
Proceedings of the 29th International Conference on Computational Linguistics, pages 3480–3495
October 12–17, 2022.

3480

TestAug: A Framework for Augmenting Capability-based NLP Tests

Guanqun Yang▲ Mirazul Haque♢ Qiaochu Song▲

Wei Yang♢ Xueqing Liu ▲

▲Department of Computer Science, Stevens Institute of Technology
♢Department of Computer Science, The University of Texas at Dallas

gyang16@stevens.edu, mirazul.haque@utdallas.edu, qsong6@stevens.com

wei.yang@utdallas.edu, xliu127@stevens.edu

Abstract

The recently proposed capability-based NLP
testing allows model developers to test the func-
tional capabilities of NLP models, revealing
functional failures that cannot be detected by
the traditional heldout mechanism. However,
existing work on capability-based testing re-
quires extensive manual efforts and domain ex-
pertise in creating the test cases. In this pa-
per, we investigate a low-cost approach for the
test case generation by leveraging the GPT-3
engine. We further propose to use a classi-
fier to remove the invalid outputs from GPT-3
and expand the outputs into templates to gen-
erate more test cases. Our experiments show
that TestAug has three advantages over the
existing work on behavioral testing: (1) Tes-
tAug can find more bugs than existing work;
(2) The test cases in TestAug are more di-
verse; and (3) TestAug largely saves the man-
ual efforts in creating the test suites. The
code and data for TestAug can be found at
https://github.com/guanqun-yang/testaug.

1 Introduction

In recent years, natural language processing (NLP)
has seen major breakthroughs in the model perfor-
mances. Conventional approaches to evaluating
NLP models’ performance rely on reporting aggre-
gate metrics such as the accuracy and F-1 scores on
the held-out dataset. However, the held-out scores
do not represent the model’s performance on data
in the wild (Geva et al., 2019; Gururangan et al.,
2018; Bai et al., 2021). Moreover, the aggregated
scores cannot shed lights on where the model fails
and how to fix the failures. For example, recent
studies show that even stress-tested commercial
NLP APIs (e.g., Google Cloud’s Natural Language
API1 and Microsoft’s Text Analytics API2) often

1https://cloud.google.com/natural-language
2https://azure.microsoft.com/en-us/services/cognitive-

services/text-analytics

Table 1: Example of capability-base tests on three NLP
tasks: sentiment classification, paraphrase detection,
and natural language inference.

Task: Sentiment Classification
Capability: Negation
Test Description: Negative if negated positive words
Input: "No one loves the food."
Label: Negative
Task: Paraphrase Detection
Capability: Negation
Test Description: Paraphrase if replacing a word with the negated antonym
Input: "She is a generous person. She is not a mean person."
Label: Paraphrase
Task: Natural Language Inference
Capability: Downward entailment
Test Description: Entailment if replacing a word with its superset
Input: "Some cows are brown. Some animals are brown."
Label: Entailment

fail on test cases of simple behaviors (Glockner
et al., 2018; Ribeiro et al., 2020).

To assist developers in finding behavioral fail-
ures in their models, recent work has proposed
a framework called CheckList for behavioral or
capability-based NLP testing (Ribeiro et al., 2020;
Tarunesh et al., 2021). Such tests include input and
output pairs to examine the model’s performance
on each linguistic capability. Table 1 shows exam-
ples of capability-based tests for three NLP tasks.
For example, the test case "No one loves the food"
contains a negated positive word, and its sentiment
is negative. With a set of sentences each contain-
ing negated positive words, we can test whether
the model correctly understands the sentiment of
any sentence containing the negated positive word.
Such a set is called a test suite.

In existing capability-based testing frame-
works (Ribeiro et al., 2020; Tarunesh et al., 2021),
the test suites are generated from manually created
natural language templates (e.g., "She is a [] per-
son" and "she is not a [] person.") and a pre-defined
list of words to fill the template (e.g., generous,
mean). Existing work thus has two disadvantages:

• High Cost of Labeling. The current prac-
tice of creating templates requires a high cost.
Even worse, despite the crowdsourcing avail-

https://github.com/guanqun-yang/testaug
https://cloud.google.com/natural-language
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics


3481

ability, expert annotations are often required:
the templates need to both follow the linguis-
tic rules and capture potential NLP pitfalls.

• Low Diversity. Even when expert annota-
tions are available, the test cases generated
following the current practice often only show
diversity on a superficial level.

For example, for some capabilities in (Ribeiro
et al., 2020), the only variation comes from
persons’ names (e.g., "If {male name} and
{female name} were alone, do you think he
would reject her?" and "If {male name} and
{female name} were alone, do you think she
would reject him?"). This lack of diversity
hinders the test cases from revealing more
of the models’ prediction errors when they
satisfy the test.

