a new unsupervised approach to lexical
substitution using pre-trained language models. We
showed that our method substantially outperforms
previous methods on English and Italian data sets,
establishing a new state-of-the-art. By comparing
performance on lexical substitution using differ-
ent layers, we found that middle layers perform
better than first or last layers. We also compared
the substitutes predicted by the previous genera-
tive approach and our method, and showed that our
approach works better at predicting low-frequency
substitutes and reduces morphophonetic or mor-
phosyntactic biases induced by article–noun agree-
ment in English and Italian.
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A Details of Pre-trained Models

Table 10 describe the details of the pre-trained mod-
els used in our experiments. We sourced these mod-
els from the Transformers library (Wolf et al., 2020)
except for SpanBERT, which we obtained from the
original GitHub repository (https://github.
com/facebookresearch/SpanBERT).

B Layer-Wise Ranking Performance

Figure 2 shows the layer-wise performance in the
ranking task. Similar to the generation results (Fig-
ure 1), middle layers perform better than the first or
last layers. It also shows that sentence-embedding
models (SimCSE/SBERT) outperform their origi-
nal models (BERT/MPNet) for several layers, dif-
ferent from the generation results where they per-
form similarly. This suggests that fine-tuning on
semantic downstream tasks improves the capacity
of the model to differentiate subtle semantic dif-
ferences between synonymous words, but not their
ability to retrieve relevant words from a large pool
of words; it also suggests that optimal representa-
tions for these objectives might differ.

Figure 2: Layer-wise performance (GAP) on SWORDS.

C Effectiveness of Using Multiple Layers

Table 11 shows the generation and ranking perfor-
mance of our model on SWORDS using different
layers. It shows that our method using multiple
layers ℓ ∈ Z performs comparably or even better
than selecting the best layer tuned on the test set for
each model. It also shows that the best-performing
layer differs across models, suggesting they capture
lexical information in a different manner.

D Examples of Generated Substitutes

Table 12 shows examples of substitutes gener-
ated by our method using different layers (without
reranking). It shows that the words retrieved by
each layer are very different, indicating that each
layer encodes very different information about the
input word. For instance, given the target word
care, the first layer of BERT and BART-Enc/Dec
retrieves a large number of words that contain the
target word as a sub-morpheme (e.g. aftercare,
carefree).30 This is presumably because the first-
layer representations are highly affected by the in-
put word embedding, and hence result in retriev-
ing words that share the same subword token (e.g.
care ##free) regardless of the semantic similarity.
The last layer also performs poorly (as previously
shown in Figure 1), e.g. BART-DEC (L12) retrieves
participation as the closest word to the target word
interest. This is because the last-layer representa-
tions of BART-decoder are used to directly predict
the next word in after interest in the target sentence,
and in fact, most of the retrieved words (e.g. uptick,
faith, surge) are those that often collocate with in.

30Since the edit distances between these words and the
target word care are not greater than the threshold (0.5), they
weren’t filtered out by our heuristic.
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Models # Layer Emb Size |V | Model Path

BERT 24 1024 30522 bert-large-uncased
mBERT 12 768 105879* bert-base-multilingual-uncased

SpanBERT 24 1024 30522 spanbert-large-cased
MPNet 12 768 30527 microsoft/mpnet-base
XLNet 24 1024 32000 xlnet-large-cased

ELECTRA 24 1024 30522 google/electra-large-discriminator
DeBERTa-V3 24 1024 128000 microsoft/deberta-v3-large

BART (Enc/Dec) 12 1024 50265 facebook/bart-large
SBERT (MPNet) 12 768 30527 sentence-transformers/all-mpnet-base-v2
SimCSE (BERT) 24 1024 30522 princeton-nlp/sup-simcse-bert-large-uncased

NMT (mBART, Enc) 12 1024 250054* facebook/mbart-large-50-one-to-many-mmt

BERT (Italian) 12 768 31102 dbmdz/bert-base-italian-xxl-uncased
ELECTRA (Italian) 12 768 31102 dbmdz/electra-base-italian-xxl-cased-discriminator

Table 10: Details of the pre-trained models used in this paper. |V | denotes the original vocabulary size of each
model. *The vocabularies of mBERT and mBART contain a great number of non-English words.

Generation Performance (Fc) Ranking Performance (GAP)

Layer First Middle Last Best ℓ ∈ Z First Middle Last Best ℓ ∈ Z

BERT 24.4 32.2 27.8 34.6 (16) 34.4 50.8 59.1 56.4 60.6 (15) 60.7
SpanBERT 24.9 33.1 8.8 33.2 (13) 31.1 51.8 60.8 51.0 60.9 (13) 60.8

MPNet 28.9 33.1 16.0 33.7 (4) 33.8 55.6 58.1 49.7 59.4 (3) 59.5
XLNet 28.6 33.0 28.4 34.3 (6) 35.0 53.5 61.9 56.8 62.7 (8) 62.9

DeBERTa-V3 33.3 36.8 25.2 37.2 (11) 36.9 51.6 62.4 53.2 62.4 (12) 62.9
BART (Enc) 14.6 30.8 22.6 30.8 (6) 30.0 54.0 61.2 58.7 61.5 (7) 61.9
BART (Dec) 21.9 28.0 18.9 30.8 (3) 29.0 57.8 60.5 56.1 61.3 (4) 60.8

Table 11: Generation and ranking performance of our approach on SWORDS using the first, middle (L2 th), last
(Lth), or best layer tuned on the test set (the corresponding layer denoted in brackets); or using multiple layers
ℓ ∈ Z: {3, 4, ..., L− 2} (L = 12 for MPNet and BART, and 24 otherwise). Generation and ranking performance
across all layers is illustrated in Figure 1 and Figure 2.

