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Abstract

Previous works have demonstrated the effec-
tiveness of utilising pre-trained sentence en-
coders based on their sentence representations
for meaning comparison tasks. Though such
representations are shown to capture hidden
syntax structures, the direct similarity compari-
son between them exhibits weak sensitivity to
word order and structural differences in given
sentences. A single similarity score further
makes the comparison process hard to inter-
pret. Therefore, we here propose to combine
sentence encoders with an alignment compo-
nent by representing each sentence as a list
of predicate-argument spans (where their span
representations are derived from sentence en-
coders), and decomposing the sentence-level
meaning comparison into the alignment be-
tween their spans for paraphrase identification
tasks. Empirical results show that the align-
ment component brings in both improved per-
formance and interpretability for various sen-
tence encoders. After closer investigation, the
proposed approach indicates increased sensitiv-
ity to structural difference and enhanced ability
to distinguish non-paraphrases with high lexi-
cal overlap.

1 Introduction

Sentence meaning comparison measures the seman-
tic similarity of two sentences. Specifically, the
task of paraphrase identification binarises the simi-
larity as paraphrase or non-paraphrase depending
on whether they express similar meanings (Bhagat
and Hovy, 2013). This task benefits many natural
language understanding applications, like plagia-
rism identification (Chitra and Rajkumar, 2016)
and fact checking (Jiang et al., 2020), where it is
important to detect same things said in different
ways.

The difference in sentence structures is impor-
tant for distinguishing their meanings. However, as
shown in Table 1 and 3, many existing paraphrase

identification datasets exhibit high correlation be-
tween positive pairs and the degree of their lexi-
cal overlap, such as the Microsoft Research Para-
phrase Corpus (MSRP) (Dolan and Brockett, 2005).
Models trained on them tend to mark sentence
pairs with high word overlap as paraphrases despite
clear clashes in meaning. In light of this, Zhang
et al. (2019b) utilised word scrambling and back
translation to create the Paraphrase Adversaries
from Word Scrambling (PAWS) datasets which are
mainly concerned with word order and structure by
creating paraphrase and non-paraphrase pairs with
high lexical overlap. As also shown in these two
tables, sentence pairs in the PAWS datasets demon-
strate much higher lexical overlap and lower corre-
lation, which requires models to pay more attention
to word order and sentence structure to successfully
distinguish non-paraphrases from paraphrases.

Recently, various pre-trained sentence encoders
have been proposed to produce high-quality sen-
tence embeddings for downstream usages (Reimers
and Gurevych, 2019; Thakur et al., 2021; Gao et al.,
2021). Such embeddings are compared to derive a
similarity score for different meaning comparison
tasks, including paraphrase identification. Though
widely used, sentence encoders still face challenges
from different aspects in case of meaning compar-
ison. Pre-trained models are observed to capture
structural information to some extent (Clark et al.,
2019; Hewitt and Manning, 2019; Jawahar et al.,
2019). However, as we will demonstrate in this
work, their direct comparison of two sentence vec-
tors performs poorly on PAWS datasets indicating
weak sensitivity to structural difference, though
they achieve good performance on other general
paraphrase identification datasets like MSRP. In ad-
dition, the single similarity score derived from the
comparison of two vectors is difficult to interpret.
This thus motivates us to find a better way of utilis-
ing sentence encoders for meaning comparison.

Elsewhere, researchers have worked on decom-
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Dataset Sentence A Sentence B Label

MSRP
The Toronto Stock Exchange opened on time and

slightly lower.

The Toronto Stock Exchange said it will be business

as usual on Friday morning.
N

More than half of the songs were purchased as

albums, Apple said.

Apple noted that half the songs were purchased

as part of albums.
Y

PAWS
What factors cause a good person to become bad? What factors cause a bad person to become good? N

The team also toured in Australia in 1953. In 1953, the team also toured in Australia. Y

Table 1: Example sentence pairs taken from both MSRP and PAWS datasets. Y stands for paraphrases while N
stands for non-paraphrases.

posing sentence-level meaning comparison into
comparisons at a lower level, such as word and
phrase-level, which largely increased the inter-
pretability (He and Lin, 2016; Chen et al., 2017;
Zhang et al., 2019a). Alignment is the core com-
ponent in these proposed systems, where sentence
units at different levels are aligned through either
training signals or external linguistic clues, after
which a matching score is derived for sentence-
level comparison. Here, we argue that, instead of
comparing sentence meaning by using sentence em-
beddings, it would be better to combine sentence
encoders with alignment components in a structure-
aware way to strengthen the sensitivity to structural
difference and to gain interpretability.

