
Proceedings of the 29th International Conference on Computational Linguistics, pages 4071–4083
October 12–17, 2022.

4071

A Novel Multi-Task Learning Approach for Context-Sensitive Compound
Type Identification in Sanskrit

Jivnesh Sandhan1, Ashish Gupta2, Hrishikesh Terdalkar1, Tushar Sandhan1,
Suvendu Samanta1, Laxmidhar Behera1,3 and Pawan Goyal2

1IIT Kanpur, 2IIT Kharagpur, 3IIT Mandi
jivnesh@iitk.ac.in, ashishgupta2598@gmail.com,

pawang@cse.iitkgp.ac.in

Abstract

The phenomenon of compounding is ubiqui-
tous in Sanskrit. It serves for achieving brevity
in expressing thoughts, while simultaneously
enriching the lexical and structural formation of
the language. In this work, we focus on the San-
skrit Compound Type Identification (SaCTI)
task, where we consider the problem of iden-
tifying semantic relations between the compo-
nents of a compound word. Earlier approaches
solely rely on the lexical information obtained
from the components and ignore the most cru-
cial contextual and syntactic information useful
for SaCTI. However, the SaCTI task is chal-
lenging primarily due to the implicitly encoded
context-sensitive semantic relation between the
compound components.

Thus, we propose a novel multi-task learning
architecture which incorporates the contextual
information and enriches the complementary
syntactic information using morphological tag-
ging and dependency parsing as two auxiliary
tasks. Experiments on the benchmark datasets
for SaCTI show 6.1 points (Accuracy) and 7.7
points (F1-score) absolute gain compared to
the state-of-the-art system. Further, our multi-
lingual experiments demonstrate the efficacy
of the proposed architecture in English and
Marathi languages.1

1 Introduction

A compound is defined as a collection of one or
more entities that act as a single meaningful entity.
The process of decoding an implicit semantic re-
lation between the components of a compound in
Sanskrit is called Sanskrit Compound Type Iden-
tification (SaCTI). Alternatively, it is also termed
as Noun Compound Interpretation (NCI) (Ponkiya
et al., 2021, 2020). In the literature, the NCI prob-
lem has been formulated in two related but different
ways. Let’s take mango juice as an example. In the

1The code and datasets are publicly available at: https:
//github.com/ashishgupta2598/SaCTI

first formulation, the relation between the two com-
ponents is labeled from a set of semantic relations
(MADEOF) (Dima and Hinrichs, 2015; Fares et al.,
2018; Ponkiya et al., 2021). The second formu-
lation uses paraphrasing to illustrate the semantic
relations (a juice made from mango) (Lapata and
Keller, 2004; Ponkiya et al., 2018a, 2020).

In this work, we use the first formulation that
frames the task as a multi-class classification prob-
lem. The task is challenging and often depends
upon the context or world knowledge about the en-
tities involved (Krishna et al., 2016). For instance,
the semantic type of the compound rāma-ı̄śvarah.
can be classified into one of the following semantic
types depending on the context: Karmadhāraya2,
Bahuvrı̄hi and Tatpurus.a. Although the compound
has the same components as well as the final form,
the implicit relationship between the components
can be decoded only with the help of available con-
textual information (Kulkarni and Kumar, 2013;
Krishna et al., 2016). Due to such instances, the
downstream Natural Language Processing (NLP)
applications for Sanskrit such as question answer-
ing (Terdalkar and Bhattacharya, 2019) and ma-
chine translation (Aralikatte et al., 2021), etc. show
sub-optimal performance when they stumble on
compounds. For example, while translating rāma-
ı̄śvarah. into English, depending on the semantic
type, there are three possible meanings: (1) Lord
who is pleasing (in Karmadhāraya) (2) the one
whose God is Rama (in Bahuvrı̄hi) (3) Lord of
Rama (in Tatpurus.a). Therefore, the SaCTI task
can be seen as a preliminary pre-requisite to build-
ing a robust NLP technology for Sanskrit. Further,
this dependency on contextual information rules
out the possibility of storing and doing a lookup to
identify a compound’s semantic types.

2There are 4 broad semantic types of compounds:
Avyayı̄bhāva, Bahuvrı̄hi, Dvandva, and Tatpurus. a. Kar-
madhāraya is considered as sub-type of Tatpurus. a. We en-
courage readers to refer Krishna et al. (2016) for more details
on these semantic types.

https://github.com/ashishgupta2598/SaCTI
https://github.com/ashishgupta2598/SaCTI
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With the advent of recent contextual models (Pe-
ters et al., 2018; Devlin et al., 2019; Conneau et al.,
2020), there has been upsurge in performance of
various downstream NLP applications (Kondratyuk
and Straka, 2019; Liu et al., 2019; Yang et al.,
2019). Nevertheless, there have been no efforts
to build context-dependent models in SaCTI.3 This
may be attributed to the fact that while most of the
natural language technology is built for resource-
rich languages such as English (Joshi et al., 2020),
compounding is not a predominant phenomenon in
them (Krishna et al., 2016). There is also lack of
task-specific context-sensitive labeled data.