Oddly, BART-Enc predicts a large number of sub-
stitutes that consist of multiple words (segmented
by the tokeniser), none of which are relevant to the
target word, e.g. aswell, todo, and inbetween as
substitutes for interest. In fact, the number of such
words increases (and the performance decreases)
as the hyper-parameter λ gets bigger (which in-
creases the influence of f(x, c) on the predictions).
One possible interpretation is that the last layer
representations of the BART encoder may contain
vague contextual information rather than the lexi-
cal information of the input word, since they are
used by the decoder to predict various words (esp.
masked words) during pre-training. Lastly, another
interesting observation is that, for the target word
interest, the last layer representations of BERT and
BART-enc retrieve a lot of words that start from

a vowel sound, despite the absence of the article
an before interest, suggesting that the embeddings
contain some morphophonetic information.
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Context I say I do not care about law, I care about service and she should care about money.

Gold (Conceivable) worry, think, mind, desire, love, tend, cherish, consider, stress, concern, bother, watch

BERT (L3-22) matter, caregiving, carefree, worry, concern, know, pay, caregivers, love, like

BART (L3-10)
concern, matter, carelessness, caretaker, carelessly, carefree, caretakers, worry, bother,
mind

BERT (L1)
caregiving, carefree, caregiver, caregivers, aftercare, childcare, healthcare, skincare,
custody, affections

BERT (L12) matter, caregiving, worry, carefree, fret, love, despise, loathe, resent, pay
BERT (L24) matter, worry, pay, concern, know, look, give, take, bother, think

BART-Enc (L1)
aftercare, caregiving, caretaker, carefree, carelessly, carelessness, caretakers, healthcare,
caregivers, medicare

BART-Enc (L6)
concern, todo, caretaker, interest, carelessness, careless, disinterested, disdain, pay,
carelessly

BART-Enc (L12) todo, aswell, beleive, inbetween, zealand, pay, concern, usefull, noone, ofcourse

BART-Dec (L1)
caregiving, carelessness, caretaker, carelessly, carefree, aftercare, caretakers, concern,
healthcare, worry

BART-Dec (L6) concern, bother, worry, commit, reckon, dispose, shit, grieve, pay, strive
BART-Dec (L12) worry, damn, concern, inquire, complain, passionate, shit, think, talk, whine

Context
“I’m starting to see more business transactions,” says Andrea West of American
Telephone & Telegraph Co., noting growing interest in use of 900 service for stock
sales, software tutorials and even service contracts.

Gold (Conceivable)
interestedness, enthusiasm, demand, attraction, popularity, excitement, curiosity, ac-
tivity, importance, notice, significance, involvement, relevance, note, gain, passion,
influence, accrual, concernment

BERT (L3-22)
curiosity, enthusiasm, intrigued, desire, concern, fascination, passion, attention,
excitement, fondness

BART (L3-10)
fascination, enthusiasm, appetite, curiosity, excitement, concern, inclination, eager-
ness, desire, involvement

BERT (L1)
concern, importance, curiosity, investment, involvement, attention, focussed, fascina-
tion, focus, significance

BERT (L12)
curiosity, enthusiasm, concern, fascination, confidence, unease, belief, excitement,
desire, passion

BERT (L24)
appetite, attracting, attractiveness, actively, demand, attention, intrigued, popularity,
enthusiasm, flocking

BART-Enc (L1)
fascination, concern, intrigue, involvement, relevance, investment, stake, curiosity,
enthusiasm, trustworthiness

BART-Enc (L6)
enthusiasm, fascination, appetite, curiosity, intrigued, excitement, intrigue, inclina-
tion, eagerness, enjoyment

BART-Enc (L12)
todo, aswell, inbetween, enthusiasm, fascination, eagerness, appetite, intrigued, atten-
tion, inclination

BART-Dec (L1)
fascination, involvement, intrigue, concern, participation, curiosity, investment, ex-
citement, intrigued, importance

BART-Dec (L6)
fascination, appetite, involvement, engagement, affinity, uptake, demand, inclination,
participation, appreciation

BART-Dec (L12) participation, uptick, delight, decline, increase, spike, faith, decrease, grounding, surge

Table 12: Examples of substitutes predicted by our method (w/o rerank) using different layers. Gold shows a list
of “conceivable” words sorted by their annotated scores (with “acceptable” words shown in italic, and multiword
expressions omitted from the table). Words included in Gold are boldfaced.


