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Abstract

Grasping the commonsense properties of ev-
eryday concepts is an important prerequisite
to language understanding. While contextu-
alised language models are reportedly capa-
ble of predicting such commonsense properties
with human-level accuracy, we argue that such
results have been inflated because of the high
similarity between training and test concepts.
This means that models which capture concept
similarity can perform well, even if they do not
capture any knowledge of the commonsense
properties themselves. In settings where there
is no overlap between the properties that are
considered during training and testing, we find
that the empirical performance of standard lan-
guage models drops dramatically. To address
this, we study the possibility of fine-tuning lan-
guage models to explicitly model concepts and
their properties. In particular, we train separate
concept and property encoders on two types
of readily available data: extracted hyponym-
hypernym pairs and generic sentences. Our
experimental1 results show that the resulting en-
coders allow us to predict commonsense proper-
ties with much higher accuracy than is possible
by directly fine-tuning language models. We
also present experimental results for the related
task of unsupervised hypernym discovery.

1 Introduction

Pre-trained language models (Devlin et al., 2019)
have been found to capture a surprisingly rich
amount of knowledge about the world (Petroni
et al., 2019). Focusing on commonsense knowl-
edge, Forbes et al. (2019) used BERT to predict
whether a given concept (e.g. teddy bear) satisfies
a given commonsense property (e.g. is dangerous).
To this end, they convert the input into a simple
sentence (e.g. “A teddy bear is dangerous”) and
treat the task as a standard sentence classification

1Code and datasets are available at https:
//github.com/amitgajbhiye/biencoder_
concept_property

task. Remarkably, they found this approach to sur-
pass human performance. Shwartz and Choi (2020)
moreover found that language models can, to some
extent, capture commonsense properties that are
rarely expressed in text, thus mitigating the issue
of reporting bias that has traditionally plagued ini-
tiatives for learning commonsense knowledge from
text (Gordon and Durme, 2013).

Despite these encouraging signs, however, mod-
elling commonsense properties remains highly
challenging. A key concern is that language mod-
els are typically fine-tuned on a training set that
contains the same properties as those in the test
set. For instance, the test data from Forbes et al.
(2019) includes the question whether peach has
the property eaten in summer, while the training
data asserts that apple, banana, orange and pear
all have this property. To do well on this task,
the model does not actually need to capture the
knowledge that peaches are eaten in summer; it is
sufficient to capture that peach is similar to apple,
banana, orange and pear. For this reason, we pro-
pose new training-test splits, which ensure that the
properties occurring in the test data do not occur
in the training data. Our experiments show that the
ability of language models to predict commonsense
properties drops dramatically in this setting.

Our aim is to develop a strategy for modelling
the commonsense properties of concepts. Given
the limitations that arise when language models
are used directly, a natural approach is to pre-train
a language model on some kind of auxiliary data.
Unfortunately, resources encoding the common-
sense properties of concepts tend to be prohibitively
noisy. To illustrate this point, Table 1 lists the prop-
erties of some everyday concepts according to three
well-known resources: ConceptNet (Speer et al.,
2017), which is a large commonsense knowledge
graph, COMET-20202 (Hwang et al., 2021), which

2We used the demo at https://mosaickg.apps.
allenai.org/model_comet2020_entities.

https://github.com/amitgajbhiye/biencoder_concept_property
https://github.com/amitgajbhiye/biencoder_concept_property
https://github.com/amitgajbhiye/biencoder_concept_property
https://mosaickg.apps.allenai.org/model_comet2020_entities
https://mosaickg.apps.allenai.org/model_comet2020_entities
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ConceptNet COMET-2020 Ascent++
ba

na
na yellow, good to eat one of the main ingredients, eaten

as a snack, one of many fruits,
found in garden, black

rich, ripe, yellow, green, brown,
sweet, great, black, useful, safe,
delicious, healthy, nutricious, ...

lio
n a feline found in jungle, one of many an-

imals, one of many species, two
legs, very large

free, extinct, hungry, close,
unique, active, nocturnal, old, dan-
gerous, great, happy, right, ...

ai
rp

la
ne good for quickly travelling long distances flying, air travel, flying machine,

very small, flight
heavy, new, important, white, safe,
unique, full, larger, clean, slow,
low, unstable, electric, ...

Table 1: Properties of some example concepts, according to three commonsense knowledge resources.

predicts triples using a generative language model
that was trained on several commonsense knowl-
edge graphs, and Ascent++ (Nguyen et al., 2021),
which is a commonsense knowledge base that was
extracted from web text. Given the noisy nature of
such resources, we rely on a database with hyper-
nyms instead. The underlying intuition is that hy-
pernyms can be extracted from text relatively easily,
while fine-grained hypernyms often implicitly de-
scribe commonsense properties. For instance, Mi-
crosoft Concept Graph (Ji et al., 2019) lists potas-
sium rich food as a hypernym of banana and large
and dangerous carnivore as a hypernym of lion.
We also experiment with GenericsKB (Bhakthavat-
salam et al., 2020), a large collection of generic
sentences (e.g. “Coffee contains minerals and an-
tioxidants which help prevent diabetes”), to ob-
tain concept-property pairs for pre-training. Given
such pre-training data, we then train a concept en-
coder Φcon and a property encoder Φprop such that
σ(Φcon(c) ·Φprop(p)) indicates the probability that
concept c has property p.