Earlier approaches (Kulkarni and Kumar, 2013;
Krishna et al., 2016; Sandhan et al., 2019) for
SaCTI solely rely on lexical information obtained
from the components and are blind to potentially
useful contextual and syntactic information. The
context is the most feasible, cheaply available in-
formation. As per Pan. ini’s grammar (Pan. ini, 500
BCE; Kulkarni and Kumar, 2013), the morpholog-
ical features have direct correlation with the se-
mantic types. Sometimes, the dependency informa-
tion also helps is disambiguation and can provide a
medium to enrich contextual information. Thus, we
propose a novel multi-task learning approach which
(1) incorporates the contextual information, and (2)
enriches the complementary syntactic information
using morphological tagging and dependency pars-
ing auxiliary tasks without any additional manual
labeling. Summarily, our key contributions are:

• We propose a novel context-sensitive multi-
task learning architecture for SaCTI (§ 2).

• We illustrate that morphological tagging and
dependency parsing auxiliary tasks are help-
ful and serve as a proxy for explainability of
system predictions (§ 4) for the SaCTI task.

• We report results with 7.71 points (F1) abso-
lute gains compared to the current state-of-the-
art system by Krishna et al. (2016) (§ 3.2).

• We show the efficacy of the proposed ap-
proach in English and Marathi (§ 4).

• We release our codebase and pre-processed
datasets (including newly annotated Marathi
dataset (§ 3.1)) and web-based tool (§ 4) for
using our pretrained models.

3Refer to related work section (§ 5) for more details.

2 The proposed system

aham pīta-ambaram namāmi pīta-ambaram

Nom.sg.* Dat.sg.m. Pr.ac.sg.1 
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Figure 1: Illustration of the proposed multi-task learn-
ing architecture with an example “aham pı̄ta-ambaram
namāmi” (Translation: “I pray to Pı̄tāmbara (Lord
Vishnu).”) where ‘pı̄ta-ambaram’ is a compound word
belonging to the Bahuvrı̄hi semantic type as per the
given context. We feed this context and the compound
word at the end as an input to the system. Each token
is split into wordpieces using a multi-lingual tokenizer
(Kudo and Richardson, 2018). This sequence of word-
pieces is passed to multi-lingual pretrained XLM-R en-
coder (Conneau et al., 2020). The hidden representation
of each token is the average of its wordpieces’ represen-
tations obtained from the encoder. We apply our multi-
task learning architecture which consists of three tasks,
namely, Sanskrit compound type identification (SaCTI),
morphological tagging and dependency parsing over the
hidden representations. We formulate SaCTI as a pair-
wise (a context word and the compound) classification
task where the objective is to predict the semantic type
of the target compound word (Bahuvrı̄hi). At test time,
we apply the maximum voting policy to select a single
prediction from the set of semantic relations predicted
by such n pairs.

Figure 1 illustrates the proposed multi-task learn-
ing architecture with an example context, “aham
pı̄ta-ambaram namāmi” (Translation: “I pray to
Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-ambaram’
is a compound belonging to the Bahuvrı̄hi semantic
type as per the given context. As shown in Figure 1,
we feed this context along with the compound word
concatenated at the end, as an input to the system,
and obtain hidden representations from the multi-
lingual encoder as described below. On top of the
hidden representations as obtained via the encoder
module, we apply our multi-task learning architec-
ture consisting of three tasks: SaCTI, morpholog-
ical tagging, and dependency parsing. We formu-
late the SaCTI task as a pair-wise (a context word
paired with the compound word) classification task
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where the objective is to predict the semantic type
of the target compound word (Bahuvrı̄hi for pı̄ta-
ambaram compound word in this example) for all
the pairs as shown in Figure 1. At test time, we
apply the maximum voting policy to select a single
prediction from the set of semantic types predicted
by these pairs. We formally discuss the details of
each component below.

Multilingual Encoder: Sanskrit is a morpholog-
ically rich and low-resource language. In order to
build powerful contextual representations for San-
skrit words, morphological richness poses the out-
of-vocabulary problem and low-resource nature
poses an unlabelled data scarcity problem. Thus,
we opt for a multi-lingual encoder (Conneau et al.,
2020, XLM-R) to mitigate these issues.

Given a compound cp and its context C =
[c1, c2, ..., cn] such that pth position (1 ≤ p ≤ n)
in the context is the compound word, we ap-
pend the compound word to the context such
that C = [c1, c2, ..., cn, cn+1] where cn+1 = cp.
Each token (ci) is further split into wordpieces
(ci = [c1i , c

2
i , ..., c

mi
i ]) using a multi-lingual sub-

word tokenizer (Kudo and Richardson, 2018; Kudo,
2018, Sentencepiece). Next, we pass the over-
all sequence (C = [c11, c

2
1, ..., c

mn
n , c1n+1..., c

mn+1

n+1 ])
of wordpieces corresponding to the context C
into the pretrained transformer. Finally, we ob-
tain the contextual representation of all tokens as
h = (h1, h2, h3, ..., hn, hn+1) where

hi =
1

mi

mi∑
k=1

Transformer(cki ) (1)

