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Abstract

Script knowledge (Schank and Abelson, 1977)
is useful for a variety of NLP tasks. However,
existing resources only cover a small number
of activities, limiting its practical usefulness.
In this work, we propose a zero-shot learn-
ing approach to script parsing, the task of
tagging texts with scenario-specific event and
participant types, which enables us to acquire
script knowledge without domain-specific an-
notations. We (1) learn representations of po-
tential event and participant mentions by pro-
moting class consistency according to the anno-
tated data; (2) perform clustering on the event /
participant candidates from unannotated texts
that belongs to an unseen scenario. The model
achieves 68.1/74.4 average F1 for event / par-
ticipant parsing, respectively, outperforming a
previous CRF model that, in contrast, has ac-
cess to scenario-specific supervision. We also
evaluate the model by testing on a different cor-
pus, where it achieved 55.5/54.0 average F1
for event / participant parsing.

1 Introduction

Script knowledge is a type of commonsense
knowledge that captures how people conduct ev-
eryday activities (Schank and Abelson, 1977). It
expresses that in a certain scenario, participants
tend to act out events in a certain order; an ex-
ample from the scenario FIXING A FLAT TIRE is
shown in Fig. 1. Humans use script knowledge to
fill in events that are not explicitly mentioned in a
text, and script knowledge is useful for many down-
stream NLP applications, including referent pre-
diction (Ahrendt and Demberg, 2016; Modi et al.,
2017), discourse classification (Lee et al., 2020),
and story generation (Zhai et al., 2019, 2020).

A key challenge in dealing with script knowl-
edge is coverage: it is costly and time-consuming
to spell out the prototypical events and participants
of a scenario and how they can be expressed in
language. Existing resources are mostly crowd-

Figure 1: A story about FIXING A FLAT TIRE from InScript.
Script parsing identifies events and participants from texts.
The picture is taken from Zhai et al. (2021).

Figure 2: A part of the temporal script graph for TAKING A
BATH inferred from our parsing result. Each node illustrates 3
random verbalizations from the cluster. The gold classes are
shown on the side. Further edges that could be inferred by
transitivity are omitted. We see one could either undress first
or add scent (to the bath tub) first before sink into water.

sourced (Regneri et al., 2010; Modi et al., 2016);
they annotate stories from a limited number of sce-
narios with script events and participants (cf. figure
1). Script parsers, which predict these event and
participant labels given a text, can achieve high ac-
curacies on scenarios that were seen in training (Os-
termann et al., 2017; Zhai et al., 2021). Nonethe-
less, these parsers only operate on known scenarios:
they could only predict event types on the same sce-
nario as they were trained. The limited coverage
restricts the practical usefulness of script parsers
and thus the practical usefulness of script knowl-
edge for downstream tasks in general.

In this paper, we acquire script knowledge by
tackling the task of zero-shot script parsing: we
present the first system which accurately performs
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script parsing on scenarios that were not seen at
training time. For instance, given training data
that talks about TAKING A BATH and GOING TO A

RESTAURANT, the parser labels events and partici-
pants in the FIXING A FLAT TIRE story of Fig. 1, al-
lowing us to arrange script knowledge into a graphi-
cal form as Fig. 2. This offers a way of overcoming
the coverage limitations of script knowledge, by
generalizing from the training scenarios to arbitrary
other ones.

Our method learns to extract script-specific rep-
resentations from general-purpose pretrained word
embeddings, and then uses agglomerative cluster-
ing at inference time to group together natural-
language phrases that refer to the same event or
participant of the unseen script. Finally, we evalu-
ate our model on MCScript, a different corpus than
the training data.

Our model achieves a micro-F1 score on zero-
shot event labeling of up to 68.1 and on participant
labeling of up to 74.4, on par with the supervised
model of Ostermann et al. (2017) that assumes
training data for the same scenario. We find that our
method yields script graphs with reasonable event
clusters that are temporally ordered in a reasonable
way; the majority of errors on event labeling are
due to issues with the granularity of events. We
also find in probing tasks that our model learns to
amplify information about sentence ordering from
the pretrained embeddings, while suppressing low-
level information about morphology and syntax,
which are less relevant for the script parsing task.
In order to investigate its potential for practical use,
we also evaluated the model on a different, unanno-
tated corpus, where the model achieved 55.5/54.0
average F1 for event / participant parsing.

