
Proceedings of the 29th International Conference on Computational Linguistics, pages 3994–4004
October 12–17, 2022.

3994

DynGL-SDP: Dynamic Graph Learning for Semantic Dependency Parsing
Bin Li1,2, Miao Gao 1,2, Yunlong Fan1,2,

Yikemaiti Sataer1,2, Zhiqiang Gao1,2,∗, Yaocheng Gui3
1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2Key Laboratory of Computer Network and Information Integration, Ministry of Education,

Nanjing 210096, China
3School and Institute of Modern Posts, Nanjing University of Posts and Telecommunications,

Nanjing 210003, China
{lib, miaogao, fanyunlong, yikmat, zqgao}@seu.edu.cn

guiyc@njupt.edu.cn
Abstract

A recent success in semantic dependency pars-
ing shows that graph neural networks can make
significant accuracy improvements, owing to
its powerful ability in learning expressive graph
representations. However, this work learns
graph representations based on a static graph
constructed by an existing parser, suffering
from two drawbacks: (1) the static graph might
be error-prone (e.g., noisy or incomplete), and
(2) graph construction stage and graph represen-
tation learning stage are disjoint, the errors in-
troduced in the graph construction stage cannot
be corrected and might be accumulated to later
stages. To address these two drawbacks, we
propose a dynamic graph learning framework
and apply it to semantic dependency parsing,
for jointly learning graph structure and graph
representations. Experimental results show that
our parser outperforms the previous parsers on
the SemEval-2015 Task 18 dataset in three lan-
guages (English, Chinese, and Czech).

1 Introduction

Semantic dependency parsing (SDP) represents a
sentence as a directed acyclic graph (DAG), also
called semantic dependency graph (SDG), to cap-
ture between-word semantic relationships that are
more closely related to the meaning of the sentence.
SDP has been widely applied in many downstream
tasks of natural language processing (NLP), includ-
ing sentiment analysis (Lin et al., 2019), abstractive
summarization (Jin et al., 2020a), natural language
understanding (Wu et al., 2021), etc.

Several semantic dependency parsers are pre-
sented in recent years. Their parsing mecha-
nisms are either transition-based or graph-based.
A transition-based parser generates a sequence
of transition actions to incrementally build an
SDG (Wang et al., 2018; Kurita and Søgaard,
2019; Lindemann et al., 2020; Fernández-González

∗Corresponding Author

Dynamic Graph

Graph
Structure
Learning

buyMary

wantsto

Existing
Parser

book

a

Static Graph

buyMary

wantsto

book

a

 Mary wants to buy a book

ARG2 BV
root

ARG1 ARG1

ARG1

Semantic Dependency Graph

 Mary wants to buy a book

ARG2
BV

root
ARG1 ARG1

ARG1

Semantic Dependency Graph

ARG3
GNN

GNN

Learning

Learning(a) Static graph-based disjoint learning for SDP

Dynamic Graph

Graph
Structure
Learning

buyMary

wantsto

Existing
Parser

book

a

Static Graph

buyMary

wantsto

book

a

 Mary wants to buy a book

ARG2 BV
root

ARG1 ARG1

ARG1

Semantic Dependency Graph

 Mary wants to buy a book

ARG2
BV

root
ARG1 ARG1

ARG1

Semantic Dependency Graph

ARG3
GNN

GNN

Learning

Learning

(b) Dynamic graph-based joint learning for SDP

Figure 1: Static graph-based SDP and dynamic graph-
based SDP for example sentence "Mary wants to buy
a book". The edge and dependency colored red are
erroneous.

and Gómez-Rodríguez, 2020). Transition-based
parsers can parse a sentence efficiently. However,
they are more prone to suffer from error propa-
gation since the transition prediction stage is se-
quential and greedy. Graph-based parsers over-
come the shortcomings of transition-based parsers.
They score each edge (or combination of them) of
a possible SDG and globally search for the highest-
scoring SDG (Peng et al., 2017; Dozat and Man-
ning, 2018; Wang et al., 2019; Jia et al., 2020; He
and Choi, 2020; Wang et al., 2021; Li et al., 2022).
A recent success in SDP is the model of Li et al.
(2022), which is a graph-based model relying on
graph neural networks (GNNs). Their model uti-
lizes an existing parser to construct an initial static
graph, and then use GNNs to learn node embed-
dings based on the static graph to predict depen-
dency relationships between words, as shown in
Figure 1(a). This model achieves state-of-the-art
performance in three languages (English, Chinese,
and Czech), owing to the powerful ability of GNNs
in learning expressive graph representations.

Despite the promising performance of Li et al.
(2022), there are still two drawbacks in their model:
(1) the initial graph constructed by the existing

3995

parser is static and might be error-prone (e.g., noisy
or incomplete), the learned node embeddings based
on the static graph may lead to performance degra-
dation to some extent; (2) graph construction stage
and graph representation learning stage are dis-
joint, the errors introduced in the graph construc-
tion stage cannot be corrected and might be accu-
mulated to later stages.