SaCTI: Our context-sensitive classifier uses Bi-
Affine attention, henceforth referred to as BiAFF.
Given the hidden representations of ith, jth context
words as hi, hj from the multi-lingual encoder, the
scoring function si,j indicates the system’s belief
that the latter (jth) (Eqn. 2) should be related to
the former (ith) in identifying the semantic type of
the latter, where qTi zi indicates bias to capture the
prior of contextual information in the ith word.

si,j = zTi Uzj + qTi zi (2)

where zi = MLP (hi), U and qi are learnable
parameters, MLP denotes a multi-layered percep-
tron. Similarly, a score for kth possible semantic
type relation between every pair of ith context word
(∀i ∈ [1, n]) and the compound is computed by:

ri,k = z
′T
i U

′
kz

′
n+1 + q

′T
k [z

′
i; z

′
n+1] + b

′
k (3)

where z
′
i = MLP

′
(hi), U

′
, b

′
k and q

′
k are learn-

able parameters. Finally, model maximizes the
following objective function during training.

n∑
i=1

p(yn+1|ci, θ) + p(yln+1|ci, yn+1, θ) (4)

where yn+1 is the target compound ap-
pended in context C, yln+1 is the semantic
type of (yn+1/ci, θ), θ denotes system’s
parameters, p(yn+1|ci, θ) ∝ exp(si,n+1),
p(yln+1|ci, yn+1, θ) ∝ exp(ri,l). At test time, we
apply maximum voting policy to select a single
prediction from the set of semantic relations
predicted for n pairs (ci, cn+1), ∀i ∈ [1, n].

Morphological tagging: The primary motivation
behind using morphological tagging as an auxil-
iary task aligns well with grammatical rules from
Pan. ini’s grammar (Pan. ini, 500 BCE; Kulkarni and
Kumar, 2013). For instance, Avyayı̄bhāva com-
pounds are in neuter gender. Tatpurus.a is a func-
tion of ‘case’ attribute of morphological features.
The number attribute of a compound depends on
the semantic type of the compound. Also, there are
constraints based on inflection/derivational suffix.
Summarily, these morphological features have di-
rect correlation with the semantic classes. In our
proposed system, the morphological tagging task
leverages hidden representations from the multi-
lingual encoder and decodes the pseudo-labels4 us-
ing a fully connected layer followed by a softmax
layer.5 In this process, morphological information
useful for the SaCTI task is enriched in the hidden
representations. This can be seen as an implicit
way to encode the grammatical rules in the system.

Dependency parsing: Lowe (2015) argues that
compounding is mostly a syntactic phenomenon.
Bahuvrı̄hi compounds are “exocentric” in nature,
which attribute a property to an entity external
to the compound with the adjective relationship.
Sometimes, syntactic information can provide a
complementary signal useful for compound type
disambiguation. For instance, consider the fol-
lowing example: aham nı̄la-utpalah. sarah. paśyāmi
(Translation: I watch the pond having a blue-lotus.)
Here, nı̄la-utpalam qualifies to be Bahuvrı̄hi due to

4The benchmark datasets do not have a gold standard mor-
phological information. We use predicted morphological in-
formation as pseudo-labels (§ 3.1).

5Note that all the parameters present in the multi-lingual
encoder are trainable during the task-specific training.
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presence of its referent sarah. with an adjective re-
lationship. However, in the absence of sarah. in the
context, ambiguity pops up in between Bahuvrı̄hi
and Tatpurus.a.6 This motivates us to investigate the
usefulness of syntactic information for the SaCTI
task. The benchmark datasets do not have a gold
standard dependency information. We use pre-
dicted dependency trees as pseudo-labels (§ 3.1).
Our dependency parsing component leverages Bi-
Affine parser (Dozat and Manning, 2017) over hid-
den representations from multi-lingual encoder.

3 Experiments

3.1 Dataset and metrics

Table 1 reports the unique number of compounds,
data statistics and the number of semantic types
for the respective datasets used in this work. We
restrict to binary compounds (compounds with two
components) in all the datasets. These datasets
consist of components, context and semantic type
of a compound. The SaCTI datasets for Sanskrit
are available with two levels of annotations: coarse
(4 broad types) and fine-grained (15 sub-types).

Datasets #Unique #Train #Dev #Test #Types
SaCTI-base 8,594 9,356 2,339 2,994 4 (15)
SaCTI-large 48,132 59,133 6,571 7,301 4 (15)

English 4,676 4,163 1,041 1,301 7
Marathi 368 659 99 114 4

Table 1: Data statistics for all the datasets

Sanskrit: We evaluate on two available context-
sensitive benchmark datasets: SaCTI-base and
SaCTI-large. We follow the same experimental
settings as Krishna et al. (2016) in SaCTI-base to
keep our results comparable with their state-of-the-
art results. SaCTI-base is a subset of SaCTI-large
dataset. In due course of time, more annotated data
resulted in SaCTI-large dataset.

English: We use instance-based (context-
dependent) noun-noun compound dataset released
by Fares (2016). The compounds used in this
dataset are extracted from the Wall Street Journal
(WSJ) portion in the Penn Treebank (PTB).

Marathi: We create an annotated context-
sensitive compound data for Marathi due to its
unavailability. We extract compound words from

6The ambiguity is whether I am seeing the blue lotus or
the pond having a blue lotus.