In summary, our main contributions are as fol-
lows: (i) we propose a new evaluation setting which
is more realistic than the standard benchmarks for
predicting commonsense properties; (ii) we anal-
yse the potential of hypernymy datasets and generic
sentences to act as pre-training data; and (iii) we de-
velop a simple but effective bi-encoder architecture
for modelling commonsense properties.

2 Related Work

Several authors have analysed the extent to which
language models such as BERT capture common-
sense knowledge. As already mentioned, Forbes
et al. (2019) evaluated the ability of BERT to
predict commonsense properties from the McRae
dataset (McRae et al., 2005), which we also use
in our experiments. The same dataset was used by

Weir et al. (2020) to analyse whether BERT-based
language models could generate concept names
from their associated properties; e.g. given the
input “A ⟨mask⟩ has fur, is big, and has claws”,
the model is expected to predict that ⟨mask⟩ cor-
responds to the word bear. Conversely, Apidi-
anaki and Garí Soler (2021) considered the problem
of generating adjectival properties from prompts
such as “mittens are generally ⟨mask⟩”. Note that
the latter two works evaluated pre-trained models
directly, without fine-tuning, whereas the experi-
ments Forbes et al. (2019) involved fine-tuning the
language model on a task-specific training set first.
When the main motivation is to probe the abilities
of language models, avoiding fine-tuning has the
advantage that any observed abilities reflect what is
captured by the pre-trained language model itself,
rather than learned during the fine-tuning phase.
However, Li et al. (2021) argue that the extent to
which pre-trained language models capture com-
monsense knowledge is limited, suggesting that
some form of fine-tuning is essential in practice.
Interestingly, this remains the case for large lan-
guage models. For instance, their model had 7 bil-
lion parameters, while West et al. (2021) report that
the predictions from GPT-3 (Brown et al., 2020)
had to be filtered by a so-called critic model when
distilling a commonsense knowledge graph.

The strategy taken by COMET (Bosselut et al.,
2019) is to fine-tune a GPT model (Radford et al.)
on triples from commonsense knowledge graphs.
Being based on an autoregressive language model,
COMET can be used to predict concepts that take
the form of short phrases, which is often needed
when reasoning about events (e.g. to express moti-
vations or effects). However, as illustrated in Table
1, COMET is less suitable for modelling the com-
monsense properties of concepts. Other approaches
have focused on improving the commonsense rea-
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soning abilities of general purpose language mod-
els. For instance, Zhou et al. (2021) introduce a
self-supervised pre-training tasks to encourage lan-
guage models to better capture the commonsense
relations between everyday concepts.

A final line of related work concerns the mod-
elling of hypernymy. Several authors have pro-
posed specialised embedding models for this task
(Dasgupta et al., 2021; Le et al., 2019). Most rele-
vant to our work, Takeoka et al. (2021) fine-tune a
BERT-based language model to predict the validity
of a concept–hypernym pair. Inspired by the ef-
fectiveness of Hearst patterns (Hearst, 1992), they
use prompts of the form “[HYPERNYM] such as
[CONCEPT]” (and similar for other Hearst pat-
terns). The extent to which the pre-trained BERT
model captures hypnernymy has also been stud-
ied. For instance, Hanna and Mareček (2021) use
prompts where the prediction of the ⟨mask⟩ token
can be interpreted as the prediction of a hypernym,
to avoid the need for fine-tuning the model.

3 Methodology

Let a set of concept–property pairs K be given,
where (c, p) ∈ K means that concept c is asserted
to have the property p. We write C and P for the
sets of concepts and properties in K, i.e. C = {c |
(c, p) ∈ K} and P = {p | (c, p) ∈ K}. We use
the term “property” in a broad sense, covering both
semantic attributes, as in the pair (banana, sweet),
and hypernyms, as in the pair (banana, fruit). This
is motivated by the fact that hypernyms often en-
code knowledge about semantic attributes, as in
the pair (banana, sweet fruit). In particular, our
hypothesis is that, by treating hypernyms and se-
mantic attributes in a unified way, we can pre-train
a model on readily available hypernym datasets and
use it to predict semantic attributes.

We want to train a model that can predict for a
given pair (c, p) whether c has property p. Two
general strategies can be pursued when develop-
ing such models. The first strategy is to use a so-
called cross-encoder, which amounts to fine-tuning
a single language model to predict whether a given
input (c, p) represents a valid pair or not. The sec-
ond strategy is to use a so-called bi-encoder, which
amounts to the idea that c and p are separately en-
coded, with the resulting vectors then being used
to predict whether (c, p) is a valid pair. In this pa-
per, we pursue the latter strategy. This is primarily
motivated by the fact that the concept and property

encoders enable a wider range of applications. A
cross-encoder can only be used to predict whether
a given pair (c, p) is valid or not. In contrast, a bi-
encoder model can also be used to efficiently find
the properties p of a given concept c. Moreover, the
resulting concept and property embeddings may
themselves be useful as static representations of
word meaning, e.g. as label embeddings for zero-
shot or few-shot learning (Socher et al., 2013; Ma
et al.; Xing et al., 2019; Li et al., 2020; Yan et al.,
2021). Finally, bi-encoders can be trained more
efficiently than cross-encoders.