2 Related work

Scripts were introduced as an approach to captur-
ing commonsense knowledge in AI by Schank and
Abelson (1977); see also Barr and Feigenbaum
(1981). Much research in NLP has simplified
the acquisition of script knowledge to identifying
“event chains” in narrative text (Chambers and Ju-
rafsky, 2008, 2009). Event chains represent typi-
cal sequences of events, each represented by one
predicate, and can be learned from large corpora.
Other work has followed in this tradition (Jans et al.,
2012; Modi and Titov, 2014; Pichotta and Mooney,
2014; Rudinger et al., 2015).

In this paper, we instead build upon work by

Regneri et al. (2010, 2011), who explicitly cap-
ture script knowledge about a given scenario in a
temporal script graph (see Fig. 2). A TSG speci-
fies the abstract events and participants that make
up a script with their temporal ordering; each of
these events and participants can be expressed in
language in many different ways. A TSG is also
more expressive than mere event sequences, be-
cause it encodes different manners how a scenario
play out in real life. Regneri et al. learned script
graphs by crowdsourcing. We instead rely on man-
ually script-annotated corpora (Modi et al., 2016;
Wanzare et al., 2016).

Trained with scenario-specific supervision,
script parsing can be performed accurately. Oster-
mann et al. (2017) developed a linear CRF model
to perform script parsing as a sequence labelling
task. Zhai et al. (2021) developed a hierarchical
model for supervised script parsing, making use of
pre-trained contextualized word embeddings. The
model learns patterns at the word level, as well as
the narrative level with respective sequence models.
These existing approaches are limited to scenarios
for which training data is available, whereas our
work focuses on unseen scenarios.

Zero-shot learning is a family of methods that
establish a classifier for unseen classes, based on
labelled data from seen classes. One common ap-
proach is to learn a latent representation space that
all instances embed into, thus the knowledge of
the source domain, encoded in the labelled training
instances, could be transferred to the target domain.
It tackles data scarcity in various situations, such
as machine translation for low-resource languages
(e.g. Pham et al., 2019; Zhang et al., 2020; Johnson
et al., 2017), generation (Duan et al., 2019; Philip
et al., 2020), text classification (see, e.g. Yin et al.,
2019) and question answering (e.g. Banerjee and
Baral, 2020).

3 Data

We work with InScript (Modi et al., 2016) and
MCScript (Ostermann et al., 2018, 2019).

3.1 InScript

InScript is a crowdsourced corpus of around 100
stories about each of 10 scenarios (see Fig. 1 for
an example). The authors were asked to write a
story about a given scenario (such as GOING GRO-
CERY SHOPPING) “as if to a child”, step by step.
InScript was then hand-annotated with event and
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participant classes; it also contains coreference and
dependency annotations.

3.2 Preprocessing

Following Ostermann et al. (2017), we distinguish
between (1) events that are ‘related to the scenario’,
or commonly seen in a typical instantiation of the
scenario, which we call regular events, and (2)
the ones that take place in the course of a specific
story, but are not directly related to the scenario,
which we call irregular events. For example, in
Figure 1, I found my bike pump describes the regu-
lar event ‘get tools’, whereas the weather was nice
is irregular. We collapse all the subclasses of irreg-
ular events1 into a single irregular event class for
each scenario. 12,902 (33.5%) event instances in
InScript are regular. We also distinguish regular
participants from irregular participants in a sim-
ilar manner: participants like ‘rain’ in Fig. 1 are
considered irregular to the FIXING A FLAT TIRE

scenario, as they are not directly relevant to the
scenario per se. Irregular participant instances take
a smaller proportion of 19.6%.

3.3 MCScript

MCScript is a question answering dataset that fo-
cuses on script knowledge. Here we use its back-
ground text (not the questions), which comprises
around 20 stories on each of 200 scenarios. These
stories are not annotated with script events and par-
ticipants; they are stylistically similar to those in
InScript, as they also consist of relatively simple
language and focus on explaining the scenario in
detail.

We use MCScript to evaluate our model trained
on InScript. To this end, we annotate 20 random
scenarios from MCScript to specify script events
and participants: 10 as validation set and 10 as test
set. The set of labels we used is consistent with
that of InScript, in that we adopt the same set of
special labels (for example label Unrel for events
and participants not relevant to the scenario). The
annotation was performed by two experts. Similar
preprocessing is performed to MCScript.