Marathi grammar textbooks. For Marathi, we re-
strict to the same 4 semantic types as in Sanskrit
(coarse setting). In our dataset, the context cor-
responding to 75% data points is automatically
leveraged from Wikipedia. In order to increase
the difficulty level of the task, we ask one of the
annotators to create the remaining 25% data points
in such a way that the same compound with a dif-
ferent context leads to a different semantic type.
Next, we provide these compound words and con-
text information to 3 annotators (A,B,C)7 using
a web-based platform. Refer to Appendix B for
annotation interface. All annotators have their min-
imum academic qualification as Master in Arts in
Marathi. These annotators have to choose the cor-
rect label from the multiple-choice options.8 Fi-
nally, we use the maximum voting policy amongst
annotators to get the label for each data point. Ini-
tially, we start with 1,000 data points for annota-
tion. Out of 1,000, we drop 128 data points where
none of the 2 annotators have an agreement. The
pair-wise inter-annotator agreement between anno-
tators in terms of Cohen Kappa (κ) is as follows:
A − B : 0.40, B − C : 0.20 and A − C : 0.35.
The κ ∈ [0.2, 0.4] is considered as fair agreement
(McHugh, 2012).

Psuedo-labels for auxiliary tasks: The bench-
mark datasets do not have a gold standard depen-
dency and morphological information. We use pre-
dicted labels as pseudo-labels. For Sanskrit, we ob-
tain pseudo-labels from the Trankit model (Nguyen
et al., 2021) trained on STBC dataset (Krishna et al.,
2020) and morphological pseudo-labels from the
LemmaTag model (Kondratyuk et al., 2018) trained
on Hackathon dataset (Krishnan et al., 2020). For
English, we use pseudo-labels from English XLM-
R model9 for morphological and dependency pars-
ing task. For Marathi, we do not find any such data
or pretrained model to obtain pseudo-labels. There-
fore, we do not activate morphological tagging and
dependency parsing components in the proposed
system while training on Marathi data.

Hyper-parameter settings: For the implementa-
tion of the proposed system, we modify on top of
codebase by Nguyen et al. (2021). We use the fol-
lowing hyper-parameter settings for the best config-

7Note that the annotator who created the context for 25%
data points is different from these 3 annotators.

8In case of confusion, we gave additional option to mark
as “Not sure”.

9https://spacy.io/models/en

https://spacy.io/models/en
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Sanskrit (coarse) Sanskrit (fine-grained)

w/o context w/ context w/o context w/ context

Datasets System A P R F1 A P R F1 A P R F1 A P R F1

ISCLS19 77.68 76.00 71.00 73.00 77.68 76.00 71.00 73.00 70.64 67.53 63.18 64.58 70.64 67.53 63.18 64.58
COLING16 77.39 78.00 72.00 74.00 77.39 78.00 72.00 74.00 - - - - - - - -

SanALBERT 72.01 72.10 70.00 71.40 77.40 77.31 73.00 74.20 69.39 62.58 58.13 58.22 75.40 70.14 61.22 62.04
SaCTI-base IndicALBERT 71.87 51.60 53.90 52.00 78.63 77.47 75.83 76.47 68.06 53.05 53.19 52.30 71.93 57.29 56.49 55.25

mBERT 76.12 77.43 71.68 73.10 81.42 83.12 73.54 78.09 75.00 67.65 72.69 68.56 78.36 77.41 69.59 69.37
XLM-R 78.19 73.54 73.10 73.31 81.00 82.01 77.00 79.10 73.75 66.38 63.96 65.16 77.94 71.72 70.18 70.94

Ours 80.21 72.31 74.50 73.38 83.45 79.65 83.87 81.71 78.25 72.94 73.81 72.68 82.47 76.87 79.08 77.20

ISCLS19 90.69 75.66 72.09 73.76 90.69 75.66 72.09 73.76 76.66 71.62 65.40 68.09 76.66 71.62 65.40 68.09
SanALBERT 88.17 66.65 61.31 62.85 87.84 64.15 65.44 63.63 79.38 69.90 75.34 67.57 80.73 71.62 74.60 72.69

SaCTI-large IndicALBERT 87.77 68.82 49.58 56.05 92.95 84.98 74.90 79.32 79.03 68.00 64.14 63.67 83.13 74.23 79.77 76.11
mBERT 92.29 78.51 77.45 77.41 93.52 83.13 80.82 81.83 81.56 70.82 76.91 72.74 80.98 70.00 79.13 72.80
XLM-R 92.61 79.91 79.00 79.42 93.85 86.64 79.67 82.78 81.84 74.46 77.93 75.68 83.12 73.97 81.07 76.20

Ours 93.54 81.30 81.65 81.47 94.78 83.89 87.61 85.64 82.85 74.94 78.12 76.49 84.73 78.53 80.30 77.13

Table 2: Evaluation on Sanskrit datasets in two levels of annotations (coarse and fine-grained) and two settings (w/o
context and w/ context). The best results are bold. Results are averaged over 4 runs. The significance test between
the best baseline XLM-R and the proposed system in terms of Recall/Accuracy metrics: p < 0.01 (as per t-test).
We could not perform significance test with COLING16 (SaCTI-base-coarse-w/o) and report its results on all the
datasets due to unavailability of its predictions and codebase. ISCLS19 and COLING16 baselines cannot utilize the
context information; therefore, we report the same numbers in w/context as w/o context.