To address these two drawbacks mentioned
above, we propose a dynamic graph learning frame-
work and apply it to SDP, as shown in Figure
1(b), for jointly learning graph structure and graph
representations in this paper. Two GNNs vari-
ants, Graph Convolutional Network (GCN) (Kipf
and Welling, 2016) and Graph Attention Network
(GAT) (Veličković et al., 2018) have been investi-
gated in DynGL-SDP. Experiments are conducted
on the SemEval-2015 Task 18 dataset in three lan-
guages (English, Chinese, and Czech). Exper-
imental results demonstrate the effectiveness of
DynGL-SDP, which outperforms previous studies
and achieves a new state-of-the-art performance.
In addition, DynGL-SDP shows more advantages
with respect to parsing speed.

Contributions The major contributions of this
paper are summarized as follows: (1) we propose
a dynamic graph learning framework for jointly
learning graph structure and graph representations;
(2) we apply the framework in SDP to propose
a graph-based semantic dependency parser; (3)
we conduct sufficient experiments and show that
our parser achieves a new state-of-the-art result
in three languages. Our code is publicly avail-
able at https://github.com/LiBinNLP/
DynGL-SDP.

2 Related Work

In this section, the studies of SDP and dynamic
graph learning will be summarized as follows.

2.1 Semantic Dependency Parsing

Several SDP models are presented in recent years.
Their parsing mechanisms are either transition-
based or graph-based.

A transition-based parser predicts a sequence of
transition actions to incrementally build an SDG.
Wang et al. (2018) presented a neural transition-
based parser using Bi-LSTM Subtraction and In-
cremental Tree-LSTM to represent the key compo-
nents of the transition system, using a variant of

list-based arc-eager transition algorithm for depen-
dency graph parsingto better capture the seman-
tics of segments and internal sub-graph structures.
Kurita and Søgaard (2019) presented a transition-
based parser, using reinforcement learning algo-
rithm to iteratively apply the syntactic dependency
parser to build a DAG structure sequentially. Lin-
demann et al. (2020) developed a transition-based
parser for Apply-Modify dependency parsing. They
introduced the stack-pointer model to predict transi-
tions. Fernández-González and Gómez-Rodríguez
(2020) presented a transition-based parser, using
pointer network to choose a transition among
ROOT, Attach-p, and Shift.

Transition-based parsers can parse a sentence
efficiently using a linear or quadratic number of
transitions. However, they are more prone to suffer
from error propagation since the transition predic-
tion stage is sequential and greedy, an erroneous
action can affect future predictions.

Graph-based parsers overcome the shortcomings
of transition-based parsers, therefore they draw
more attention. A graph-based parser scores each
edge (or combination of them) of a possible SDG
and searches for the highest-scoring SDG. Peng
et al. (2017) developed a graph-based parser which
explored two multitask learning approaches with
a parameterization and factorization that implic-
itly to model the relationship between multiple for-
malisms. Dozat and Manning (2018) presented
a biaffine attention-based parser, which extended
the syntactic parser of Dozat et al. (2017) to train
on and generate an SDG. Wang et al. (2019) ex-
tended the parser of Dozat and Manning (2018)
and added the second-order information for scor-
ing each dependency edge. Either mean-field varia-
tional inference or loopy belief propagation is uti-
lized for approximate decoding. Jia et al. (2020)
presented a semi-supervised model based on con-
ditional random field autoencoder to learn a de-
pendency graph. He and Choi (2020) significantly
improved the performance by introducing contex-
tual string embeddings (called Flair) in the basis
of Dozat and Manning (2018). Wang et al. (2021)
utilized reinforcement learning algorithm to find
better concatenations of embeddings, and then fed
it into the parser of Dozat and Manning (2018).

Recently, Li et al. (2022) presented a GNN-
based parser. They used an existing parser to con-
struct an initial SDG, and then utilized GNNs to
learn node embeddings to predict dependencies,

https://github.com/LiBinNLP/DynGL-SDP
https://github.com/LiBinNLP/DynGL-SDP

3996

achieving state-of-the-art performance. However,
the initial SDG constructed by the existing parser
is static and might be error-prone (e.g., noisy or
incomplete), this may leads to error accumulation
and performance degradation.

2.2 Dynamic Graph Learning

Graph learning is the process of learning the rep-
resentations of a graph, GNNs are the most promi-
nent approaches for graph learning. GNNs take
in the original feature and adjacency matrix, and
output node embeddings as graph representations
(Hamilton et al., 2017; Kipf and Welling, 2016;
Veličković et al., 2018). Due to the powerful abil-
ity in learning graph representations, GNNs have
been applied to various downstream tasks, includ-
ing node prediction (Hamilton et al., 2017), link
prediction (Teru et al., 2020), and graph classifica-
tion (Ying et al., 2018).

Despite GNNs’ powerful ability in graph learn-
ing, unfortunately, they can only be used when
graph-structured data is available. Many NLP
tasks may only have sequential data, there is no
graph structure available. To address this limita-
tion, several dynamic graph learning frameworks
are presented, for jointly learning graph structure
and graph representations (Chen et al., 2020; Jin
et al., 2020b; Fu and He, 2021).

Inspired by the ideas of these frameworks, we
propose a dynamic graph learning framework, and
then apply it to SDP, to generate an SDG from word
sequence rather than an initial static graph.