1These labels are UNREL (unrelated to the scenario),
RELNSCR (related to the scenario but not a script event /
participant), OTHER and UNKNOWN.

4 Zero-shot Script Parsing

4.1 Task Description
Our parser is tasked to predict event and participant
annotations for a scenario that was not seen in train-
ing. Thus, our model must learn to group verbs and
noun phrases from an unseen scenario into abstract
events and participants, without knowing what the
gold label set of events and participants are.

The basic idea of our zero-shot script parser is
as follows. We will learn a transformation φ which
maps pretrained general-purpose word embeddings
into a representation space that is suitable for script
parsing. Identifying verb tokens as candidates for
event descriptions and noun and pronoun tokens
as candidates for participant descriptions, we will
train φ such that candidates that describe the same
event or participant are close together in the repre-
sentation space, whereas candidates for different
events and participants are distant. To parse a text
from an unseen scenario, we will apply φ to the
word embeddings of all candidates and perform
clustering to group them into events and partici-
pants.

We train and evaluate the model under a few dif-
ferent settings. (1) InScript. We split InScript into
eight training, one validation, and one test scenario.
During inference, the model takes the unannotated
stories of the test scenario as input and labels them
with events and participants that are consistent with
the gold annotations. We rotate the validation / test
scenario to perform a ten-fold cross-validation. (2)
MCScript. We use all 10 scenarios in InScript
as the training set, whereas validation and test are
performed on the newly annotated MCScript vali-
dation set and test set.

4.2 Regular candidate identification
Throughout the paper, we will focus on regular
candidates, because irregular candidates are not
our primary goal, as the target of script acquisition
is identifying candidates that describe the scenario,
i.e. the regular candidates; furthermore, irregular
candidates make a diverse group of instances with-
out much semantic similarity to each other. Thus
they would not cluster easily in the representation
space. Therefore, we ignore irregular candidates in
training. During inference, we evaluate against the
original gold standard.

We train a classifier to distinguish regular and
irregular candidates so the latter could be excluded
from training. The classifier is also used in the test
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Figure 3: The overall framework. We learn a representation from annotated corpus and apply it to unannotated texts. The
coreference and dependency terms are not visualized.

phase to exclude irregular candidates from cluster-
ing. We use the supervised script parser proposed
in Zhai et al. (2021), but train it only to distinguish
regular candidates from irregular candidates. We
obtain training data for this task by grouping the
original labels into one of REGULAR_EVENT, IR-
REGULAR_EVENT, REGULAR_PARTICIPANT and
IRREGULAR_PARTICIPANT. The train / validation
set of this model is constructed from the respec-
tive training set specified for each settings in §4.1.
These classifiers achieve on average 85 points F1-
score.

4.3 Training

We now describe how to learn φ. For any given
text that we want to parse, we run XLNet (Yang
et al., 2019) to obtain contextualized word embed-
dings f(c) for each event and participant candidate
c. We also considered using BERT (Kenton and
Toutanova, 2019) / ROBERTA (Liu et al., 2019),
but our input length exceeds the 512 word-piece
limit hardwired in the pre-trained versions of these
models.

Afterwards, we train φ to minimize distances
within the same event and participant class and
maximize them between different ones (§4.3.1);
the general framework is illustrated in Fig. 3. We
will then describe several extensions to the loss
function (§4.3.2–§4.3.3) and then discuss replacing
XLNet embeddings with more specialized word
embeddings (§4.3.4)2.

4.3.1 Learning script-neutral representations
Let C be the set of all event candidates or the set
of all participant candidates in a text, and let π(C)
be a partition of C which clusters candidates into

2Our code and data are available at https://github.
com/coli-saar/A3_USSP_coling22

equivalence classes; at training time, each class
contains the candidates that are labeled with the
same event or participants. We define π(c) as the
element of the partition to which the candidate c
belongs. Given a pre-trained embedding function
f and the transformation φθ that we want to learn,
we consider the average distance between instances
belonging to different clusters:

dext(π(C); θ) = mean
c, c′ ∈ C :

π(c) ̸= π(c′)

d(φθ(f(c), φθ(f(c
′)))

The transformation φ is implemented by fine-
tuning the last layer of the encoder.