uration of the proposed system: number of epochs
as 70, batch size 50 and a embedding dropout
rate of 0.3 with a learning rate of 0.001. In our
multi-task loss function, we penalize dependency
component’s loss function by 0.01 to prioritize the
performance on SaCTI. This penalty is identified
based on hyper-parameter tuning. The rest of the
hyper-parameters are kept the same as Nguyen
et al. (2021). For multi-lingual baselines, we used
Huggingface’s transformers repository (Wolf et al.,
2020). We release our codebase and datasets pub-
licly under the licence CC-BY 4.0. All the artifacts
used in this work are publicly available for the re-
search purpose.

Computing infrastructure used: We use a sin-
gle GPU with Tesla P100-PCIE, 16 GB GPU mem-
ory, 3584 GPU Cores computing infrastructure for
our experiments. Our proposed system takes ap-
proximately 1 hour for training SaCTI-base coarse
w/o context setting dataset.

Evaluation metrics: Following Krishna et al.
(2016); Sandhan et al. (2019), we report macro
averaged Precision, Recall and F1-score for all
our experiments. We also report micro-averaged
Accuracy. We use Scikit-learn software (Pedregosa
et al., 2011) to compute these metrics.

Baselines: We consider two context agnostic sys-
tems where Sandhan et al. (2019, ISCLS19) for-
mulate SaCTI as a purely neural-based multi-class
classification approach using static word embed-
dings of components of a compound and Krishna

et al. (2016, COLING16) deploy a hybrid sys-
tem which leverages linguistically involved hand-
crafted feature engineering with distributional in-
formation from Adaptor Grammar (Johnson et al.,
2006). The COLING16 system is the current state-
of-the-art system for the SaCTI task. Next, we
opt for multi-lingual contextual language models
due to the lack of sufficiently large unlabelled
data available for Sanskrit. We consider three
multi-lingual pretrained language models, namely,
Kakwani et al. (2020, IndicALBERT) which is
ALBERT model trained on 12 Indic languages
excluding Sanskrit, BERT (Devlin et al., 2019,
mBERT) trained on 104 languages having largest
Wikipedia’s excluding Sanskrit and Conneau et al.
(2020, XLM-R) trained on 100 languages includ-
ing Sanskrit. Finally, we consider a mono-lingual
ALBERT model (Sandhan et al., 2022, SanAL-
BERT) trained on Sanskrit corpus (Hellwig, 2010)
from scratch. In all the contextual baselines, we
pass the classification token [CLS] representation
of a sentence pair (compound word and its context
separated by [SEP] token) to the classification head.
Ours: This is our proposed system from § 2.

3.2 Results

Table 2 shows the performance for the best perform-
ing configurations of all the baselines on the test
set of benchmark datasets for SaCTI. We report
results on two levels of annotations (coarse and
fine-grained) and two settings (w/o context and w/
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context).10 Except for ISCLS19 and COLING16
systems, all systems utilize available context along
with components of a compound.11 XLM-R re-
ports the best performance among all the baselines
while using the context information.

Our proposed system outperforms all the com-
peting systems in terms of all the evaluation met-
rics and reports 6.1 points (A) and 7.7 points (F1)
absolute gain with respect to the current state-of-
the-art system COLING16 (on SaCTI-base coarse
w/context dataset). COLING16 outperforms the
proposed system on SaCTI-base coarse w/o con-
text. Notably, our proposed system outperforms
the strong baseline XLM-R with large margins in
fine-grained setting on SaCTI-base dataset (low-
resourced setting). This confirms the usefulness of
the proposed system in low-resourced settings with
fine-grain labels. The large performance gap be-
tween the proposed system with context and COL-
ING16/ISCLS19 baselines illustrates the efficacy
of using contextual information and syntactic in-
formation. Summarily, we mark new state-of-the-
art results with the help of the novel architecture,
where the contextual component is integrated with
syntax-based auxiliary tasks such as morphological
tagging and dependency parsing. We find a similar
trend in performance for the SaCTI-large dataset.

4 Analysis

In this section, we dive deep into the proposed sys-
tem architecture for a detailed analysis as well as
generalizability. We use SaCTI-base coarse dataset
in the w/ context setting for the analysis.

(1) Ablation analysis: Here, we investigate the
contribution of various components towards the
overall improvements of the proposed system. Ta-
ble 3 reports ablations in terms of all the evaluation
metrics when a particular component is inactivated
from the proposed system. For example, “-DP”
denotes the system where the dependency parsing
component is removed from the proposed system.
We see that elimination of any of the components
deteriorates the performance. Table 3 illustrates
that ‘context’ component is the most critical to-
wards improvements. Also, the deletion of the
‘BiAFF’ component has the second largest impact

10For the systems that require context, we feed the com-
pound word only as the context.