3 DynGL-SDP

DynGL-SDP is a graph-based parser using the dy-
namic graph learning framework. An overview of
DynGL-SDP is shown as Figure 2. Given sentence
s with n words [w1, w2, . . . , wn], there are four
stages to parse it as an SDG: (1) contextualized
representation learning—a bidirectional long short-
term memory network (BiLSTM) is used to learn
the contextualized representation of each word; (2)
graph structure learning—a graph structure learn-
ing module is used to learn the adjacency matrix of
a potential SDG; (3) graph representation learning—
the contextualized representations and the learned
adjacency matrix will be fed into the GNNs, to
learn expressive node embeddings; (4) dependency
relationship learning—the concatenation of node
embeddings and contextualized representations are
fed into biaffine attention-based parser, to learn

dependency relationships between words.

3.1 Contextualized Representation Learning

We concatenate word and feature embeddings, and
feed them into a BiLSTM to obtain contextualized
representations.

xi = e
(word)
i ⊕ e

(feat)
i (1)

ci = BiLSTM(xi) (2)

where xi is the concatenation (⊕) of the word and
feature embeddings of word wi, ci is the contextu-
alized representation of wi.

Word Embedding 100-dimensional word em-
beddings from GloVe (Pennington et al., 2014) are
used for English; 300-dimensional word embed-
dings from fasttext (Grave et al., 2018) are used for
Chinese and Czech.

Feature Embedding Four types of feature em-
beddings are used, their dimensions (denoted as d)
are equal: (1) Part-of-speech (POS) tag: POS tag
embedding E(pos) is randomly generated, E(pos) ∈
Rn×d, where n is the number of POS tags; (2)
Lemma: lemma embedding E(lemma) is also ran-
domly generated. E(lemma) ∈ Rl×d, where l is
the number of lemmas; (3) Character: character
embedding is generated using Char-LSTM (Kim
et al., 2016) that convolved over three-character
embeddings at each time step; (4) BERT: BERT
embedding (Kenton and Toutanova, 2019) is ex-
tracted from the pretrained BERTbase model.

3.2 Graph Structure Learning

The purpose of the graph structure learning module
is to learn the adjacency matrix A of a potential
SDG. Two multi-layer perceptrons (MLP) are used
to capture head and dependent representations of
each word, as Equation 3 and 4:

h
(adj−head)
i = MLP (adj−head)(ci) (3)

h
(adj−dep)
i = MLP (adj−dep)(ci) (4)

We can then use biaffine classifier (as Equation
5), to compute the score of a possible edge between
wi and wj , as Equation 6:

Biaff(x1, x2) = xT1 Ux2+W (x1⊕x2)+ b (5)

3997

Edge Prediction

Label Prediction

Graph Structure Learning

MLP

Edge Prediction MLP

Mary wants to buy a book

BiLSTM

Contextualized Representation Learning

GNNs

Graph Representation Learning Dependency Relation Learning

ARG2

ARG1 ARG1

BV ARG1

 Mary wants to buy a book

root

Semantic Dependency Graph

Figure 2: Overall architecture of the proposed DynGL-SDP.

s
(adj)
i,j = Biaff (adj)(h

(adj−dep)
i , h

(adj−head)
j)

(6)
A directed edge from wi to wj exists when Aij

is 1. Aij in A is computed as Equation 7:

Âi,j =

{
1, s

(adj)
i,j > 0

0, s
(adj)
i,j ≤ 0

(7)

3.3 Graph Representation Learning
The graph representation learning module utilizes
GNNs to learn the each word’s representation (i.e.
node embedding) that contains graph structure in-
formation. K-layer GNNs are employed, which
take in the contextualized representations and the
learned adjacency matrix A and output the embed-
ding matrix of final layer as node embeddings R.
R(k) in kth-layer is computed as Equation 8:

R(k) = GNNLayer(k−1)(R(k−1), Â) (8)

When GNNLayer is implemented in GCN, the
representation of node i in kth layer r(k)i is com-
puted as Equation 9:

r
(k)
i = σ

W
∑

j∈N(i)

r
(k−1)
j +Br

(k−1)
i

 (9)

where W and B are parameter matrices; N(i) are
neighbors of node i; σ is active function; r(0)i = ci.

When GNNLayer is implemented in GAT, r(k)i

is computed as Equation 10:

r
(k)
i = σ

W
∑

j∈N(i)

a
(k−1)
ij r

(k−1)
j +Br

(k−1)
i


(10)

where a(k−1)
ij is attention coefficient of node i to its

neighbour j at (k − 1)th layer.

3.4 Dependency Relationship Learning
The dependency relationship learning module fol-
lows the biaffine attention-based parser (Dozat and
Manning, 2018), which has two components: edge
prediction and label prediction. For each word wi,
the node embedding ri and the contextualized rep-
resentation ci are concatenated to represent it, as
shown in Equation 11. For each of the two compo-
nents, we use MLP to split the final word represen-
tation zi into two parts—a head representation, and
a dependent representation, as shown in Equation
12 – 15:

zi = ri ⊕ ci (11)

h
(edge−head)
i = MLP (edge−head)(zi) (12)

h
(label−head)
i = MLP (label−head)(zi) (13)

h
(edge−dep)
i = MLP (edge−dep)(zi) (14)

h
(label−dep)
i = MLP (label−dep)(zi) (15)

Two biaffine classifiers are used to predict edges
and labels, as Equation 16 and 17 :

s
(edge)
i,j = Biaff (edge)(h

(edge−dep)
i , h

(edge−head)
j)

(16)

3998

s
(label)
i,j = Biaff (label)(h

(label−dep)
i , h

(label−head)
j)

(17)
where s(edge)i,j and s

(label)
i,j are scores of the edge and

label between the word wi and wj . U , W , and b
are learned parameters.