We would like to push the embeddings of two
candidates from different classes apart if they are
too close to each other. We do so by maximizing
the external consistency of the partition π:

γext(π(C); θ) = mean
c, c′ : π(c) ̸= π(c′),

d(φθ(f(c), φθ(f(c
′)))

< σ1dext(π(C); θ)

d(φθ(f(c), φθ(f(c
′)))

σ1 ∈ (0, 1) is a threshold that quantifies being ‘too
close’. This definition captures the intuition that
φ should map candidates from different classes to
dissimilar vectors.

Likewise, consider the average distances be-
tween embeddings of candidates from same
classes:

dint(π(C); θ) = mean
c,c′:π(c)=π(c′)

d(φθ(f(c), φθ(f(c
′)))

We would like to pull the embeddings of two candi-
dates from the same class towards each other if they
are too far away. In a similar spirit, we maximize
the internal consistency of π:

https://github.com/coli-saar/A3_USSP_coling22
https://github.com/coli-saar/A3_USSP_coling22
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(a) There is a bus stop down the street from my house . If
you take it going south , it leads to the city...

(b) ...Ipassenger fed my coinsmoney into the slot where you
put your money...
...Ipassenger boarded the bus and paid for my ride with
my changemoney ...

(c) ...the bus arrivedbus_stops at the bus stop closest to the
beach...
...I would need the bus to stopbus_stops next to the hos-
pital...

Figure 4: Examples.(a) coreference chain. (b) events
sharing similar participants. (c) participants that have
similar event dependents.

γint(π(C); θ) = 1− mean
c, c′ : π(c) = π(c′),

d(φθ(f(c), φθ(f(c
′)))

> σ2dint(π; θ)

d(φθ(f(c), φθ(f(c
′)))

(1)

We write d(·, ·) for the distance function in the
representation space. Empirically, the following
variant of cosine distance worked well:√

1− cos(∠(v, w))

Here ∠(v, w) denotes the angle between v and w.
We obtain an overall consistency measure γ,

which we maximize in training; λi is a hyper-
parameter that balances the terms. 3

γ(π(C); θ) = γext(π(C); θ) + λiγint(π(C); θ)

4.3.2 Coreference
We can now further refine this baseline consistency
model with script-specific knowledge. First, within
a text, noun phrases that refer to the same entity
form a coreference chain: for example, all men-
tions of the bus in the scenario TAKING A BUS

(Fig. 4a). Therefore, these noun phrases should
belong to the same participant cluster and have
similar representations.

We capture this intuition as follows. Let η(Cc)
be the set of all coreference chains that consists
of participant candidates Cc. Like π above, η(Cc)
also specifies an equivalence relation, in that two
candidates are in the same class iff they are in the

3This function could be seen as a variant of triplet loss
introduced by (Dong and Shen, 2018), but relaxed with the
thresholds and uses a different distance metric. Empirically,
these measures improve the stability of training and result in a
moderate performance improvement.

same coreference chain. We can thus formulate a
coreference-based consistency measure as

β(θ) := γint(η(Cc); θ)

Note that minimizing this quantity imposes only
a soft constraint; coreferent entities are rewarded
for being in the same class, not forced into them.
This increases robustness against noise in the coref-
erence annotations.

4.3.3 Event-participant dependencies
Second, events and participants in a script are
tightly linked: if two verbs have arguments from
the same participant class, they tend to describe the
same event (Fig. 4b); and if two noun phrases are
arguments of the same event, they tend to describe
the same participant (Fig. 4c).

Let cp be the set of event candidates that have
participant p as an argument; we encourage φ to
map the elements of cp to similar representations.
Let ξ(Cd

e ) be the set of all cp, namely a partition
of event candidates based on dependencies. Analo-
gously, let ξ(Cd

p) be the set of participant candidate
sets that depend on the same events. We can for-
mulate a dependency-based consistency measure
as

α(θ) = γint(ξ(Cd
e ); θ) + γint(ξ(Cd

p); θ)

The final training objective, with hyper-
parameters λc, λd and cluster assignment π∗(Ce)
of event candidates and π∗(Cp) of participant can-
didates specified by the annotations in InScript, is
4