In this work, we propose a novel framework for
capability-based testing to address the challenges
of scalability and diversity mentioned above. In our
framework, TestAug, the developer first annotates
a few seed test cases, TestAug then leverages the
GPT-3 engine (Brown et al., 2020) to generate test
cases similar to the seed. Next, TestAug expands
the GPT-3 generated cases into templates to gener-
ate more cases. Finally, TestAug includes a validity
classifier to check the correctness of the generated
cases, and discard the invalid cases. Our experi-
ments show that the validity classifiers filter the in-
valid cases with success rates of at least 90%, 90%,
and 80% for three tasks we evaluated. Furthermore,
the valid generated cases are more diverse and can
detect more bugs than existing work (Ribeiro et al.,
2020). Our contributions are three folds:

• We propose a novel framework TestAug
for automatically generating capability-based
NLP test suites based on GPT-3;

• TestAug is shown to outperform the existing
capability-based NLP testing framework in
3 aspects: better ability to detect bugs, more
diversity, and fewer annotation efforts;

• We have published our test suite to help devel-
opers and researchers test their NLP models;

2 Background

Capability-based Testing for NLP Models. Tradi-
tionally, NLP models are evaluated using the held-
out datasets, that is, using the train/validation/test

split. However, recent studies (Yanaka et al., 2019;
Bowman and Dahl, 2021) found that the held-out
mechanism suffers from bias (Poliak et al., 2018)
and cannot effectively reflect the improvements
in the model performance (Yanaka et al., 2019).
To help gain a more comprehensive understanding
of the model performance, researchers proposed
a new approach to evaluating NLP models called
linguistic capability-based testing (Ribeiro et al.,
2020; Joshi et al., 2020a; Tarunesh et al., 2021).
That is, instead of testing and reporting the aver-
age performance on one dataset, we test and report
multiple metrics by assessing the model’s capa-
bilities of handling different test scenarios. The
taxonomy of the capabilities can be organized by
linguistic theory (Cooper et al., 1996), logic, do-
main knowledge (Joshi et al., 2020b), or the func-
tional requirements defined by the specific appli-
cation (Kirk et al., 2021; Wang et al., 2021; van
Aken et al., 2021). For example, to test an NLI
model’s logic reasoning capabilities, researchers
examined its different aspects, such as handling
of negations, boolean, quantifiers, comparatives,
monotonicity, etc. (Richardson et al., 2020; Cooper
et al., 1996). Later, Ribeiro et al. (2020) extended
capability-based testing to other NLP tasks, in-
cluding sentiment classification, paraphrase detec-
tion, and question answering. The capabilities
for testing would be listed by software develop-
ers or by the subject matter experts who manually
identify a taxonomy of errors based on their exper-
tise in data annotation (Röttger et al., 2021). The
construction method for the test suites can be di-
vided into fully manual (Cooper et al., 1996; Joshi
et al., 2020a) and semi automatic approaches. The
manual approaches often suffer from scalability
issues (Cooper et al., 1996). Some existing ap-
proaches proposed to scale up the annotation by
leveraging non-expert annotators, but had to restrict
the capabilities to avoid making the tasks too com-
plicated for the annotators (Joshi et al., 2020a). To
construct a massive scale test suite without large
manual annotation efforts, Poliak et al. Poliak et al.
(2018) proposed to recast 13 existing datasets on
7 different tasks (e.g., NER, relation extraction)
into a unified NLI test suite, but this approach does
not apply to other NLP tasks. Other works remedy
the scalability issue by manually coming up with
templates where the blanks can be filled with inter-
changeable tokens or a cloze-style prediction from
language models (Ribeiro et al., 2020; Tarunesh



3482

et al., 2021), but automatically generating the tem-
plates remain a challenging task (Tarunesh et al.,
2021; Jeretic et al., 2020). Finally, Salvatore et al.
(2019) proposed a formal language for generating
templates, although it can be used to generate exam-
ples of contradictions in NLI. In contrast to the pre-
vious work, we propose to leverage the generative
power of GPT-3 to fully automate the construction
of capability-based test suites. Our framework thus
overcomes the scalability issue in existing work.
Prompt Learning for GPT-3. Our work has em-
ployed the GPT-3 engine (Brown et al., 2020) for
the generation and verification of the test suites,
where we have manually engineered and optimized
the prompt messages (Section 4). Prompt learn-
ing was found to be helpful for a wide range of
tasks (Shin et al., 2020; Gao et al., 2021), includ-
ing major natural language generation tasks (Li
and Liang, 2021). To the best of our knowledge,
however, there only exist a few works in literature
that systematically investigated prompt learning for
GPT-3 generation. Mishra et al. (2021) proposed a
dataset for teaching GPT-3 and BART (Lewis et al.,
2020) to follow instructions. Reynolds and Mc-
Donell (2021a) summarized the essential findings
in prompt engineering for GPT-3 from blogs and
social media and found that few-shot demonstra-
tion can be worse than zero-shot demonstration for
GPT-3. Due to the scarcity of literature, we propose
a new framework for prompting GPT-3 to generate
the capability-based test suites (Section 4).