For edge prediction component, U will be (d×
1× d)-dimensional, so that s(edge)i,j will be a scalar.
An edge between wi and wj exists where si,j is
positive. For label prediction component, U will
be (d× c× d)-dimensional, where c is the number
of labels, so that s(label)i,j is a vector that represents
the probability distribution of each label. The most
probable label will be assigned to the edge between
wi and wj .

ŷ
(edge)
i,j = {s(edge)i,j > 0} (18)

ŷ
(label)
i,j = argmax s

(label)
i,j (19)

3.5 Learning
We can train the system by summing the losses
from the three modules, back propagating error to
the parser. Cross entropy function is used as the
loss function, which is computed as Equation 20:

CE(p, q) = −
∑
x

p(x) log q(x) (20)

We define the loss function of graph structure
learning module (as Equation 21), edge prediction
module (as Equation 22) and label prediction mod-
ule (as Equation 23):

L(adj)(θ1) = CE(Âi,j , Ai,j) (21)

L(edge)(θ2) = CE(ŷ
(edge)
i,j , y

(edge)
i,j) (22)

L(label)(θ3) = CE(ŷ
(label)
i,j , y

(label)
i,j) (23)

where θ1, θ2, and θ3 are the parameters of three
modules.

Then the Adaptive Moment Estimation (Adam)
(Kingma and Ba, 2015) method is used to optimize
the summed loss function L:

L = αL(adj)+βL(edge)+(1−α−β)L(label) (24)

where α and β are two tunable interpolation con-
stants, where (α+ β) ∈ (0, 1).

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct experiments on the SemEval-2015
Task 18 dataset, which covers three languages
(English, Chinese, and Czech) and contains three
different formalisms (DELPH-IN MRS (DM)
(Flickinger et al., 2012), Predicate-Argument Struc-
ture (PAS) (Miyao and Tsujii, 2004), and Prague
Semantic Dependencies (PSD) (Hajic et al., 2012)).
Three formalisms (DM, PAS, and PSD) are all
available for English; only PAS formalism is avail-
able for Chinese; only PSD formalism is available
for Czech.

Dataset Split The dataset split for three lan-
guages is the same as Li et al. (2022), which is
shown in Appendix A.1.

Evaluation Metric Labeled F-measure score
(LF1) (including ROOT edges) is used as the met-
ric to evaluate our parser’s performance on the ID
and OOD test sets for each formalism as well as
the macro-average over the three of them.

4.2 Hyperparameters

The hyperparameter configuration for our final sys-
tem is given in Appendix A.2. Following Wang
et al. (2019), Adam method is used for optimizing
our model, annealing the learning rate by 0.5 for
every 10,000 steps, and switched the optimizer to
AMSGrad (Reddi et al., 2019) after 5,000 steps
without improvement. We train the model for
100,000 iterations with batch sizes of 6,000 tokens
and terminated training early after 10,000 iterations
with no improvement on the development set.

4.3 Baseline Approaches

We compare DynGL-SDP with previous state-of-
the-art approaches. We group them into three
groups: transition-based models, graph-based mod-
els, and hybrid models.

Transition-based models Turku is from Kanerva
et al. (2015). WCGL (Wang et al., 2018) is a neural
transition-based model. SemPointer (Fernández-
González and Gómez-Rodríguez, 2020) is a
transition-based model using Pointer Network. Lin-
demann et al. (2019) and Lindemann et al. (2020)
are compositional semantic parser for SDP and ab-
stract meaning representation.

3999

English
Models DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Peking (2015) 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
Lisbon (2015) 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2
PTS17 (2017): Basic 89.4 84.5 92.2 88.3 77.6 75.3 86.4 82.7
PTS17 (2017): Basic 90.4 85.3 92.7 89.0 78.5 76.4 87.2 83.6
WCGL (2017): Basic 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
D&M (2018): Basic 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0
MF (2019): Basic 93.0 88.4 94.3 91.5 80.9 78.9 89.4 86.3
LBP (2019): Basic 92.9 88.4 94.3 91.5 81.0 78.8 89.4 86.2
Lindemann et al. (2019): Basic 91.2 85.7 92.2 88.0 78.9 76.2 87.4 83.3
SemPointer (2020): Basic 92.5 87.7 94.2 91.0 81.0 78.7 89.2 85.8
GNNSDP(GCN) (2022): Basic 93.3 88.0 94.8 91.1 85.6 83.6 91.2 87.6
GNNSDP(GAT) (2022): Basic 93.0 87.9 94.8 91.6 85.4 83.3 91.1 87.6
DynGL-SDP(GCN) Basic 93.7 89.3 94.9 91.7 85.9 84.1 91.5 88.5
DynGL-SDP(GAT) Basic 93.8 89.2 95.1 92.0 85.9 83.8 91.6 88.3