θ∗ = argmax
θ

[γ(π∗(Cd
e ); θ) + λpγ(π

∗(Cd
p); θ)

+ λcβ(θ) + λdα(θ)] (2)

4.3.4 Specialized word embeddings
We further investigated whether our zero-shot ap-
proach can benefit by using more specialized word
embeddings as input instead of the general-purpose
XLNet embeddings. We thus replaced f with the
representations from the pre-final layer of the su-
pervised script parser of Zhai et al. (2021) trained
and validated on our training data. These represen-
tations are also based on XLNet, but then trained to

4As was correctly pointed out by one of our reviewers,
untyped dependencies can be noisy for our purpose. We do not
use typed dependencies as typing the links amplifies the data
sparsity, making it difficult to generalize. Empirically, using
untyped dependencies still granted a moderate performance
improvement.
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predict InScript events and participants on known
scenarios.

4.4 Inference

4.4.1 Clustering
At inference time, we first determine the event and
participant candidates by taking the nouns, pro-
nouns and verbs, and classify them for regular-
ity. We then acquire a representation φθ∗(f(c)) for
each candidate c and group them into classes by
clustering (cf. Fig. 3).

We use agglomerative clustering, a bottom-up
hierarchical clustering algorithm that iteratively
merges the most similar pair of clusters. It ter-
minates when either the number of clusters de-
creases to a pre-defined quantity or the minimum
dis-similarity between the current clusters goes be-
yond a predefined threshold. As the number of
event and participant classes vary across scenarios,
we do not fix the number of cluster, but instead
define a dissimilarity threshold estimated from the
training scenarios.

4.4.2 Protagonists
We give special treatment to the protagonist of
each scenario – for example, the passenger in TAK-
ING A TRAIN or the customer in GROCERY SHOP-
PING. The protagonist is the most frequent partici-
pant in all scenarios and always makes the largest
class of participant candidates. We thus identify it
by following the longest coreference chain, instead
of feeding these referents to the neural pipeline.
Therefore, the identification of protagonists is ex-
cluded from training and performed symbolically
in the reference phase. This simple heuristic yields
an F-score of 98 at inference time for the protago-
nist class.

4.4.3 Coreference Chains at Inference Time
During the training phase we encourage the em-
bedding vectors associated with candidates from
the same coreference chain to be more similar to
each other. But during the inference phase, we
could also directly perform coreference resolution
on the text. We take into account this information
by refining the distance in §4.3 to√

1− cos(∠(v, w))− λIc(v, w)

here Ic(v, w) = 1 ⇔ the candidates associated
with vectors v, w are in the same coreference chain.
λ is a hyper-parameter.

5 Evaluation

On InScript, we evaluate our method with 10-fold
cross-validation where each fold is the data asso-
ciated with a scenario. Note that the texts in the
validation and test data are always from scenarios
that were unseen in training. On MCScript, the
model is evaluated on the MCScript test set.

5.1 Metric

Given a cluster assignment, what we are interested
in is how well the predicted clusters align with gold
classes. However, the gold classes are unknown to
us; the outcome of clustering includes a number
of indexed clusters, like cluster1, cluster2, and
we do not know which gold cluster should these
clusters be compared to. To tackle this issue, we
need a ‘best’ assignment of the clusters to the gold
classes, with which we can evaluate the ‘accuracy’
of the clustering results as if it were a classification
task. One approach is to find the assignment that
maximizes this accuracy. This is a linear assign-
ment problem, which is solved in cubic time by the
Hungarian algorithm (see, e.g. Kuhn, 1955), thus
tractable given the scale of our problem. We call
the F1 score evaluated according to this optimal
assignment Hungarian F1, and use it as our main
evaluation metric. This metric allows us to com-
pare the results of the clustering-based parsers to
that of the classification-based parsers.

5.2 Baselines

We compare the results of our zero-shot parser to a
number of baselines. First, we compare against the
supervised script parsers of Zhai et al. (2021) and
Ostermann et al. (2017). For the former, we take
the performance report from the original paper; for
the latter, we retrain the model to evaluate on the
train-test split of Zhai et al. This data split defines
a supervised task, thus the performance of these
parsers are not directly comparable to ours.