An important aspect of sentence meaning is
its predicate-argument structure, which has been
utilised in machine translation (Xiong et al., 2012)
and paraphrase generation (Ganitkevitch et al.,
2013; Kozlowski et al., 2003). Given the impor-
tance of detecting structural differences in para-
phrase identification tasks, we propose to represent
each sentence as a list of predicate-argument spans
where span representations are derived from sen-
tence encoders, and to decompose sentence-level
meaning comparison into the direct comparison
between their aligned predicate-argument spans
by taking advantage of the Hungarian algorithm
(Kuhn, 1956; Crouse, 2016). The sentence-level
score is then derived by aggregation over their
aligned spans. Without re-training, the proposed
alignment-based sentence encoder can be used with
enhanced structure-awareness and interpretability.

As pre-trained sentence encoders produce con-
textualised representations, two phrases of different
meaning might be aligned together due to their sim-
ilar syntactic structure and contexts. For example:

a) Harris announced on twitter that he will quit.

b) James announced on twitter that he will quit.

Unsurprisingly, the span Harris announced will be
aligned to the span James announced with a high
similarity score given that they share exactly the
same context and syntactic structure. However, it
might be problematic to consider this high simi-
larity score when we calculate the overall score
given clear clashes in the meaning at sentence-
level. In this regard, we further explore how the
contextualisation affects paraphrase identification
by comparing aligned phrases based on their de-
contextualised representations.

Empirical results show that the inclusion of the
alignment component leads to improvements on
four paraphrase identification tasks and demon-
strates increased ability to detect non-paraphrases
with high lexical overlap, plus an enhanced sensi-
tivity to structural difference. Upon closer investi-
gation, we find that applying de-contextualisation
to aligned phrases could further help to recognise
such non-paraphrases.

In summary, our contributions are as follows:
1) We propose an approach that combines sen-

tence encoders with an alignment component
by representing sentences as lists of predicate-
argument spans and decomposing sentence-
level meaning comparison into predicate-
argument span comparison.

2) We provide an evaluation on four different
paraphrase identification tasks, which demon-
strates both the improved sensitivity to struc-
tures and the interpretability at inference time.

3) We further introduce a de-contextualisation
step which can benefit tasks that aim to iden-
tify non-paraphrases of extremely high lexical
overlap.

2 Related Work

2.1 Sentence Encoders
Sentence encoders have been studied extensively in
years. Kiros et al. (2015) abstracted the skip-gram
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model (Mikolov et al., 2013) to the sentence level
and proposed Skip-Thoughts by using a sentence
to predict its surrounding sentences in an unsuper-
vised manner. InferSent (Conneau et al., 2017), on
the other hand, leveraged supervised learning to
train a general-purpose sentence encoder with BiL-
STM by taking advantage of natural language infer-
ence (NLI) datasets. Pre-trained language models
like BERT (Devlin et al., 2019) are widely used to
provide a single-vector representation for the given
sentence and demonstrate promising results across
a variety of NLP tasks. Inspired by InferSent,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) produces general-purpose sentence embed-
dings by fine-tuning BERT on NLI datasets. How-
ever, as investigated by Li et al. (2020), sentence
embeddings produced by pre-trained models suffer
from anisotropy, which severely limits their expres-
siveness. They then proposed a post-processing
step to map sentence embeddings to an isotropic
distribution which largely improves the situation.
Similarly, Su et al. (2021) proposed a whitening
operation for post-process, which aims to alleviate
the anisotropy problem. Gao et al. (2021), on the
other hand, proposed the SimCSE model by fine-
tuning pre-trained sentence encoders with a con-
trastive learning objective (Chen et al., 2020) along
in-batch negatives (Henderson et al., 2017; Chen
et al., 2017) on NLI datasets, improving both the
performance and the anisotropy problem. Though
sentence encoders have achieved promising per-
formance, the current way of utilising them for
meaning comparison tasks has known drawbacks
and could benefit from the fruitful developments of
the alignment component, which have been widely
used in modelling sentence pair relations.