Datasets To train our model, we need a large
set of concept–property pairs K. Unfortunately,
high-quality knowledge of this kind is not read-
ily available. Part of the underlying issue is that
properties of concepts are rarely explicitly stated
in text, which is why directly using information
extraction techniques is not straightforward. How-
ever, initiatives for extracting hypernyms from text
have been much more successful, starting with the
seminal work of Hearst (1992). A key observation
is that fine-grained hypernyms often express com-
monsense properties, typically as a mechanism for
refining hypernyms that would otherwise be too
broad. For instance, Microsoft Concept Graph (Ji
et al., 2019) lists vitamin C rich food as a hyper-
nym of strawberry, as a refinement of the more
general hypernym food. By pre-training our model
on concept–hypernym pairs, we may thus expect
it to learn about commonsense properties as well.
To directly test this hypothesis, we use a set of
such concept–hypernym pairs as our pre-training
set K. Specifically, we collect the 100K concept–
hypernym pairs from Microsoft Concept Graph3

with the highest confidence score4 We will refer to
this dataset as MSCG.

As a second strategy, we attempt to convert the
MSCG dataset into a set of concept–property pairs.
To this end, we look for pairs (c, h1) and (c, h2)
where h2 is a suffix of h1. Specifically, if h1 =
mh2 and m is an adjectival phrase, then we assume
that m describes a property of c. For instance,
MSCG contains the pairs (strawberry, vitamin C
rich food) and (strawberry, food). Based on this,
we would include the pair (strawberry, vitamin C
rich) in K. Clearly this is a heuristic strategy, which

3https://concept.research.microsoft.
com/Home/Download

4Specifically, we used those pairs maximising the Rela-
tions frequency.

https://concept.research.microsoft.com/Home/Download
https://concept.research.microsoft.com/Home/Download
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may produce non-sensical or misleading pairs. For
instance, according to MSCG, strawberry is a low-
sugar berry, but this does not entail that strawberry
has the property low-sugar in general. However,
we may expect most of the pairs that are generated
with this strategy to be meaningful. A total of 8186
concept–property pairs were obtained in this way.
We refer to the resulting dataset as PREFIX.

Finally, going beyond concept-hypernym pairs,
we derive a dataset from GenericsKB (Bhaktha-
vatsalam et al., 2020), which contains generic sen-
tences such as “Bananas are an important food
staple in the tropics”. Due to the regular structure
of such sentences, we can easily convert them into
concept–property pairs; e.g. the aforementioned
sentence would become (banana, important food
staple in the tropics). We collect a set of 100K such
pairs, by processing the sentences with the high-
est confidence (i.e. the ones which are most likely
to be generic sentences) whose length is at most
7. The reason why we focus on shorter sentences
is because they are more likely to capture salient
information. We refer to this dataset as GKB.

Training Objective Given the pairs in K, we pre-
train two encoders, Φcon and Φprop, using binary
cross-entropy. In particular, the loss function for a
given mini-batch is defined as follows:

L=−
∑

(c,p)∈Kbatch

log σ
(
Φcon(c) · Φprop(p)

)
−

∑
(c,p)∈Nbatch

log
(
1− σ

(
Φcon(c) · Φprop(p)

))
Here Kbatch represents the subset of K that is in
the current mini-batch. For efficiency reasons, we
sample these mini-batches as follows. First, we
sample a subset Cbatch of K concepts from C. Then,
for each concept c in Cbatch we sample one property
p ∈ P such that (c, p) ∈ K. Let Pbatch be the set
of properties that are thus obtained. The sets of
positive examples Kbatch and negative examples
Nbatch are then defined as follows:

Kbatch = (Cbatch × Pbatch) ∩ K
Nbatch = (Cbatch × Pbatch) \ K

In other words, the positive examples are the pairs
from K that involve a concept from Cbatch and a
property from Pbatch. The negative examples are
all the other pairs that we can form by taking a con-
cept from Cbatch and a property from Pbatch. This
in-batch negative sampling strategy ensures that

after encoding |Cbatch| concepts and |Pbatch| prop-
erties, we can take |Cbatch|×|Pbatch| training exam-
ples into account. Given that the encoders Φcon and
Φprop correspond to fine-tuned language models,
and the encoding steps are thus time-consuming,
in-batch negative sampling enables a significant
speed-up compared to naive strategies in which
positive and negative examples are sampled inde-
pendently. Similar strategies are commonly used in
neural information retrieval (Gillick et al., 2019).

Concept and Property Encoders The encoders
Φcon and Φprop correspond to fine-tuned encoder-
only language models, such as BERT (Devlin et al.,
2019). An important design decision is how the in-
put to these language models is presented. For the
concept encoder, the input corresponds to a string
of the form “[prefix] c [suffix]”, which is usually re-
ferred to as the prompt. How this prompt is chosen
often has a substantial impact on the performance
of a model. For instance, language models have
been reported to under-perform if the input is too
short (Bouraoui et al., 2020; Jiang et al., 2020).
Given the importance of the choice of prompt, sev-
eral strategies for automatically learning a suitable
prompt have been proposed (Shin et al., 2020; Liu
et al., 2021). In practice, however, carefully cho-
sen manually designed prompts often outperform
such automatically learned prompts (Ushio et al.,
2021; Logan et al., 2021). For this reason, we have
manually generated a number of templates and eval-
uated their performance on a held-out portion of
the MSCG dataset. Based on this analysis5, we
use the following prompt:

⟨cls⟩ [CONCEPT] means ⟨mask⟩⟨sep⟩

where ⟨cls⟩, ⟨mask⟩ and ⟨sep⟩ are special tokens
from the BERT vocabulary, while [CONCEPT] rep-
resents the concept to be modelled. The embedding
of the concept is taken to be the contextualised vec-
tor of the ⟨mask⟩ token, i.e. the representation of
this token in the final layer of the language model.
We use the same prompt for concepts and prop-
erties. However, note that concepts and proper-
ties are encoded using different encoders. Intu-
itively, we think of Φcon(c) as a representation of a
prototypical instance of concept c, while we view
Φprop(p) as a representation of the property p itself.
This is why, even when p = c, we would expect
Φcon(c) and Φprop(c) to be different. Under this

5Details can be found in Appendix A.
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view, σ(Φcon(c) · Φprop(p)) captures the probabil-
ity that a prototypical instance of c would have the
property p. In other words, by using different en-
coders for concepts and properties, we can capture
the default nature of the pairs in K in a natural way.

4 Experiments

In our experiments, we primarily focus on com-
monsense property classification, i.e. predicting
whether some concept has a given property. We
also demonstrate the usefulness of the concept and
property encoders on the task of hypernym discov-
ery. Finally, we also present a qualitative analysis.

Training Details We pre-train the concept and
property encoders on the datasets introduced
in Section 3. We also consider variants in
which these datasets are combined; e.g. we write
MSCG+PREFIX for the dataset combining the
pairs from MSCG and PREFIX. To pre-train our
model, we construct separate validation data in the
same way. In particular, for MSCG, we select
the validation split by taking the next 10K most
confident pairs from Microsoft Concept Graph (i.e.
after removing the pairs from the MSCG dataset
itself), and similar for the other datasets. We train
the model for 100 epochs, using early stopping
with a patience of 20. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 2e−6 and set the batch size to 8. We use
BERT-base-uncased as our default language model
(Devlin et al., 2019), although we have also experi-
mented with BERT-large-uncased, RoBERTa-base
and RoBERTa-large (Liu et al., 2019).

4.1 Commonsense Property Classification
Datasets For commonsense property classifica-
tion, we use the extended version of the McRae
dataset (McRae et al., 2005) that was introduced
by Forbes et al. (2019). This dataset involves a set
C of 514 concepts and a set P of 50 properties. For
each concept c and property p, the dataset specifies
whether c has property p. The set C is split into a
training set Ctrain and a test set Ctest6. During train-
ing, the models have access to the ground truth of
every pair in Ctrain×P . The models are then tested
on all pairs in Ctest × P . We report the results in
terms of the F1 score of the positive label.

As argued in the introduction, by training and
testing on the same set of properties, we may not

6The split is available at https://github.com/
mbforbes/physical-commonsense.

be able to faithfully test a model’s ability to pre-
dict commonsense properties. For this reason, we
consider an alternative setting where the set of prop-
erties is instead split into a training set Ptrain and
a test set Ptest. During training, the model then
gets access to the ground truth for the pairs in
C × Ptrain, while the model is evaluated on the
pairs in C × Ptest. We use 5-fold cross-validation
for this setting. Our hypothesis is that this set-
ting will be more difficult, as it would be harder
to find properties in the training data that are sim-
ilar to those from the test set. However, there are
nonetheless some similarities between these proper-
ties. We therefore also consider a setting in which
both the concepts and properties are split into train
and test fragments. The model is then trained on
the pairs in Ctrain × Ptrain and evaluated on the
pairs in Ctest ×Ptest. We again use a form of cross-
validation. In particular, we split C into three folds:
C1, C2 and C3. We similarly split P into three folds:
P1, P2 and P3. In the first iteration, we train on the
pairs in (C1 ∪C2)× (P1 ∪P2) and test on the pairs
in C3 × P3. This process is repeated nine times (as
we have three ways to choose the concept test split
and three ways to choose the property test split).

We have also used the CSLB Concept Property
Norms7, as a second benchmark for commonsense
property classification. This dataset covers 638 con-
cepts and 3350 properties. Similar as for McRae,
the dataset indicates which concepts have which
properties, but there are no standard splits. More-
over, the dataset does not explicitly contain nega-
tive examples. For this reason, for each positive
example (c, p), we introduce 20 negative examples
by replacing p with another property p′ (such that
(c, p′) is not a positive example). This strategy is
imperfect, as there will inevitably be some false
negatives, but it should still allow us to compare
the relative performance of different models. Mir-
roring the settings from the McRae dataset, we
consider a concept-based training-test split (Con),
a property-based split (Prop), and a setting where
both concepts and properties are split into train-
ing and test sets (Con+Prop). For consistency, we
use the same cross-validation strategies as for the
McRae dataset. In particular, for Con we use a
fixed split (with 90% of the concepts used for train-
ing and 10% for testing). For Prop, we use 5-fold
cross-validation, while for Con+Prop we used the

7https://cslb.psychol.cam.ac.uk/
propnorms

https://github.com/mbforbes/physical-commonsense
https://github.com/mbforbes/physical-commonsense
https://cslb.psychol.cam.ac.uk/propnorms
https://cslb.psychol.cam.ac.uk/propnorms
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Language Model Pre-training dataset McRae CSLB

Con Prop C+P Con Prop C+P

Random baseline 26.0 26.5 26.0 8.6 8.4 8.6
Always true 30.3 30.0 30.0 9.1 9.1 9.1
BERT-large sentence classifier (Forbes et al., 2019) 74 - - - - -
Human performance (Forbes et al., 2019) 67 - - - - -