D&M (2018): +Char+Lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3
MF (2019): +Char+Lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9
LBP (2019): +Char+Lemma 93.9 89.5 94.2 91.3 81.4 79.5 89.8 86.8
Jia et al. (2020): +Lemma 93.6 89.1 - - - - - -
SemPointer (2020): +Char+Lemma 93.9 89.6 94.2 91.2 81.8 79.8 90.0 86.9
GNNSDP(GCN) (2022): +Char+Lemma 94.2 90.1 94.9 91.4 86.4 84.9 91.8 88.8
GNNSDP(GAT) (2022): +Char+Lemma 94.4 89.9 95.0 91.8 86.2 84.6 91.9 88.8
DynGL-SDP(GCN) +Char+Lemma 95.0 90.1 95.0 92.0 86.6 85.0 92.2 89.0
DynGL-SDP(GAT) +Char+Lemma 94.9 90.5 95.3 92.1 86.7 85.0 92.3 89.2

Lindemann et al. (2019): +BERTlarge 94.1 90.5 94.7 92.8 82.1 81.6 90.3 88.3
Lindemann et al. (2020): +BERTlarge 93.9 90.4 94.7 92.7 81.9 81.6 90.2 88.2
SemPointer (2020): +Char+Lemma+BERTbase 94.4 91.0 95.1 93.4 82.6 82.0 90.7 88.8
He et al. (2020): +Char+Lemma+BERTbase+Flair 94.6 90.8 96.1 94.4 86.8 79.5 92.5 88.2
ACE-Fine-tune (2021) +AutoConcat 95.6 92.6 95.8 94.6 83.8 83.4 91.7 90.2
GNNSDP(GCN) (2022): +Char+Lemma+BERTbase 95.1 91.1 95.7 93.2 87.7 87.3 92.8 90.5
GNNSDP(GAT) (2022): +Char+Lemma+BERTbase 95.3 91.9 96.0 94.3 87.0 86.7 92.8 91.0
DynGL-SDP(GCN) +Char+Lemma+BERTbase 95.8 92.7 96.2 94.2 87.8 87.0 93.3 91.3
DynGL-SDP(GAT) +Char+Lemma+BERTbase 95.9 92.7 96.2 94.3 87.7 87.2 93.3 91.4

Table 1: Comparison of labeled F1 scores achieved by our model and previous parsers on English dataset. Jia
et al. (2020) only reports the full-supervised result on DM formalism. The F1 scores of Baseline and our model
are averaged over 5 runs. ID denotes the in-domain (Wall Street Journal Corpus) test set and OOD denotes the
out-of-domain (Brown Corpus) test set. +Char, +Lemma, +BERT, +Flair, and +AutoConcat mean augmenting the
token embeddings with character-level, lemma embeddings, BERT embeddings, Flair embeddings, and automated
concatenation of 11 types of pretrained embeddings.

Graph-based models Lisbon is from Almeida
and Martins (2015). PTS17 (Peng et al., 2017) is
a multitask learning based parser across three for-
malisms. D&M (Dozat and Manning, 2018) is a
biaffine attention-based parser. MF and LBP (Wang
et al., 2019) are a second-order model using mean
field variational inference or loopy belief propaga-
tion. Jia et al. (2020) is a semi-supervised parser,
only the full-supervised result on DM formalism is
reported in their paper. He and Choi (2020) uses
not only BERT but also contextual string embed-
dings (called Flair). ACE-Fine-tune (Wang et al.,
2021) adds automated concatenation of 11 types
of pretrained embeddings to the biaffine attention-
based parser. GNNSDP (Li et al., 2022) is a GNN-
based parser, which is the previous state-of-the-art

parser.

Hybrid models Peking is a hybrid model from
Du et al. (2015). Riga is from Barzdins et al.
(2015).

4.4 Main Results

To perform a fair comparison, we group SDP
models in three blocks according to the embed-
dings provided to the models: (1) just basic pre-
trained word embeddings and POS tag embed-
dings (Basic), (2) character and pre-trained lemma
embeddings augmentation (+Char+Lemma) and
(3) pretrained BERT embeddings augmentation
(+Char+Lemma+BERT).

4000

4.4.1 Results on English
Table 1 shows the comparison of DynGL-SDP and
previous studies on the SemEval-2015 Task 18 En-
glish dataset. From the result, we have the follow-
ing observations:

• DynGL-SDP implemented with two GNN
variants outperforms all existing parsers on
three formalisms of English dataset in three
embedding settings.

• Compared to the previous best one (GNNSDP
(2022)) in each embedding setting, the best
performing DynGL-SDP makes 0.4%, 0.4%,
and 0.5% averaged LF1 improvements on in-
domain test sets, 0.9%, 0.4%, and 0.4% av-
eraged LF1 improvements on out-of-domain
test sets.

• The performances of most parsers have been
generally improved when the token embed-
dings are augmented with more feature em-
beddings.

• The performances of two DynGL-SDP vari-
ants implemented with GCN and GAT are
relatively close.

• We note that ACE-Fine-tune (2021) performs
better than DynGL-SDP in out-of-domain test
set of PAS formalism. A reasonable explana-
tion is that 11 types of pretrained embeddings
are used in their model, improving the model’s
generalization ability.