2.2 Alignment in Sentence Pair Tasks

Researchers have been investigating sentence
meaning comparison for years. One widely used
method involves decomposing the sentence-level
comparison into comparisons at a lower level. Mac-
Cartney et al. (2008) aligned phrases based on their
edit distance and applied the alignment to NLI tasks
by taking average of aligned scores. Shan et al.
(2009) decomposed sentence-level similarity score
into the direct comparison between events and con-
tent words based on WordNet (Miller, 1995). Sul-
tan et al. (2014) proposed a complex alignment
pipeline based on various linguistic features, and
predicted the sentence-level semantic similarity by

taking the proportion of their aligned content words.
The alignment between two syntactic trees are used
along with other lexical and syntactic features to
determine whether two sentences are paraphrases
with SVM (Liang et al., 2016).

Similar ideas are combined with neural mod-
els to construct alignments based on the attention
mechanism (Bahdanau et al., 2015). They can be
seen as learning soft alignments between words
or phrases in two sentences. Pang et al. (2016)
proposed MatchPyramid where a word-level align-
ment matrix was learned, and convolutional net-
works were used to extract features for sentence-
level classification. More fine-grained comparisons
between words are introduced by PMWI (He and
Lin, 2016) to better dissect the meaning difference.
Wang et al. (2016) put focus on both similar and
dissimilar alignments by decomposing and compos-
ing lexical semantics over sentences. ESIM (Chen
et al., 2017) further allowed richer interactions be-
tween tokens. These models are further improved
by incorporating context and structure information
(Liu et al., 2019), as well as character-level infor-
mation (Lan and Xu, 2018). Recently, Pre-trained
models are exploited to provide contextualised rep-
resentations for the PMWI (Zhang et al., 2019a).
Instead of relying on soft alignments, some other
models tried to take the phrase alignment task as an
auxiliary task for sentence semantic assessments
(Arase and Tsujii, 2019, 2021), and to embed the
Hungarian algorithm into trainable end-to-end neu-
ral networks to provide better aligned parts (Xiao,
2020). Considering pre-trained sentence encoders
are often directly used to provide fixed embeddings
for meaning comparison, in this work, we propose
to combine them with the alignment component at
inference time so that it can be used with enhanced
structure-awareness without re-training.

3 Our Approach

Instead of generating a single-vector representa-
tion for meaning comparison based on sentence
encoders, we propose to represent each sentence as
a list of predicate-argument spans and use sentence
encoders to provide its span representations. The
comparison between two sentences is then based
on the alignment between their predicate-argument
spans. As depicted in Figure 1, the approach can be
considered as a post-processing step and consists
of the following main components:
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Figure 1: The proposed approach for paraphrase identification that combines sentence encoders with the phrase
alignment at inference time. Predicate-argument spans are first extracted from sentences. Span representations are
then derived from contextualised token representations. We perform Hungarian algorithm to align extracted phrase
spans and obtain the sentence-level similarity score by aggregation over aligned spans. The alignment matrix is
useful for interpretation.

Sentence Encoders: The input sentences are first
fed into sentence encoders to produce contextu-
alised token representations that will later be used
to create context-aware phrase representations from
the last hidden layer. The phrase representation
will be the basic unit of our meaning comparison
method.

Predicate Argument Spans (PAS): For each
sentence, we first apply a BERT-based semantic
role labelling (SRL) tagger provided by AllenNLP
(Gardner et al., 2018) to obtain both predicates and
relevant arguments for each sentence. To generate
predicate argument spans, we group the predicate
and its arguments together and order them accord-
ing to their original position in the sentence. Fol-
lowing is an example of predicate-argument spans
from a sentence:

James ate some cheese whilst thinking
about the play.