BERT-base No pre-training 77.7 30.7 25.2 51.8 34.1 22.4

BERT-base MSCG 79.9 46.6 41.6 54.0 36.8 28.9
BERT-base PREFIX 78.3 44.8 41.0 52.2 33.2 24.3
BERT-base GKB 79.3 50.7 46.0 52.1 37.2 30.2
BERT-base MSCG+PREFIX 80.2 47.8 43.2 53.6 37.3 29.7
BERT-base MSCG+GKB 80.4 50.3 43.6 54.8 37.1 28.9
BERT-base MSCG+PREFIX+GKB 79.8 49.6 44.5 54.5 39.1 32.6

BERT-large No pre-training 75.3 36.6 25.5 54.3 36.4 17.7
RoBERTa-base No pre-training 41.0 9.4 0.0 38.1 28.7 9.6
RoBERTa-large No pre-training 73.7 26.9 9.4 55.3 37.8 24.8

BERT-large MSCG+PREFIX+GKB 80.5 49.3 45.5 57.7 41.8 36.4
RoBERTa-base MSCG+PREFIX+GKB 75.6 42.4 38.1 49.9 36.4 24.3
RoBERTa-large MSCG+PREFIX+GKB 80.1 46.5 42.5 59.0 42.5 36.0

Table 2: Results in terms of F1 score (percentage) for commonsense property prediction.

3× 3 fold cross-validation strategy.

Results The results for commonsense property
classification are summarised in Table 2. We
include the following baselines. First, the Ran-
dom baseline predicts the positive label with 50%
chance. Similarly, Always true predicts the positive
label in all cases. Next, for the concept-split of
the McRae dataset, we compare with the method
from Forbes et al. (2019), where each pair (c, p)
was converted into a natural language sentence. For
instance, (apple, is electrical) is converted to the
sentence “An apple requires electricity”, which is
then fed to a BERT classifier. Due to its manual
nature, this method cannot be applied to new prop-
erties. We also include the estimate of human per-
formance that was reported by Forbes et al. (2019).
Finally, we consider a variant of our model which
is directly trained on the McRae and CSLB training
data, without the pre-training step.

The next set of results compare the performance
of the different pre-training datasets. For these re-
sults, all models were initialised with BERT-base.
We can clearly see that the pre-trained bi-encoder
models outperform the variant without pre-training
in nearly all settings (with the results for PREFIX

on the CSLB property-split the only exception).
This confirms our hypothesis that Microsoft Con-
cept Graph and GenericsKB capture useful infor-
mation about commonsense properties. Comparing
the different corpora, PREFIX achieves the weak-
est results, which can be explained by the much

smaller size of this dataset. However, combining
PREFIX+MSCG outperforms MSCG in all but
one case. Furthermore, as expected, the property-
split (Prop) is considerably harder than the stan-
dard concept-split (Con), with the C+P setting be-
ing even harder. In fact, for the latter setting, the
BERT-base model without pre-training cannot out-
perform the random classifier for McRae. Note
that for CSLB, outperforming the random classifier
is easier, given that more training data is available
for that dataset. Crucially, while the best baselines
only slightly underperform the pre-trained models
for the concept-split, much larger differences are
seen for the other splits. Overall, these findings con-
firm our hypothesis that predicting commonsense
properties remains a highly challenging problem.

Finally, the table also shows results for some
other language models. While the large models
generally outperform their base counterparts, the
differences are relatively small, and the improve-
ments are not consistent. This finding is in accor-
dance with the conclusion from Li et al. (2021)
that even large language models are limited in
the amount of commonsense knowledge they cap-
ture, and in particular that finding the right pre-
training task is crucial. The RoBERTa results
without pre-training are particularly disappointing,
with learning failing completely in some cases.
Even with the pre-training datasets, BERT-base
outperforms RoBERTa base, and BERT-large out-
performs RoBERTa-large.
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Con Prop C+P

Skip-gram (k = 1) 70.8 25.0 17.5
Skip-gram (k = 3) 53.4 9.5 5.7
GloVe (k = 1) 68.8 20.3 21.7
GloVe (k = 3) 51.4 6.8 4.9
BERT-base (k = 1) 72.0 28.2 27.0
BERT-base (k = 3) 55.6 14.6 19.1

Table 3: Evaluation of a nearest neighbour strategy for
the McRae dataset (F1 score percentage).

Analysis As we have argued, models can per-
form well on the Con setting by simply transfer-
ring knowledge about similar concepts from the
training data. This is analysed in more detail in
Table 3, which shows the performance of a nearest
neighbour classifier. To classify a test pair (c, p)
we find the k concepts c1, ..., ck from the training
split that are most similar to c in terms of cosine
similarity. Then we predict the positive label for
(c, p) if the majority of (c1, p), ..., (ck, p) are as-
signed the positive label. We test this approach
for k = 1 and k = 3, using embeddings from
GloVe (Pennington et al., 2014) and Skip-gram8

(Mikolov et al., 2013), and using the embeddings
predicted by our BERT-base encoder pre-trained
on MSCG+PREFIX+GKB. For the Prop setting,
we similarly predict the label of (c, p) based on
the labels of the training pairs (c, p1), ..., (c, pk),
with p1, ..., pk the k properties from the training
data that are most similar to p. Finally, for C+P,
we predict the majority label among the training
pairs (ci, pj) with i, j ∈ {1, ..., k}, where c1, ..., ck
are the training concepts most similar to c and
p1, ..., pk are the training concepts most similar
to p. The results in Table 3 clearly support our
hypothesis about the concept-split. In particular,
the nearest neighbour classifier is highly effective
for the concept-split (for k = 1), outperforming the
estimate of human performance from Forbes et al.
(2019) for all embedding types, and approaching
the performance of the language models without
our pre-training task. In contrast, for the Prop and
C+P settings, the nearest neighbour classifier per-
forms, at best, similarly to the random classifier.