Second, we compare against a baseline where
we cluster event and participant candidates at infer-
ence time based on the bare XLNet embeddings,
rather than the ones that were transformed by our
learned φθ∗ . Finally, in addition to our full model,
as specified by equation 2 with the specialized
embeddings of §4.3.4, we also present results for
ablated versions without the extensions regarding
event-participant dependencies (dep), coreference
(coref ), and specialized embeddings (specialized).
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model gold regularity task events participants

macro F1 micro F1 macro F1 micro F1

Ostermann et al. (2017) ✓ supervised 58.1 66.0 n/a n/a
Zhai et al. (2021) X supervised 75.1 85.7 80.3 90.3
Bare XLNet X zero-shot 40.2 53.2 39.3 60.5
w/o dep, coref, specialized X zero-shot 46.0±2.8 58.4±2.7 47.5±2.6 75.7±1.8

w/o dep, coref X zero-shot 48.6±5.2 62.7±3.7 44.5±3.3 71.8±2.1

w/o dep X zero-shot 51.0±3.7 66.8±4.3 52.0±3.7 74.8±2.9

Full model X zero-shot 53.4±1.8 68.1±2.3 51.7±1.6 74.4±1.4

Bare XLNet ✓ zero-shot 43.1 51.6 43.9 61.0
w/o dep, coref, specialized ✓ zero-shot 46.1±1.9 55.4±2.2 51.1±2.7 75.3±1.3

w/o dep, coref ✓ zero-shot 55.3±2.8 65.8±2.8 52.5±3.1 73.6±2.1

w/o dep ✓ zero-shot 56.7±3.3 67.4±3.7 53.6±2.9 74.2±2.0

Full model ✓ zero-shot 57.6±1.3 68.1±1.3 52.8±1.4 73.7±1.4

Table 1: Results on InScript. We show the average over ten-fold cross validation and five training runs when feasible.
These quantities are the Hungarian versions of F1 defined in §5.1. Some models train and inference according to the
regularity annotations in InScript, instead of the predictions of our regular candidate identifier. Ostermann et al. and
Zhai et al. use a data split where the models see the test scenario during training; the other variants use the zero-shot
split described in §3.

model gold regularity events participants

macro F1 micro F1 macro F1 micro F1

Bare XLNet X 24.1 25.0 17.8 19.5
w/o dep, coref, specialized X 44.2±0.57 51.2±0.83 37.0±1.4 39.0±0.72

w/o dep, coref X 45.7±0.63 50.2±0.63 37.9±1.1 41.9±1.0

w/o dep X 48.2±1.4 53.3±1.3 40.8±1.8 45.4±1.7

Full model X 49.6±1.3 55.5±1.6 42.6±1.6 54.0±2.0

Table 2: Results on MCScript averaged from five parallel training runs. All models train and inference based on the
regularity predictions of our regular candidate identifier.

For each of the clustering-based methods, we re-
port two results: one where we assume gold infor-
mation about whether an event or participant candi-
date is regular, and one where this is predicted by
the classifier from §4.2. All variants use the same
number of trials for hyperparameter tuning. After-
wards, we do 5 parallel training sessions to test the
models’ robustness against random initializations,
and report mean and std.

6 Results

6.1 Evaluation on InScript

The results on InScript are shown in Table 1. All
variants of our model outperform clustering based
on raw XLNet embeddings by a considerable mar-
gin. Our model also performs on par with Oster-
mann’s, although we do not have access to scenario-
specific supervision whereas Ostermann’s does,
and our model additionally performs participant
parsing. In general, we obtain a higher micro-F1
for participants than for events. This is due to the
more skewed distribution of the sizes of the partici-

pant class sizes than those of the event classes.

The model extensions boost parsing accuracy
significantly. Access to coreference information
improves participant parsing performance. De-
pendency information grants a performance boost
in event parsing. A closer inspection shows that
with dependency information, the parser is better at
grouping together event candidates with different
verbs but same arguments. For example, event sink
into water in TAKING A BATH could be evoked
by slide into water, sink into water, slip into the
tub, lower into the tub, etc. The verbs in these
event candidates all share arguments I and wa-
ter or tub, which our parser correctly clusters to-
gether. Without dependency information, the parser
mostly groups together candidates whose predicate
is ‘sink’, the most frequent verbalization of the
event.