11These baselines cannot utilize the context; therefore, we
report the same numbers in w/context as w/o context.

on the final performance.12

System A P R F1
Ours 83.45 79.65 83.87 81.71

-context 80.21 72.31 74.50 73.38
-BiAFF 81.00 82.01 77.00 79.10
-morph 82.87 80.00 81.21 80.60

-DP 81.89 79.35 81.62 80.26
-morph -DP 81.50 82.34 77.67 79.93

Table 3: Ablations of the proposed system in terms of all
the metrics. Each ablation deletes a single component
from the proposed system. For example, “-DP” deletes
the dependency parsing task from the proposed system.

(2) How effective is the proposed system in re-
ducing confusion between conflicting classes?
Figure 2 illustrates the confusion matrices in w/
context and w/o context scenarios. We observe a
similar trend in both the scenarios. (1) Both sys-
tems mis-classify the predictions into the most pop-
ulated type (Tatpurus. a). This can be attributed to
the imbalanced nature of the dataset.13 (2) The con-
fusion between Avyayı̄bhāva and Tatpurus. a is due
to these compounds having their first component as
an indeclinable word. Notably, the system with con-
text is able to reduce confusion by 15%. (3) One
of the reasons for conflict between Tatpurus. a and
Bahuvrı̄hi is due to the specific subcategory of both
the classes where the first component is a negation.
With the help of enriched information, a system
with context can reduce this miss-classification by
7%. Summarily, the system with contextual in-
formation always performs superior to one with
no context. This substantiates the importance of
contextual information in the proposed system.

(3) How well can we generalize the proposed
system for other languages? The primary moti-
vation is to illustrate the efficacy of our language
agnostic approach. The semantic type of com-
pounds of the language of interest need not be
similar to that of Sanskrit for the model to work.
It is purely language agnostic model. To study
the generalization ability of the proposed system,
we consider 2 additional languages, namely, En-
glish (en) and Marathi (ma). We choose English
due to its availability of context-sensitive annotated

12In the absence of the proposed ‘BiAFF’ component, we
use [CLS] token for the sentence-level prediction, where this
system is similar to XLM-R + DP + morph.

13In this work, we do not consider any strategy to tackle
imbalanced classification. We plan to address this in future.
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English Marathi

w/o context w/ context w/o context w/ context

System A P R F1 A P R F1 A P R F1 A P R F1

ISCLS19 67.43 71.81 64.38 66.26 67.43 71.81 64.38 66.26 68.62 70.78 52.89 56.85 68.62 70.78 52.89 56.85
IndicALBERT 68.23 57.25 59.70 57.96 70.22 68.01 69.31 68.65 67.65 33.33 45.15 38.08 60.00 45.17 40.62 40.95

mBERT 70.98 70.00 69.87 69.97 72.48 76.08 73.47 74.30 77.45 58.70 61.28 59.48 71.05 51.45 53.34 52.18
BERT 74.19 72.79 71.12 71.62 74.71 75.83 74.48 75.12 78.43 71.21 68.04 69.20 75.43 67.07 66.07 66.43

XLM-R 72.21 71.53 68.88 69.20 74.33 77.12 76.86 76.57 76.47 67.36 62.90 63.33 74.56 65.50 62.07 62.75
Ours 74.69 74.79 75.19 75.19 77.81 79.17 79.19 79.12 78.12 71.98 70.00 70.57 80.43 66.54 77.00 69.12

Table 4: Evaluation on English and Marathi languages. The best results are bold. The significance test between the
best baseline XLM-R and our system in terms of Recall/Accuracy metrics: p < 0.01 (as per t-test). ISCLS19 do not
have power to utilize the context information; therefore, we report the same numbers in w/context as w/o context.

(a) (b)

Figure 2: The confusion matrix for the proposed system
trained (a) w/o context (b) w/ context. Semantic types:
Avyayı̄bhāva, Bahuvrı̄hi, Dvandva, and Tatpurus. a

data and Marathi due to its closeness to Sanskrit.
We freshly created annotated task-specific context-
sensitive data for Marathi (§ 3.1) as no such dataset
was previously available. Table 4 reports the results
for these two languages. For English, all the base-
lines (with context) improve over their counterpart
(without context). However, we do not find similar
trend in Marathi possibly due to (1) lack of suffi-
cient task-specific data, and (2) lack of both the
auxiliary task 14. For both languages, our system
consistently outperforms all the competing systems.
Across both the languages, it shows the average ab-
solute gain of 4.7 points (A) and 4.4 points (F1)
compared to the strong baseline XLM-R. Summar-
ily, these empirical results prove the proposed ap-
proach’s efficacy in languages other than Sanskrit.

(4) Multi-lingual training and zero-shot cross-
lingual transfer experiments for Marathi:
Here, we investigate the transferability of the
SaCTI task for low-resourced languages. We ex-
periment with the Marathi language (w/ context).
Since the label space of Marathi is the same as that
of the SaCTI coarse dataset, this makes it possible
to experiment with cross-lingual zero-shot transfer

14We could not activate auxiliary tasks due to lack of
datasets for Marathi.

and multi-lingual training. There is an isomorphic
semantic type system with 4 types for Marathi as
is the case for most of the Indian languages, due to
a close connection with / inheritance from Sanskrit.
In Table 5, we consider the mono-lingual (training
on Marathi) results as a baseline. In multi-lingual
training, we train the proposed system with mix of
Marathi and SaCTI-base coarse dataset and evalu-
ate on test set of Marathi.15 In the zero-shot trans-
fer, we leverage the model trained on the SaCTI-
base coarse dataset to get predictions on the test
set of Marathi. In multi-lingual training experi-
ment, we observe substantial improvements (3.4
points F1) over mono-lingual training. However,
zero-shot cross-lingual transfer does not show en-
couraging results, where system predicts Tatpurus. a
type for majority test samples (80% predictions).