Two predicates, ate and thinking, are extracted
by the tagger. As shown in Figure 2, a number
of arguments with different relations are discov-
ered for each predicate. We further group them
into predicate-argument spans. For the given sen-
tence, we will have three spans for the predicate

ate: (James, ate), (ate, some, cheese), (ate, whilst,
thinking, about, the, play) and two spans for the
predicate thinking: (James, thinking), (thinking,
about, the, play). If no predicate or associated ar-
gument is found, we take the whole sentence itself
as a long span.

Figure 2: The extracted predicates and relevant semantic
arguments for the given example sentence. Outputs are
produced by the AllenNLP SRL tagger.

Phrase Alignment: After obtaining all predicate-
argument spans, we derive their span represen-
tations based on the used encoder. As previous
works have shown, aligning with contextual infor-
mation could achieve better performance and help
with disambiguation (Arase and Tsujii, 2020; Dou
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Figure 3: The predicate-argument span alignment be-
tween the example pair taken from PAWS_QQP, sen-
tence A: do Chinese people think they look like
Japanese people? and sentence B: do Japanese people
think they look like Chinese people?

and Neubig, 2021). We take the mean-pooling
over all tokens in the span to produce a contex-
tualised span representation for later alignment.
The tokenization strategy in BERT generates sub-
tokens, whereas in the produced spans, we have
word tokens. To align them properly, we use the
same tokenizer to break the original word into sub-
tokens and represent it as a list of sub-tokens in
the span if a sub-token exists. Given two collec-
tions of predicate-argument span representations,
p = {p1, p2, ..., pM} and q = {q1, q2, ..., qN}, we
are trying to find the best alignments between them.
This can be viewed as a standard assignment prob-
lem that has been extensively handled by Hungar-
ian algorithm (Kuhn, 1956). A similarity matrix,
C, is constructed for each pair of sentences where
the row has one collection of spans and the column
has another. The value for each entry cell, Cmn, is
the cosine similarity score between the two span,
pm and qn. The task of finding the best alignment
is to find alignments among two collections that
give the maximum score:

max
∑
m

∑
n

CmnXmn (1)

X is a boolean matrix where X[m,n] = 1 if span
m is assigned to span n. We apply the modified
Jonker-Volgenant algorithm1 (Crouse, 2016) to find

1We use its Scipy implementation: https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.linear_sum_
assignment.html

the best alignments that maximise the overall score.
After discovering the optimal X , we obtain a collec-
tion of aligned span pairs associated with their co-
sine similarity scores, A = {A1, A2, ..., Al}. One
alignment example taken from PAWS is given in
Figure 3.

Score Aggregation: To produce a sentence-level
similarity score for the given pair, we simply take
the mean-pooling over scores of all aligned parts:

Scoreij = MeanPooling(A1, .., Al) (2)

The similarity score between sentence i and sen-
tence j is the average score of their aligned spans,
and will be used for determining whether the sen-
tence pair is paraphrase or non-paraphrase. The
alignment matrix, as shown in Figure 3, is useful to
explain how the overall score is derived and why.

4 Experiments

We follow the same two-step procedure in previ-
ous work for evaluation (Li et al., 2020; Thakur
et al., 2021). For vanilla sentence encoders, we
first generate fixed sentence embeddings, and then
derive sentence-level similarity scores by calculat-
ing the cosine similarity between two embeddings.
For sentence encoders combined with the align-
ment component, we derive sentence-level sim-
ilarity scores by aggregation over cosine scores
of all aligned spans where span representations
are derived from sentence encoders. Otherwise
specifically stated, the alignment is performed be-
tween predicate-argument spans (PAS). Their per-
formances under these two scenarios are evaluated
and compared. We here experiment with three
widely used sentence encoders, BERT-base (Devlin
et al., 2019), Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) and SimCSE (Gao et al.,
2021).

Datasets Train Dev Test

PAWS_QQP 11,986 - 677

PAWS_Wiki 49,401 8,000 8,000

MSRP 3,668 408 1,725

TwitterURL 37,976 4,224 9,334

Table 2: Statistics of all four datasets used in this work.