The performance of our script parser differs from
fold to fold: we get 70.1 micro-F1 for participant
parsing on TAKING A BATH, but only 43.8 on BOR-
ROWING A BOOK FROM LIBRARY. These differ-
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ences result from two factors. (1) Similarities be-
tween the training scenarios and the test scenario.
(2) Differences in the qualities of the original anno-
tation among different scenarios.

6.2 Evaluation on MCScript

The results on MCScript is given in table 2. Note
that the test scenarios only have around 20 sto-
ries each, as opposed to the 100 stories available
for each InScript scenario. Shifting to a differ-
ent domain and having fewer stories per scenario
available incurred a considerable performance drop
(on average over 10 points F1 score). The perfor-
mance drop is especially noticeable for participant
parsing, which was unexpected. A closer look indi-
cates that participants in MCScript scenarios follow
much more skewed distributions than in InScript:
instances from the less frequent half of the partici-
pant classes in MCScript take a proportion of only
8% whereas this quantity is 18% for InScript. As
a result, there are more classes that only have a
handful of instances than InScript, worsening the
already low-resource setting.

All our model variants still outperform the
XLNet baseline by a large margin, with the
full model achieving the best performance, at
49.6/55.5 macro/micro F1 for events, and 42.6/54.0
macro/micro F1 for participants. Each model com-
ponent contributes to this performance according
to the ablation study.

7 Further analysis

7.1 Temporal script graphs

Given the clustering results, we can induce tempo-
ral script graphs for unseen scenarios. We establish
temporal order as follows: we say event e1 pre-
cedes event e2 if, and only if, in stories where they
both occur, the proportion where e1 occurs before
e2 is beyond a threshold ζ. If neither e1 precedes
e2 nor e2 precedes e1, we decide they could follow
arbitrary order.

If we view the construction of temporal script
graphs as a task of retrieving temporally ordered
event pairs, and evaluate our results against that in-
ferred from annotations in InScript, our clustering
results yields 75 points F1 score. Observe that the
model has learned that each event can be expressed
in many different ways that are semantically similar
only in the context of the scenario (Fig. 2).

7.2 Probing Script-specific Embeddings

We conjectured that the transformation φ was
needed to distill the relevant information for script
parsing out of the pretrained XLNet embeddings.
We investigate whether this is true by freezing the
embeddings φ(f(c)) (zero-shot) and the pretrained
embeddings f(c) (XLNet) and training models for
a variety of NLP tasks that take these embeddings
as input.

We probe with the following tasks. (1) POS tag-
ging and (2) named entity recognition; these mostly
depend on the token itself and its local context.
(3) Noun phrase chunking, which is determined
by sentence-level syntax. (4) Sentence ordering,
where we randomly shuffle the order of the sen-
tences in a story and train a binary classifier to de-
tect whether the story is shuffled. The task would
need information across the entire story to conduct.
(1)-(3) are formulated as sequence labelling tasks;
(4) is a binary classification. The experiments are
conducted on InScript, with the same data split as is
used to train our representation. InScript includes
POS annotations; for NER and chunking, the labels
are generated with Spacy (Honnibal and Montani,
2017, model en_core_web_trf ).

In each of these probing tasks, both representa-
tions use the same amount of GPU budget. See
Fig. 5 for the results. The transformed representa-

Figure 5: Performance on probing tasks. Our representation
clearly favours the sentence ordering task. The error bars show
one standard deviation. All differences between these pairs
are significant at α = 0.05 according to independent T-test.

tion φ(f(c)) incurs performance drops on most
tasks, compared to the general-purpose embed-
dings f(c). However, the performance on sentence
ordering sees a noticable improvement. This sup-
ports our hypothesis that φ amplifies higher level
features, which are more important to script parsing
than to generic language modelling. In compari-
son, lower-level information about morphology and
syntax are deemphasized.
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7.3 Error analysis

We now have a look at the errors made by our parser.
The errors fall into the following categories.

Granularity

Many events could be divided into multiple sub-
events, forming a hierarchy of events. For example,
in the TAKING A BATH scenario, we have prepare
for bath, undress and grab a towel. A similar phe-
nomenon is observed for the participants. This
fact manifested itself into various types of errors.
For example, the set of event labels in InScript
often consists of events of different granularities,
frequently rendering multiple cluster assignments
feasible (e.g. ... I took a clean towel with me ... in
either prepare for bath or grab a towel). As a re-
sult, the parser sometimes confuses one event clus-
ter with another that includes it, or group together
different events that actually fit together (turn on
water and fill tub with water). Granularity accounts
for two thirds the event errors and one sixth partici-
pant errors.