Tasks A P R F1
ours (Marathi) 80.43 66.54 77.00 69.12

zero-shot transfer 48.09 33.85 48.36 31.08
multi-lingual training 83.10 71.00 80.48 73.70

Table 5: Performance of the multilingual training and
cross-lingual zero-shot transfer on Marathi.

(5) Probing analysis: Here, we probe the at-
tention modules of the proposed system to inves-
tigate (1) How do different context words con-
tribute towards final prediction? (2) Do these at-
tentions serve as a proxy for explainability of cor-
rect/incorrect predictions? Figure 3 illustrates at-
tention heatmaps for the SaCTI (Blue) and depen-
dency parsing (Purple) tasks. The SaCTI heatmap
shows how different context words contribute to-
wards final prediction (Blue) and dependency pars-
ing heatmap (Purple) serves as proxy for interpre-
tation. We notice in the SaCTI attentions that all

15Here, we use pretrained models of Sanskrit for both the
auxiliary tasks to obtain psuedo-labels for Marathi.
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(a) (b) (c) (d)

Figure 3: Attention heatmaps for the SaCTI (Blue) and dependency parsing (Purple) tasks. The SaCTI heatmap
shows how different context words contribute towards final prediction (Blue) and dependency parsing heatmap
(Purple) serve as proxy for interpretation. We illustrates how the same compound (pı̄ta-ambaram) in two different
contexts [(a-b) aham pı̄ta-ambaram vastram dharāmi (I wear a yellow cloth) and (c-d) aham pı̄ta-ambarām
namāmi (I pray to the Lord Vis.nu)] leads to different semantic type predictions (Tatpurus. a: yellow cloth and
Bahuvrı̄hi: Lord Vis.nu). In the dependency heatmap of the first case, pı̄ta-ambaram focuses on vastram (cloth) and
in latter case it focuses on namāmi (the action of praying).

words mostly focus on the target compound word.
Figure 3 illustrate how the same compound (pı̄ta-
ambaram) in two different contexts [(a-b) aham
pı̄ta-ambaram vastram dharāmi (I wear a yel-
low cloth) and (c-d) aham pı̄ta-ambarām namāmi
(I pray to the Lord Vis.nu)] leads to different se-
mantic type predictions (Tatpurus. a: yellow cloth
and Bahuvrı̄hi: Lord Vis.nu). In the dependency
heatmap of the first case, pı̄ta-ambaram focuses
on vastram (cloth) and in latter case, it focuses
on namāmi (the action of praying). As per the
grammatical rules, the morphological tagging task
correctly predicts the gender information as neuter
and masculine in these cases, respectively. Thus,
this probing analysis suggests that auxiliary tasks
not only help add complementary signals to the
system but also serve as a proxy for explainability.

(6) Additional auxiliary tasks: With our pro-
posed multi-task learning approach, we experiment
with a few more additional sequence labeling aux-
iliary tasks (on SaCTI-base w/ context dev set),
namely, the prediction of the case grammatical cat-
egory (C), lemma prediction (L) and prediction of
a relation (R) between modifier and its headword.
The results in Table 6 show that except for the re-
lation prediction task, all the remaining auxiliary
tasks report improvements over the base system
(with no auxiliary task). However, none of the com-
binations of these auxiliary tasks could outperform
the proposed combination of morphological pars-
ing and dependency parsing tasks. Therefore, we
do not consider these additional auxiliary tasks in
our final system.

Tasks A P R F1
BiAFF 87.99 85.48 87.90 86.64

+case (C) 87.64 85.65 88.90 87.19
+morph (M) 88.01 88.90 85.75 87.26
+relation (R) 86.61 85.53 84.99 85.22
+lemma (L) 87.43 88.27 86.21 87.18

+Dep. parse (DP) 89.14 86.49 90.10 88.01

M+C 87.55 88.30 85.28 86.72
M+C+L 87.08 87.74 84.98 86.30
M+C+R 86.10 86.04 83.28 84.55
M+DP 88.11 86.12 89.23 88.43

Table 6: The comparison (on SaCTI-base w/ context
dev set) in between auxiliary tasks. ‘+’ denotes a system
where the corresponding task is integrated with BiAFF.

(7) Web-based tool: We deploy our pretrained
models as a web-based tool which facilitates the fol-
lowing advantages: (1) A naive user with no prior
deep-learning expertise can use it for pedagogical
purposes. (2) It can serve as a semi-supervised an-
notation tool keeping a human in the loop for the
error corrections. (3) Our tool helps the user inter-
pret the model prediction using model confidence
on each semantic type and the probing analysis.
Refer to Appendix A for our web-based tool’s in-
terface. (4) It can be used for any general purpose
classification task.