4.4.2 Results on Chinese and Czech
Table 2 shows the comparison of DynGL-SDP and
previous studies on SemEval-2015 Task 18 Chi-
nese and Czech test sets. From the result, we have
observed that:

• DynGL-SDP outperforms the previous parsers
on Chinese and Czech. The best perform-
ing DynGL-SDP makes 0.33% averaged LF1
improvement on Chinese in-domain test set
in three embedding settings, 0.28% averaged
LF1 improvement on Czech in-domain and
out-of-domain test sets in three embedding
settings.

• The LF1 scores of two DynGL-SDP variants
implemented with GCN and GAT are rela-
tively close on Chinese and Czech.

Chinese Czech
Models PAS PSD

ID ID OOD

Turku(2015) 79.6 75.3 63.7
Riga(2015) 82.5 75.3 61.3
Peking(2015) 83.4 78.5 64.4
Lisbon(2015) 82.0 79.3 63.5
D&M(2018): Basic 87.4 86.9 77.8
GNNSDP(GCN)(2022): Basic 88.3 88.2 79.1
GNNSDP(GAT)(2022): Basic 88.0 87.8 78.9
DynGL-SDP(GCN): Basic 88.8 88.7 78.9
DynGL-SDP(GAT): Basic 88.9 88.9 79.0

D&M (2018): +Char+Lemma 87.8 87.6 78.9
GNNSDP(GCN) (2022): +Char+Lemma 88.5 88.8 80.2
GNNSDP(GAT) (2022): +Char+Lemma 88.3 88.9 80.2
DynGL-SDP(GCN): +Char+Lemma 88.5 89.7 80.3
DynGL-SDP(GAT): +Char+Lemma 88.3 90.0 80.0

GNNSDP(GCN) (2022): +Char+Lemma+BERT 90.1 89.6 80.7
GNNSDP(GAT) (2022): +Char+Lemma+BERT 90.4 89.3 80.4
DynGL-SDP(GCN): +Char+Lemma+BERT 90.8 90.1 80.4
DynGL-SDP(GAT): +Char+Lemma+BERT 90.8 90.1 80.4

Table 2: Comparison of labeled F1 scores achieved
by DynGL-SDP and previous studies on Chinese and
Czech datasets. Only the PAS formalism and in-domain
(ID) test set are available for Chinese, the PSD formal-
ism, in-domain and out-of-domain (OOD) test sets are
available for Czech.

• On the Chinese dataset, the LF1 score of
DynGL-SDP has degraded on the contrary
when the token embeddings are augmented
with character-level and lemma embeddings.
The reason is that the character and lemma are
not available for Chinese.

In summary, DynGL-SDP outperforms the pre-
vious parsers in three languages and three seman-
tic dependency formalisms. Outstanding perfor-
mances of DynGL-SDP demonstrate that the pro-
posed dynamic graph learning framework is able to
learn the expressive graph representations without
depending on an initial static graph.

5 Analysis

5.1 Performance on Different Sentence
Lengths

Here we want to investigate the performances of
DynGL-SDP (ours) and GNNSDP (the previous
best one) on different sentence lengths. We split the
ID and OOD test sets of DM formalism into 6 and
7 groups (one group with 10 tokens) and evaluate
DynGL-SDP and GNNSDP on them. The GNN
module in these two parsers is implemented with
GAT. The results in different groups are shown in

4001

0 10 10 20 20 30 30 40 40 50 50 60
Sentence Length

0.91

0.92

0.93

0.94

0.95

0.96

0.97

LF
1

GNNSDP_T GNNSDP_TCLB DYGL_T DYGL_TCLB(a) DM.ID

0 10 10 20 20 30 30 40 40 50 50 60 60 70
Sentence Length

0.82

0.84

0.86

0.88

0.9

0.92

0.94

LF
1

GNNSDP_T GNNSDP_TCLB DyGLSDP_T DyGLSDP_TCLB

(b) DM.OOD

0 10 10 20 20 30 30 40 40 50 50 60 60 70
Sentence Length

0.82

0.84

0.86

0.88

0.9

0.92

0.94

LF
1

GNNSDP_T GNNSDP_TCLB DynGL-SDP_T DynGL-SDP_TCLB

Figure 3: LF1 scores of different sentence lengths in
DM formalism on English dataset. *_T represents that
only the POS tag embedding is used. *_TCLB rep-
resents that the POS tag, character-level, lemma, and
BERT embeddings are used.

Figure 3.
From the result, we can see that DynGL-SDP

outperforms GNNSDP in different groups and
two embedding settings. Furthermore, the perfor-
mances of both parsers degrade as sentence length
gets longer, highly suggesting that parsing longer
sentences is still a challenge.

5.2 Parsing Speed
Not only accuracy but also parsing speed deter-
mine whether a parser can be applied to down-
stream tasks. Therefore we compare DynGL-SDP
and GNNSDP with respect to parsing speed on an
Nvidia GeForce RTX2080Ti server.

To avoid the influence of preprocessing stage,
the annotated tokens, POS tags, and lemmas in
the dataset are directly used without preprocessing.
The result is shown in table 3.

From the result, we can see that:

• DynGL-SDP performs better than GNNSDP
with respect to parsing speed in three embed-
ding settings.

• The parsing speed of two parsers slows down
when more features are added.