4.2 Hypernym Discovery

Given an input word (e.g. cat), the aim of the hy-
pernym discovery task is to retrieve a set of valid

8We used the 300 dimensional Skip-gram vectors trained
on Google News and GloVe vectors trained on Common
Crawl, available from https://radimrehurek.com/
gensim/models/word2vec.html.

MAP MRR P@5

G
en

er
al

APSyn 1.7 3.7 1.7
balAPInc 1.7 3.9 1.7
SLQS 0.7 1.7 0.7
Apollo 2.7 6.1 2.8
Ours 3.8 7.0 3.1

M
us

ic

APSyn 1.1 2.6 1.3
balAPInc 1.4 3.6 1.6
SLQS 0.6 1.3 0.7
ADAPT 1.9 5.3 1.9
Ours 2.3 5.1 2.6

M
ed

ic
al

APSyn 0.7 1.4 0.7
balAPInc 0.9 2.1 1.1
SLQS 0.3 0.7 0.3
ADAPT 8.1 20.6 8.3
Ours 4.0 9.0 3.9

Table 4: Result of the hypernym discovery experiment.

hypernyms (e.g. animal, mammal, feline, etc.). We
use this task to analyse the quality of the pre-trained
concept and property encoders when used without
any fine-tuning on task-specific training data. We
use the data from the SemEval 2018 Hypernym
Discovery task (Camacho-Collados et al., 2018),
focusing on the concept-only split (i.e. without con-
sidering named entities). There are three variants
of this task: an open-domain setting (referred to
as general) and two domain-specific settings, fo-
cusing on the music and medical domains. Each
variant is associated with a large vocabulary of
candidate terms, consisting of 218,753 terms for
general, 69,118 terms for music and 93,888 terms
for medicine. To solve this task, each word from
the vocabulary is encoded using Φprop. We then use
maximum inner product search to efficiently find
those words w from the vocabulary that maximise
Φcon(t) · Φprop(w) for a given target word t. From
the retrieved list of words, we remove those that
contain the term t itself and those that end with an
adjective. For this experiment, we use BERT-large
encoders pre-trained on MSCG+PREFIX+GKB.
We compare our method with the following base-
lines for this task: APSyn (Santus et al., 2016),
balAPInc (Kotlerman et al., 2010), SLQS (Santus
et al., 2014), ADAPT (Maldonado and Klubička,
2018) and Apollo (Onofrei et al., 2018). We re-
port the published results from the SemEval task
Camacho-Collados et al. (2018) (where ADAPT
only participated in the general setting and Apollo
only participated in the music and medical set-
tings). The latter systems achieved the best per-

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
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formance among the unsupervised methods9. Fol-
lowing Camacho-Collados et al. (2018), we report
Mean Average Precision (MAP), Mean Reciprocal
Rank (MRR), and Precision at 5 (P@5), in percent-
age terms. Table 4 shows that our method outper-
forms all baselines for General, performs similar
to ADAPT for Music and worse than ADAPT for
Medical. This is remarkable, given that our method
was not designed or tuned for this task. The under-
performance on Medical can be explained by the
lack of training examples from this domain in the
pre-training data. As can be observed, the results
for all models are low. An error analysis, presented
below, revealed that this is largely due to the fact
that many correct hypernyms are not included in
the ground truth.

Error Analysis Table 5 shows some of the pre-
dictions of our model for the General setting of
the hypernym discovery task. The first set of re-
sults shows examples where many of the predicted
hypernyms are intuitively correct. However, only
few of these hypernyms are covered by the ground
truth; ground truth predictions are shown in bold.
This illustrates the rather noisy nature of the dataset,
and serves as an explanation for the low overall F1
score of the different unsupervised models. The
second set of results in Table 5 covers cases where
most of the predictions are incorrect. In some cases,
e.g. for children, the model predicts semantic prop-
erties rather than hypernyms, which shows that
simply filtering predictions that end with an adjec-
tive is not always sufficient. The case of broiler
chicken shows that the model sometimes predicts
terms that are semantically related, but which are
clearly not hypernyms (nor semantic attributes).
As a variant of this observation, the case of sigma
shows that the model sometimes tends to predict
co-hyponyms.

4.3 Qualitative Analysis

As a qualitative analysis, we use our pre-trained
models to predict which properties are associated
with a given concept. We consider the set of all
properties that appear at least 10 times in an ex-
tended version of the PREFIX+GKB dataset10, lead-

9The hypernym discovery datasets are strongly biased in
which hypernyms were preferred by the annotators. Such
biases can only be learned from the task-specific training data,
which is why we do not compare with supervised methods.