4.1 Datasets
In this work, we evaluate the proposed approach
on four different paraphrase identification tasks.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
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The statistics of these datasets are listed in Table 2.
Below we give some basic descriptions:

• PAWS_QQP: In order to assess the sensitivity
to word order and syntactic structure, Zhang
et al. (2019b) proposed a paraphrase identifica-
tion dataset which has extremely high lexical
overlap by applying back translation and word
scrambling to sentences taken from the Quora
Question Pairs (Wang et al., 2017).

• PAWS_Wiki: Similar to PAWS_QQP, the
same technique is applied to sentences ob-
tained from Wikipedia articles to construct
sentence pairs (Zhang et al., 2019b). Both
PAWS datasets aim to measure sensitivity of
models on word order and sentence structure.

• Microsoft Research Paraphrase Corpus
(MSRP): This corpus constructs sentence
pairs by clustering news articles with an SVM
classifier and human annotations (Dolan and
Brockett, 2005). It has 4,076 train data and
1,725 test data. In this paper, we adopt the
same split strategy as stated in GLUE (Wang
et al., 2019).

• TwitterURL: Lan et al. (2017) proposed the
TwitterURL corpus where sentence pairs in
the dataset are collected by linking tweets that
share the same URL of news articles. The cor-
pus contains multiple references of both for-
mal well-edited and informal user-generated
texts.

Datasets
Lexical Overlap

Positive Negative Overall

PAWS_QQP 95.24% 96.79% 96.35%

PAWS_Wiki 84.50% 84.99% 84.77%

MSRP 55.95% 42.60% 51.48%

TwitterURL 29.28% 7.73% 11.94%

Table 3: The lexical overlap between sentence pairs
across different datasets. We report both the overall fig-
ure and the figures for each class. We calculate the lexi-
cal overlap in terms of Jaccard Similarity with ngram=1.

The percentage of lexical overlap between sen-
tence pairs in terms of their labels are summarised
in Table 3. It shows that sentence pairs taken from
the PAWS datasets generally have higher lexical
overlap. Compared to datasets like MSRP and Twit-
terURL, where negative examples have lower lexi-
cal overlap than positive examples, the two PAWS

datasets exhibit similar degrees of lexical overlap
regardless of their labels. In light of this, we expect
that models that are sensitive to word order and
sentence structure would demonstrate greater im-
provements on the PAWS datasets in comparison
to models without such sensitivity. Specifically,
we put our focus on the PAWS datasets and ex-
plore whether different models capture structural
differences.

4.2 Implementation Details

For sentence encoders used in this work, we gener-
ate sentence embeddings according to their default
strategies. For BERT-base2 and SBERT3, we use
the mean-pooling over the last hidden layer as its
sentence representation, and for SimCSE4, we use
the CLS token after the trained MLP layer. For
all experiments in this work, no training process
is involved. In order to calculate evaluation met-
rics like accuracy and F1 score, we find optimal
thresholds for different metrics on the development
set, and apply them on test sets to binary the cosine
similarity as paraphrase or non-paraphrase. Given
PAWS_QQP does not have development set, we
randomly sample 20% of its training data as the
development set following the same class distribu-
tion. All experiments are conducted on RTX 3090
GPUs.

4.3 Evaluation

The main results are summarised in Table 4, and
we report the F1 score of the positive class as well
as the overall accuracy. It shows that, with our
proposed approach, the performance of different
sentence encoders can generally be improved. In
addition, significant improvements are observed on
PAWS datasets after we introduce the alignment
component. This demonstrates the effectiveness
of our proposed alignment-based sentence encoder
and validates the improved sensitivity to word or-
der and sentence structure. Furthermore, we find
that the performance of different models, regard-
less of combining with the alignment component,
is similar or competitive on MSRP and TwitterURL
datasets. It suggests that both datasets are inade-
quate when used to detect the model’s structure-

2We use its huggingface implementation: https://
huggingface.co/bert-base-uncased

3https://github.com/UKPLab/
sentence-transformers

4https://github.com/princeton-nlp/
SimCSE

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/princeton-nlp/SimCSE
https://github.com/princeton-nlp/SimCSE
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PAWS_QQP
(F1/ACC)

PAWS_Wiki
(F1/ACC)

TwitterURL
(F1/ACC)