Models EN CHS CZ
DM PAS PSD

GNNSDP(GCN):Basic 1153 1032 997
DynGL-SDP(GCN):Basic 1974 1922 1828
GNNSDP(GCN):+Char+Lemma 821 819 775
DynGL-SDP(GCN):+Char+Lemma 1551 1543 1411
GNNSDP(GCN):+Char+Lemma+BERT 346 297 276
DynGL-SDP(GCN):+Char+Lemma+BERT 677 559 554

Table 3: Parsing speed (sentences/second) of DynGL-
SDP (ours) and GNNSDP (the previous best one) on
English (EN), Chinese (CHS) and Czech (CZ). Parsing
speed of each parser is averaged over 5 runs.

Th
ey

ser
ve

cra
cke

d
whe

at ,
oa

ts or

cor
nm

ea
l .

ROOT

They

serve

cracked

wheat

,

oats

or

cornmeal

.
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

harvest [t/year]

(a) Adj fed into GNNSDP

Th
ey

ser
ve

cra
cke

d
whe

at ,
oa

ts or

cor
nm

ea
l .

ROOT

They

serve

cracked

wheat

,

oats

or

cornmeal

.
0.0

0.2

0.4

0.6

0.8

1.0

harvest [t/year]

(b) Adj fed into DynGL-SDP

2022/4/25 21:12 brat

10.201.93.231:8001/index.xhtml#/DyGLSDP/GNNSDP-40504062 1/1

ROOT they serve cracked wheat , oats or cornmeal .
ROOT PRP VBP VBN NN , NNS CC NN .

DISJ.memberACT-arg DISJ.memberRSTRRSTR
root DISJ.memberPAT-arg

RSTRRSTR
orphan
PAT-arg

RSTRRSTR
orphan

PAT-arg
orphan

1

bratbrat

(c) Semantic dependency graph parsed by GNNSDP

2022/4/25 17:22 brat

10.201.93.231:8001/index.xhtml#/DyGLSDP/DyGLSDP-40504062 1/1

ROOT they serve cracked wheat , oats or cornmeal .
ROOT PRP VBP VBN NN , NNS CC NN .

DISJ.memberACT-arg DISJ.memberRSTR
root DISJ.memberPAT-arg

orphan
PAT-arg

orphan
PAT-arg

orphan

1

bratbrat/DyGLSDP/DyGLSDP-40504062

(d) Semantic dependency graph parsed by DynGL-SDP

1
erroneous edge

0
correct edge

1 but should be 0

Figure 4: 4(a) and 4(b) are two adjacency matrices
(Adj) fed into two parsers. The words in the left are
head words, words in the bottom are dependent words.
4(c) and 4(d) are parsing results of two parsers.

5.3 Case Study

We provide a parsing example to show why DynGL-
SDP can outperform GNNSDP using dynamic
graph learning. Figure 4(a) and Figure 4(b) rep-
resent the adjacency matrices fed into GNNSDP
and DynGL-SDP. Figure 4(c) and Figure 4(d) are
parsing results of GNNSDP and DynGL-SDP for
the English sentence "They serve cracked wheat,
oats or cornmeal." (sent_id = 40504062, in OOD
test set of PSD formalism). The two parsers are
implemented with GCN and trained in the basic

4002

embedding setting.
From Figure 4(a), we can see that there are two

erroneous values (red square) in this adjacency ma-
trix, indicating that the graph structure input into
GNNSDP is noisy. Using learned node embeddings
based on the noisy graph leads to two erroneous
dependent edges in SDG parsed by GNNSDP (red
edge labeled RSTR).

Benefiting from the dynamic graph learning
framework, the learned graph structure input into
DynGL-SDP is correct. Therefore DynGL-SDP
produces a correct SDG.

6 Conclusions

In this paper, we propose a dynamic graph learning
framework and apply it in semantic dependency
parsing. Experimental results show that our model
achieves a new state-of-the-art performance on the
SemEval-2015 Task 18 dataset in three languages
(English, Chinese, and Czech). The outstanding
performance of our model demonstrates that the
proposed dynamic graph learning framework is
able to learn the expressive graph representations
without depending on an initial static graph.

Acknowledgments

This research was sponsored by the Foundation of
Jiangsu Provincial Double-Innovation Doctor Pro-
gram (Grant No. JSSCBS20210507) and NUPTSF
(Grant No. NY220176 and NY221106).

References
Mariana SC Almeida and André FT Martins. 2015. Lis-

bon: Evaluating turbo semantic parser on multiple
languages and out-of-domain data. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), pages 970–973.

Guntis Barzdins, Peteris Paikens, and Didzis Gosko.
2015. Riga: from framenet to semantic frames with
c6. 0 rules. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 960–964.

Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iter-
ative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in
Neural Information Processing Systems, 33.

Timothy Dozat and Christopher D Manning. 2018. Sim-
pler but more accurate semantic dependency parsing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 484–490.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20–30.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015. Peking: Building semantic de-
pendency graphs with a hybrid parser. In Proceed-
ings of the 9th international workshop on semantic
evaluation (SemEval 2015), pages 927–931.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Transition-based semantic depen-
dency parsing with pointer networks. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7035–7046.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank. a dynamically annotated treebank of the
wall street journal. In Proceedings of the 11th In-
ternational Workshop on Treebanks and Linguistic
Theories, pages 85–96.

Dongqi Fu and Jingrui He. 2021. Sdg: A simplified
and dynamic graph neural network. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2273–2277.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC 2018).