10This extended dataset involves 500K pairs from Microsoft
Concept Graph and 500K sentences from GenericsKB; analy-
sis about this extended dataset is provided in Appendix B.

ing to a set of 5223 candidate properties. We again
use maximum inner product search to efficiently
identify the properties whose embeddings are clos-
est to the concept embedding ϕcon(c). Table 6
shows the seven nearest properties for a number of
selected concepts, where we used BERT-base pre-
trained on MSCG+PREFIX+GKB. Specifically,
the table first revisits the examples from Table 1.
Subsequently, the table lists physical concepts, for
which we expected predicting properties to be eas-
ier, and abstract concepts, for which we expected
the task to be harder. Finally, we included adjec-
tives to explore whether our model can be used for
learning property entailment.

The results contain a mixture of hypernyms and
semantic attributes, which is a reflection of how
the model was trained. For physical concepts, the
results are generally meaningful, with a few excep-
tions. For instance, military vehicle is incorrectly
listed as a hypernym of airplane. Regarding the
abstract concepts, the top predictions are mostly
meaningful, but we can also see terms that are se-
mantically related but are neither hypernyms nor
semantic attributes; e.g. we see parties as a prop-
erty of celebration. Finally, for the adjectives, we
see several instances where the entailment direction
is reversed, for instance when dessert is mentioned
as a property of sugary.

5 Conclusions

We studied the problem of modelling the common-
sense properties of concepts. We argued that the
standard evaluation setting does not faithfully as-
sess the extent to which models capture knowledge
about commonsense properties, and proposed two
new evaluation settings. These new settings were
found to be highly challenging for language mod-
els, with performance being close to random. We
furthermore found that pre-training a bi-encoder
model on hypernymy data or generic sentences can
lead to substantial performance gains. However,
there remains a lot of room for further improve-
ments, which will likely require novel insights.
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Hyponym Top-5 Predicted Hypernyms

liberty principle, notion, ideal, universal value, humanitas
longbow hunting weapon, weapon, bow and arrow, wieldy, choptank
wine drink, beverage, liquidity, alcoholic beverage, drinking alcohol
manslaughter culpable homicide, murder charge, offence, justifiable homicide, first-degree murder
shopping chore, specific activity, everyday, simple interest, pursuit
running aerobic, cardio, endurance training, aerobic exercise, sport
computer industry sector, sunrise industry, growth industry, field of operation, game industry
learner understander, student, realizer, know-all, nonjoinder
snow weather condition, weather, cold weather, bad weather, wet-weather
bounty hunter vigilante, hired gun, bandit, bondman, trail boss
metre unit of length, unit of measure, measuring unit, quantity unit, derived unit
hero protagonist, archetype, archetypic, personage, literaty character
website resource, e-resource, information source, medium, source
violin string instrument, musical instrument, second fiddle, bowed instrument, stringed instrument

arms head and shoulders, legs, straighten, stiffen, bare bones
cooking ingredient composition, culinary, adjunct, importune, condiment
children learn, memorize, make fun, come to life, lose track
broiler chicken chicken cordon bleu, chicken stock, hot chicken, kung pao chicken, chicken broth
observation qualitative, empirical research, qualitative analysis, data collection, qualitative research
sigma lambda, upsilon, fraternity, epsilon, alpha and omega
apartment tenantless, adjacent, low-rent, homeplace, residential building
wetsuit drysuit, nonsuit, life-jacket, diving equipment, diving suit
yesterday thisday, tomorrow, timea, timeless, evermore
taxi off-license, car rental, bus service, bike rental, cab fare

Table 5: Error analysis for hypernym discovery on the general dataset. Correctly predicted hypernyms are shown in
bold.

Concept Predicted properties

banana food, fruit, fresh, plant, edible, tropical, commercially important
lion animal, mammal, wildcat, carnivore, species, very territorial, mammalian
airplane vehicle, aircraft, stationary, application, object, military vehicle, automotive

straw material, combustible, porous, stuff, fibrous, located in wood, has sections
ice cold, has temperature, has surfaces, located in freezers, has density, authorization, albums
yacht boat, vehicle, vessel, recreational, ship, expensive, aircraft
coffee beverages, drinks, beverage, drink, liquid, liquids, located in supermarkets
steel material, non-ferrous, non ferrous, rigid, product, industrial, heavy
fire causes burns, creates heat, produces heat, causes damage, can have effects, generates heat, produce crops
beer beverage, drink, alcoholic, liquor, liquid, beverages, drinks

democracy principle, idea, democratic, ideology, concept, morality, value, moral
disappointment negative, feeling, emotion, emotional, feelings, positive, depression
promotion marketing, achievement, activity, corporate, factor, acts, activities
celebration event, festivity, occasion, social events, parties, events, activities
forgiveness moral, value, love, virtue, emotion, benign, principle
lawyer professional, adult, allied, profession, consultant, closely related, expert

stressful situation, factor, emotional, difficult, unexpected, uncomfortable, traumatic
poisonous poison, harmless, harmful, dangerous, toxin, aggressive, sharp
sugary dessert, taste, food, delicious, chocolate, frozen dessert, candy
rewarding activities, clocks, happiness, treatments, approval, actions, human activities
modern style, genre, contemporary, fashion, broad, musical style, english
alcoholic alcoholic, liquor, drink, beverage, mixed, alcohol, addictive, aggressive

Table 6: Qualitative analysis, showing the top neighbours of the embeddings of selected concepts.
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A Prompt Analysis