5 Related work

English Noun Compound Interpretation Prior
to the deep learning era, various machine learning-
based approaches have been proposed for Noun
Compound Identification (Kim and Baldwin, 2005;
Ó Séaghdha and Copestake, 2009; Tratz and Hovy,
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2010). With the advent of deep-learning based
approaches, Dima and Hinrichs (2015) and Fares
et al. (2018) proposed a neural-based architecture
where concatenated representations of a compound
were fed to a feed-forward network to predict a
semantic relation between the compound’s compo-
nents. Shwartz and Waterson (2018) proposed an
approach that combines labeling with paraphrasing.
Recently, Ponkiya et al. (2021) proposed a novel
approach using semantic label repository (Ponkiya
et al., 2018b, FrameNet) where continuous label
space embeddings are used to predict unseen la-
bels. To the best of our knowledge, a context
has never been used for the classification task for
NCI. In paraphrasing line of modeling, Ponkiya
et al. (2020) formulates paraphrasing as “fill-in-the-
blank” problem to predict the “missing” predicate
or preposition using pretrained language models.

Sanskrit Compound Type Identification task
has garnered considerable attention of the re-
searchers in the last decade. In order to decode
the meaning of a Sanskrit compound, it is essential
to figure out its constituents (Gérard, 2010; Mittal,
2010; Hellwig and Nehrdich, 2018), how the con-
stituents are grouped (Kulkarni and Kumar, 2011),
identify the semantic relation between them (Ku-
mar, 2012) and finally generate the paraphrase of
the compound (Kumar et al., 2009). Satuluri and
Kulkarni (2013) and Kulkarni and Kumar (2013)
proposed a rule-based approach where around 400
rules mentioned in Pān. ini’s grammar (Pan. ini, 500
BCE) were analysed from the perspective of com-
pound generation and type identification, respec-
tively. Recently, Sandhan et al. (2019) investigated
whether a purely engineering data-driven approach
competes with the performance of a linguistically
motivated hybrid approach by Krishna et al. (2016).
Summarily, no attention has been given to incor-
porating contextual information, which is crucial
and cheaply available. We address this research
gap and mark the new state-of-the-art results with
substantial improvements.

6 Conclusion and Discussion

This work focused on Sanskrit compound type iden-
tification, where the task is to decode the semantic
information hidden in the compound, which can
be context-sensitive. This poses a limitation to the
existing context agnostic approaches, thus we pro-
pose a novel multi-task learning architecture which
incorporates the contextual information and also

enriches it with complementary syntactic informa-
tion using morphological tagging and dependency
parsing auxiliary tasks. Our probing analysis show-
cased that these auxiliary tasks also serve as a proxy
for model prediction explainability. To the best of
our knowledge, this is the first time that the impor-
tance of these auxiliary tasks has been showcased
for SaCTI. Our experiments on benchmark datasets
showed that the proposed system provides stunning
improvements with 6.1 points (A) and 7.7 points
(F1) absolute gain compared with the current state-
of-the-art system. Our fine-grained analysis show-
cased some light on the inner engineering of the
proposed system. Our multi-lingual experiments
on English and Marathi languages proved the effi-
cacy of the proposed system in other languages.

We limit our study to the purely engineering
data-driven settings. We plan to extend the current
work by augmenting logical rules (Li and Sriku-
mar, 2019; Nandwani et al., 2019) derived from
Pān. inian grammar in the proposed approach.

Ethics Statement: We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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A Web-based tool

We deploy our pretrained models as a web-based
tool. Figure 4 illustrates the web-based tool in-
tegrated with our best performing system. In-
put: “aham pı̄ta-ambaram namāmi” (Translation:
“I pray to Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-
ambaram’ is a compound word. Our interface
shows predicted morphological tags (color-coded
with violet boxes), type-wise system confidence
(bar plot), attention heatmaps. Our tool helps the
user interpret the model prediction using model
confidence on each semantic type.

B Marathi annotation details

We have built a user-friendly annotation tool for
general-purpose classification tasks. The tool is
a Flask-based (Ronacher) user-friendly web ap-
plication styled by Bootstrap 5 (boo, 2022), and
sports a simple administrative interface that lets the
administrators easily control the class labels and
classification context as well as export annotations.
Figure 5 shows our web-based mobile friendly an-
notation interface, where the task is to select the
correct option from multiple-choices for the given
compound with the context. There are 4 broad
categories of semantic types in Marathi. In case
of confusion, we gave additional option to mark
as “Not sure”. We also provide an option to add a
comment to convey additional information about
ambiguity or the concern for the corresponding
example.
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Figure 4: Illustration of web-based tool integrated with our best performing pretrained system. Input: “aham pı̄ta-
ambaram namāmi” (Translation: “I pray to Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-ambaram’ is a compound word.
Our interface shows predicted morphological tags (color-coded with violet boxes), type-wise system confidence
(bar plot), attention heatmaps.

(a) (b)

Figure 5: Illustration of our web-based mobile friendly (a) annotation interface, where the task is to select the
correct option from multiple-choices for the given compound with the context. (b) Administrative interface, where
the administrators can easily control the class labels and classification context as well as export annotations.