MSRP
(F1/ACC)

AVG
(F1/ACC)

BERT 37.13/72.97 61.28/56.75 63.24/85.65 80.50/70.38 60.54/71.44
+ Alignment 47.46/75.18 63.08/62.58 65.26/86.52 80.96/70.61 64.19/73.72

SBERT 33.95/74.74 61.83/60.63 65.61/87.04 81.68/73.39 60.61/73.95
+ Alignment 52.75/77.70 62.52/64.51 66.60/87.33 82.10/73.80 65.99/75.84

SimCSE 36.16/75.48 61.32/62.58 69.20/87.74 82.80/74.61 62.37/75.10
+ Alignment 57.49/79.17 65.00/65.99 67.83/87.27 81.70/73.68 68.01/76.53

Table 4: Results on four paraphrase identification tasks, we report both the F1 score of the positive class and the
overall accuracy. Cells marked bold have the best performance in each column.

Models
PAWS_QQP

(F1/ACC)
PAWS_Wiki

(F1/ACC)
BERT-TokenLevel 40.13/73.41 62.33/62.36
BERT-RandomSpan 19.91/73.71 61.30/57.19
BERT-ContinuousRandom 39.86/74.74 61.25/57.66
BERT-PAS 47.46/75.18 63.08/62.58
SBERT-TokenLevel 47.51/75.04 61.65/64.15
SBERT-RandomSpan 38.89/73.12 61.07/59.08
SBERT-ContinuousRandom 46.56/74.74 61.28/58.49
SBERT-PAS 52.75/77.70 62.52/64.51
SimCSE-TokenLevel 50.74/74.00 62.03/63.28
SimCSE-RandomSpan 34.31/73.56 61.24/57.70
SimCSE-ContinuousRandom 40.74/77.25 61.30/57.24
SimCSE-PAS 57.49/79.17 65.00/65.99

Table 5: Evaluation using different span types for align-
ment. We report the F1 score of the positive class and
the overall accuracy.

awareness for the structural information is not re-
quired to achieve high scores on them. Accordingly,
compared to its alignment version, the lack of sensi-
tivity to structural differences translates the slightly
better performance on TwitterURL and MSRP ob-
tained by SimCSE into much worse performance
on the PAWS datasets. This further supports our
previous arguments and demonstrates the advan-
tages of introducing the alignment component to
enhance structure-awareness.

5 Analysis

To better understand the improvements, we have
conducted several experiments to investigate differ-
ent aspects of the proposed approach. Given we
are mostly interested in the performance on the two
PAWS datasets, we only experiment and report the
results on the PAWS_QQP and PAWS_Wiki in the
following experiments.

5.1 Comparison to Other Span Strategies

In this experiment, we consider three more scenar-
ios with different span types, and investigate the im-
pact of the predicate-argument span. The alignment
between different tokens are widely used in previ-
ous works, so here, instead of aligning predicate-
argument spans, we directly conduct alignment at
token-level. Two further strategies are explored
regarding phrase-level alignment. Firstly, we ran-
domly sample words from the sentence to make
a span, where the words in each span might not
necessarily be sequential. In the RandomSpan strat-
egy, no linguistically-meaningful structures are pre-
served. Secondly, we randomly sample continuous
word sequences to build a span, where the span
must contain sequential texts. In this Continuous-
Random strategy, only sequential relations are pre-
served. The length of the sampled spans is arbitrary.
To make a fair comparison, the number of sampled
spans is the same as that of the predicate-argument
spans in the sentence. As demonstrated in Table 5,
the alignment between predicate-argument spans
outperforms all the others. In other words, the
model’s sensitivity to word order and structural dif-
ferences can be greatly improved by comparing
two sentences’ predicate-argument structures.