Previous work has found that the prompt which is
used can have a material impact on the performance
of BERT-based encoders (Bouraoui et al., 2020;
Jiang et al., 2020; Shin et al., 2020; Liu et al., 2021;
Ushio et al., 2021; Logan et al., 2021). To analyse
the impact of the prompt in our setting, and make
a suitable choice, we experimented with a number
of different, manually chosen prompts. For these
experiments, we used the most confident 11,000
concept-property pairs of the MSCG dataset for
training, and the next 1200 concept-property pairs
for tuning. The batch size is set to 8. We used the
AdamW optimizer and learning rate 2e−6, using
early stopping with a patience of 20. The results
in Table 7 are reported in terms of the F1 score
(percentage) of the positive label. For the first two
results in the table, a different prompt was used for
the concept and property encoders. The property
prompts corresponding to these two configurations
are (not shown in the table):

• ⟨cls⟩ Property: [CONCEPT] ⟨sep⟩

• ⟨cls⟩ Yesterday, I saw a thing which is [PROP-
ERTY] ⟨sep⟩

For the first six configurations in the table, we use
the average of the embeddings of all tokens, in the

final layer of the BERT-base model, as the embed-
ding of the concept and property. For the remain-
ing seven configurations, we use the embedding
of the ⟨mask⟩ token in the final layer instead. The
results show that many of the prompts lead to a rel-
atively similar performance, as long as the prompt
is sensible. The example with the nine mask to-
kens (Prompt 5) show that without a semantically
informative prompt the performance drops some-
what. A similar observation can be made for the
prompt about the spaceship (Prompt 10). Earlier
work has suggested that longer prompts tend to per-
form better. To some extent this is confirmed by
our results. For instance, Prompt 12 outperforms
the similar but shorter Prompts 9 and 11, although
Prompt 13, which is an even longer variant, per-
forms worse. Moreover, we can see that some of
the shortest prompts nonetheless perform well. All
things being equal, having a shorter prompt is desir-
able, as it means we can use larger batch sizes and
faster training. For this reason, we have decided,
based on these results, to use Prompt 7, whose per-
formance is close to that of the best-performing
prompt, despite also being one of the shortest ones.

B Size of the Pre-Training Corpus

The MSCG corpus was obtained by taking the
100K pairs from Microsoft Concept Graph (Ji et al.,
2019) with the highest confidence. Similarly, GKB
was obtained by taking the 100K sentences with
the highest confidence in GenericsKB (Bhakthavat-
salam et al., 2020). This choice represents a trade-
off: choosing more pairs would increase the overall
amount of training data, which could improve the
performance of the encoders. However, this would
also mean including less reliable pairs, which might
have a negative effect. In particular, both Microsoft
Concept Graph and GenericsKB have been ex-
tracted from text corpora. In both cases, it can
be clearly observed that the pairs/sentences with
the lowest confidence are often rather noisy. To
analyse this trade-off, Table 8 shows the results
of an experiment where we used the top 500K
pairs in MSCG and the 500K most confidence
sentences in GenericsKB. Similarly, PREFIX was
derived from the larger MSCG dataset for these
experiments. The results show a small improve-
ment for MSCG. However, for the Prop and C+P
settings, the GKB results are actually worse for the
500K setting. These results suggest that the opti-
mal setting might use more than 100K pairs from
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Prompt F1

1. ⟨cls⟩ Concept: [CONCEPT] ⟨sep⟩ 85.6
2. ⟨cls⟩ Yesterday, I saw another [CONCEPT] ⟨sep⟩ 86.1

3. ⟨cls⟩ The notion we are modelling is [CONCEPT] ⟨sep⟩ 86.7
4. ⟨cls⟩ The notion we are modelling: [CONCEPT] ⟨sep⟩ 87.3
5. ⟨cls⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ [CONCEPT] ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨sep⟩ 84.8
6. ⟨cls⟩ The notion we are modelling is called CONCEPT ⟨sep⟩ 86.0

7. ⟨cls⟩ CONCEPT means ⟨mask⟩ ⟨sep⟩ 87.1
8. ⟨cls⟩ CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.6
9. ⟨cls⟩ The notion we are modelling is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.8
10. ⟨cls⟩ The spaceship we are modelling is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 85.8
11. ⟨cls⟩ We are modelling CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.4
12. ⟨cls⟩ The notion we are modelling this morning is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 87.0
13. ⟨cls⟩ As I have mentioned earlier, the notion we are modelling this morning is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.3

Table 7: Performance of different prompts on a held-out portion of the MSCG dataset, in terms of F1-score
percentage. BERT-base was used as the language model in these experiments.

Con Prop C+P

50
0K

MSCG 80.1 48.6 42.8
PREFIX 78.1 45.0 41.7
GKB 80.6 48.8 43.7
MSCG+PREFIX 79.8 49.1 43.4
MSCG+GKB 80.7 48.8 41.5
MSCG+PREFIX+GKB 80.3 47.5 41.0

10
0K

MSCG 79.9 46.6 41.6
PREFIX 78.3 44.8 41.0
GKB 79.3 50.7 46.0
MSCG+PREFIX 80.2 47.8 43.2
MSCG+GKB 80.4 50.3 43.6
MSCG+PREFIX+GKB 79.8 49.6 44.5

Table 8: Evaluation on the McRae dataset of a variant in
which 500K pairs from Microsoft Concept Graph and
GenericsKB were used. Results are reported in terms
of F1 score percentage. BERT-base was used as the
language model in these experiments.

Microsoft Concept Graph, but fewer than 500K
sentences from GenericsKB. However, the results
also show that any performance gains arising from
optimising the selection of the pre-training data are
likely to be small.