Shared predicate or argument

Some wrongly clustered events share the verb
or some arguments with another class, especially
when light verbs are involved, which makes the dis-
tinction harder. For example, in TAKING A TRAIN,
a few get ticket events (e.g. “I took the ticket from
him”) are predicted as conductor checks ticket (e.g.
“I gave the ticket to him”).

8 Conclusion

We have presented the first approach to script pars-
ing without scenario-specific knowledge. We do
this by clustering specialized word representations
which are trained by optimizing cluster consistency;
the model is further improved by the use of coref-
erence and event-participant dependency informa-
tion. The model greatly outperforms a baseline
with general-purpose word embeddings, and per-
forms on par with an earlier supervised model.

Our model thus makes it possible, for the first
time, to label large quantities of unannotated data
with script information. In future work, we plan to
experiment also with corpora that contain a larger
variety of naturally occurring texts than MCScript,
in which the sentences are relatively simple, per-
tinent to the scenario and are often in the correct
temporal order.
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fold lr weight decay λei λpi λp σ1 σ2 λc λd

0 1.10E-05 0.000155 1.03 0.0147 0.343 0.887 0.263 0.00372 0.00795
1 2.06E-05 0.00677 0.457 0.882 0.125 0.392 0.391 0.0101 0.0485
2 0.000126 0.000896 0.0105 0.0148 0.0144 0.903 0.728 0.00533 0.0118
3 2.91E-05 0.000166 0.0237 0.0649 0.256 0.373 0.544 0.0619 0.00867
4 7.08E-05 0.00051 0.15 0.0711 0.745 0.681 0.562 0.0121 0.0216
5 0.000353 0.00121 1.51 0.0371 0.00211 0.171 0.692 0.0872 0.016
6 0.000423 1.07E-05 0.204 0.018 0.177 0.113 0.632 0.242 0.00517
7 7.88E-05 0.00303 0.734 0.0136 0.517 0.189 0.948 0.0047 0.111
8 2.72E-05 7.32E-05 0.568 0.00151 0.0589 0.676 0.566 0.00424 0.0475
9 2.09E-05 5.19E-05 0.0327 0.555 0.243 0.788 0.95 0.0866 0.0119

Table 3: Hyper-parameters. Note that these are the hyper-parameter combinations that yielded the best performance
in a round of random hyper-parameter search. Thus the quantities in this table do not represent the best choices of
each single hyper-parameter.

ground truth text
turn water on bath ... I might drain the tub and put in more water ...
sink into water ... I turn off the faucet and sink into bliss ...
sink into water ... Then I slid into the water and enjoyed the relaxing warmth for twenty or more minutes...
sink into water ... I gingerly lowered myself into the nice warm water and immediately began to relax...
sink into water ... I eased my way into the tub and let myself sink into the water ...
sink into water ... I slowly sunk the rest of my body , and closed my eyes...
sink into water ... the tub was full and ready . I slipped into the tub and soaked in the bliss...
washing tools ...then I lather up with either soap or shower gel ...
water ...After I scrub really good and finish singing , I pour water continuously on my body...
washing tools ...I pour water continuously on my body until all the soap was he s off...
washing tools ...I cleaned my hair with some shampoo and washed my body with a wash cloth and rinsed...
washing tools ...shampooed my hair and applied some conditioner then washed my body...
washing tools ...applied some condition er then washed my body using some liquid body wash...
washing tools ...After I have washed everything , I rinse the soap from my body with the water in the tub...
washing tools ...on the corner of the bathtub . I lather ed it up and washed my arms , my legs...
washing tools ...take a wash cloth and soap or body wash to give yourself a good scrub down...
washing tools ...You can put the shampoo in your hair...
washing tools ...place your head under the faucet to rinse out the soap . Enjoy your bath !
washing tools ...washed myself with a wash cloth and soap . Then I leaned my head against...
washing tools ...stepped into the bath tub . I used soap and a wash cloth to clean myself...

Table 4: Example output clusters. Top: event; bottom: participant. The table presents a random selection of
instances from these clusters as the original output could contain hundreds of instances.