5.2 Large Improvements in Recall

We have observed significant improvements on
PAWS datasets by introducing the alignment be-
tween predicate-argument spans in previous exper-
iments. It is crucially important to understand how
the improvement is obtained. In this experiment,
we look into the recall of positive and negative pairs.
In PAWS_Wiki, we find that almost all sentence
pairs are classified as positive by vanilla models
given the near-zero recall for the negative class as
shown in Table 6. Despite utterly incorrect pre-
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PAWS_QQP
(recall of +)

PAWS_Wiki
(recall of -)

BERT 32.46 0.09
+ Alignment 36.65 25.96

SBERT 24.08 9.14
+ Alignment 47.64 29.53

SimCSE 25.65 0.27
+ Alignment 50.26 52.28

Table 6: Results on PAWS_QQP and PAWS_Wiki. For
PAWS_QQP, we report the recall of positive class and
for PAWS_Wiki, we report the recall of negative class.

Models
PAWS_QQP
(F1/recall of + )

PAWS_Wiki
(F1/recall of - )

BERT-Alignment 47.46/36.65 63.08/25.96
+ decontext 52.50/43.98 63.39/45.09
SBERT-Alignment 52.75/47.64 62.52/29.53
+ decontext 65.43/64.40 66.63/64.38
SimCSE-Alignment 57.49/50.26 65.00/52.28
+ decontext 65.16/68.06 67.32/54.14

Table 7: The results on PAWS datasets after applying
de-contextualisation. We report the F1 score of the
positive class on both datasets, the recall of positive
class on PAWS_QQP, and the recall of negative class on
PAWS_Wiki.

dictions, it spuriously lowers the performance gap
(on PAWS_Wiki) in terms of the F1 score of the
positive class as shown in Table 4. After apply-
ing the alignment process to sentence encoders,
we notice significant improvements in the recall
of negative class. About 70% of sentence pairs in
the PAWS_QQP have negative labels, which makes
vanilla models difficult to distinguish paraphrases
from non-paraphrases and mark most of sentence
pairs as negative, as evidenced by the low recall
for positives in the table. Similarly, we observe
significant improvements in recall after introduc-
ing the alignment component. The large improve-
ments in recall demonstrate the enhanced ability
to distinguish non-paraphrases from paraphrases.
Moreover, as shown in Table 4, the improvements
in recall are not at the expense of their general per-
formance, since we are still improving on F1 scores
and the overall accuracy.

5.3 De-contextualisation

As pre-trained sentence encoders produce contex-
tualised representations, two phrases of different
meaning might be aligned for similar syntactic
structure and contexts with a high similarity score.
In the example shown in Section 1, Harris an-

nounced will be aligned with James announced
with a high similarity score given their identical
syntactic structure and contexts. However, does
such high similarity score make sense when it
comes to the task of paraphrase identification?
Comparing the meaning of two phrases in the con-
text of their use often helps disambiguate. In this
case, the highly similar context instead downplays
the difference, while it is the minor difference that
changes the whole sentence meaning. This prob-
lem is exacerbated in the PAWS datasets given that
both PAWS_QQP and PAWS_Wiki have extremely
high lexical overlap, with 96.35% and 84.77% re-
spectively, as shown in Table 3. Such high lexi-
cal overlap indicates a similar context, and thus
a high similarity score between aligned phrases.
In this experiment, we align phrases based on
their contextualised representations as before but
de-contextualise them by sending these phrases,
without context, through sentence encoders to pro-
duce context-agnostic representations. A similarity
score at sentence-level is then derived from cosine
similarities between context-agnostic representa-
tions.

We show the results in Table 7. It clearly shows
that, in spite of losing contextual information, the
model with de-contextualisation process appears
to improve the performance significantly. Addi-
tionally, it suggests that contextualisation might
be harmful in situations where we focus on small
differences that might change the meaning of the
whole.

6 Conclusion

In this work, we propose an approach that com-
bines sentence encoders with an alignment compo-
nent by representing sentences as lists of predicate-
argument spans and decomposing sentence-level
meaning comparison into predicate-argument span
comparison. Experiments with three widely used
sentence encoders show that such method leads to
improvements on various paraphrase identification
tasks and increases the sensitivity to word order
and structural differences between two sentences.
The alignment matrix can further be utilised for
interpretation. We then demonstrate that applying
de-contextualisation to aligned phrases could help
to recognise non-paraphrases of extremely high lex-
ical overlap. Our future work includes exploring
other alignment algorithms and more application
scenarios for alignment-based sentence encoders.
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