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fucíková, Marie
Mikulová, Petr Pajas, Jan Popelka, et al. 2012. An-
nouncing prague czech-english dependency treebank
2.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 3153–3160.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
pages 1025–1035.

Han He and Jinho Choi. 2020. Establishing strong base-
lines for the new decade: Sequence tagging, syntactic
and semantic parsing with bert. In The Thirty-Third
International Flairs Conference.

Zixia Jia, Youmi Ma, Jiong Cai, and Kewei Tu. 2020.
Semi-supervised semantic dependency parsing using
crf autoencoders. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6795–6805.

Hanqi Jin, Tianming Wang, and Xiaojun Wan. 2020a.
Semsum: Semantic dependency guided neural ab-
stractive summarization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 8026–8033.

4003

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020b. Graph structure
learning for robust graph neural networks. In 2020
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter.
2015. Turku: Semantic dependency parsing as a
sequence classification. In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 965–969.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of Annual Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics:Human Language Technologies (NAACL-
HLT), pages 4171–4186.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Rep-
resentations (ICLR 2015).

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Shuhei Kurita and Anders Søgaard. 2019. Multi-task
semantic dependency parsing with policy gradient
for learning easy-first strategies. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2420–2430.

Bin Li, Yunlong Fan, Yikemaiti Sataer, Zhiqiang Gao,
and Yaocheng Gui. 2022. Improving semantic depen-
dency parsing with higher-order information encoded
by graph neural networks. Applied Sciences, 12(8).

Peiqin Lin, Meng Yang, and Jianhuang Lai. 2019. Deep
mask memory network with semantic dependency
and context moment for aspect level sentiment clas-
sification. In Proceedings of the 2019 International
Joint Conferences on Artificial Intelligence, pages
5088–5094.

Matthias Lindemann, Jonas Groschwitz, and Alexander
Koller. 2019. Compositional semantic parsing across
graphbanks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4576–4585.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951.

Yusuke Miyao and Jun’ichi Tsujii. 2004. Deep linguis-
tic analysis for the accurate identification of predicate-
argument relations. In Proceedings of the 20th Inter-
national Conference on Computational Linguistics
(COLING 2004), pages 1392–1398.

Hao Peng, Sam Thomson, and Noah A Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2019.
On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448–9457. PMLR.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4609–4618.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated concatenation of embeddings for struc-
tured prediction. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2643–2660.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A neural transition-based approach for
semantic dependency graph parsing. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 32.

Zhaofeng Wu, Hao Peng, and Noah A Smith. 2021. In-
fusing finetuning with semantic dependencies. Trans-
actions of the Association for Computational Linguis-
tics, 9:226–242.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang
Ren, Will Hamilton, and Jure Leskovec. 2018. Hi-
erarchical graph representation learning with differ-
entiable pooling. Advances in neural information
processing systems, 31.

https://doi.org/10.3390/app12084089
https://doi.org/10.3390/app12084089
https://doi.org/10.3390/app12084089

4004

A Appendix

A.1 Dataset Split

The dataset split is shown in Table 4.

Language Train Dev Test
ID OOD

English 33,964 1,692 1,410 1,849
Chinese 25,336 3,000 8,976 -
Czech 39,057 3,000 1,670 316

Table 4: The number of sentences contained in each
divided dataset of three languages. Only the in-domain
test set is available for Chinese; the in-domain and out-
of-domain test sets are available for English and Czech.

• For English, 33,964 sentences from Sections
00-19 of the Wall Street Journal corpus as
training data, 1,692 sentences from Section
20 as development data, 1,410 sentences from
Section 21 as in-domain (ID) test data, and
1,849 sentences sampled from the Brown Cor-
pus as the out-of-domain (OOD) test data.

• For Chinese, the top 3,000 sentences as the
development data, the remaining 25,336 sen-
tences as the training data, and 8,976 sen-
tences as ID test data.

• For Czech, the top 3,000 sentences as the de-
velopment data, the remaining 39,057 sen-
tences as the training data, 1,670 sentences
as the ID test data, and 316 sentences as the
OOD test data.

A.2 Hyperparameter Values

The hyperparameter configuration for our final sys-
tem is given in Table 5. 100-dimensional pretrained
GloVe embeddings are used for English, in which
the token "unk" represents the out-of-vocabulary
tokens. 300-dimensional pretrained fasttext embed-
dings are used for Chinese and Czech, in which
the token "UNK" represents the out-of-vocabulary
tokens. Word embeddings of each language will be
linearly transformed to be 125-dimensional. Only
words or lemmas that occurred 7 times or more
will be included in the word and lemma embedding
matrix.

Layer Hyper-parameter Value

Word Embedding
English 100

Chinese/Czech 300

Feature Embedding
POS/Lemma 100
Char/BERT 100

LSTM
layers 3

hidden size 400
dropout 0.33

GNN
GCN/GAT layers 3
GCN/GAT hidden 600
GCN/GAT dropout 0.33

MLP
adj-head/dep hidden 600

edge-head/dep hidden 600
label-head/dep hidden 600

Trainer

optimizer Adam
learning rate 1e−2

Adam (β1, β2) 0.95
decay rate 0.75

decay step length 5000
Loss(α, β) 0.2, 0.2

Table 5: Final hyperparameter configuration.