3 Problem Definition

Software testing refers to the process of identifying
the inconsistencies between software’s actual and
expected execution process (Zhang et al., 2019).
Software testing includes white-box testing and
black-box testing. The latter is also known as be-
havioral testing, which examines the external be-
haviors of the software. It often requires the devel-
opers to collect test cases (i.e., input/output pairs)
to constitute a test suite (i.e., a collection of cases
for testing specific software behaviors).

In recent years, following the success of natural
language processing, behavioral testing was intro-
duced to test NLP models (Ribeiro et al., 2020),
especially large language models that show state-
of-the-art performance. The expected behaviors of
NLP models were defined in several aspects, which
are called the capabilities of the models. For exam-
ple, for a sentiment classification model, we should

expect it to output the negative sentiment for an
input sentence containing a negated positive word,
e.g., I don’t like the food. Behavioral testing goes
beyond the held-out validation evaluation scheme,
allowing software developers to detect and monitor
the behavioral failures of the model on top of the
performance metrics on the held-out dataset, pro-
viding insights into the model behavior in multiple
aspects.

The most recent work on NLP behavioral test-
ing is called CheckList (Ribeiro et al., 2020). In
CheckList, around 10 capabilities are defined for
each NLP task being tested. For each capability,
several tests were created by the developer, and the
requirement of each test is described with a natu-
ral language description as in Table 1. Each test
contains one or more natural language templates
containing slots, with a pre-defined word list asso-
ciated with each slot. For example, for the afore-
mentioned negation capability, one test template is
"[it] [benot] [a:pos_adj] [air_noun]." By defining
a list for each slot, the developer can use this tem-
plate to generate test cases such as "That is not a
perfect seat." The test cases generated following
each test and the overarching linguistic capability
constitute the test suite T .

4 The TestAug Framework

Given a linguistic capability and their specific tests,
the previous approach to generating test cases re-
lies on manual templates. In this paper, we pro-
pose a novel framework (namely, TestAug for Test
Suite Augmentation) to reduce such manual efforts.
Figure 1 shows the control flow of our framework.
First, TestAug starts with a few seed test cases from
the CheckList test suite (Ribeiro et al., 2020). It
leverages the description of the test and the seed
test cases to prompt GPT-3 to generate more cases
(Section 4.1). The correctness of the generated
GPT-3 cases is examined through a trained binary
classifier (Section 4.2), and expanded into more
templates by matching the GPT-3 case with the
seed case (Section 4.3). Finally, the aggregate test
suite is used for model testing; the test results pro-
vide feedback to the NLP model developer for the
next iteration of testing.

4.1 Prompt Engineering for Instructing
GPT-3 to Generate Test Cases

We design our natural language inputs (i.e.,
prompts) based on the practices of instructing GPT-



3483

Seed Templates Test

GPT-3
Output

Expanded
Test Suite

TestAug
Test Suite

An NLP
Model M

Demonstrate Prompt

Expand
+Filter

Figure 1: The control-flow graph of TestAug.

3 for dataset creation (Liu et al., 2022; Reif et al.,
2021; West et al., 2021; Schick and Schütze, 2021;
Reynolds and McDonell, 2021b).

We use prompt engineering (Liu et al., 2021) to
instruct GPT-3 3 to generate test cases that meet the
requirement of the test description. A prompt is an
instructive sentence that tells GPT-3 the command
to follow. For example, Table 2 shows the prompt
"A negative sentiment sentence with negated pos-
itive word." Meanwhile, it has been shown that
generative models’ performance can be improved
with demonstrations (Gao et al., 2021), i.e., ex-
ample sentences that append the prompt sentence
to show examples of what the generated sentence
should look like. For example, for the prompt men-
tioned above, one demonstration sentence is "No
one enjoys that seat". In this paper, to instruct
GPT-3 to generate test cases that meet the require-
ment of the test description, we propose to simply
use the test description as the prompt, followed by
three randomly sampled seed test cases from the
CheckList test suite (Ribeiro et al., 2020; Tarunesh
et al., 2021) as the demonstrations. We use the
dashed points to format each demonstrated case,
wrapped by the bracket "{}". Our prompt design
for the sentiment classification task can be found
in Table 2; the one for paraphrase detection and
natural language inference can be found in Table 7
in the Appendix. In particular, our choice for the
format (especially the bracket) comes from our em-
pirical observation that such a format encourages

3More specifically, we use a GPT-3 variant (namely,
davinci-instruct-beta) that specializes in following
instructions for better its generation quality in our pilot exper-
iments.

Table 2: Prompt designs to elicit GPT-3 for test
case generation in sentiment classification tasks. The
test description specifics the context of generation;

the seed sentences help GPT-3 generate similar yet di-
verse test cases; the test cases are then generated by
the GPT-3.

A negative sentiment sentence with negated positive word.
- { No one enjoys that pilot. }
- { No one admires the seat. }
- { No one appreciates that airline. }
- { No one appreciates that air traffic controller. }

GPT-3 to generate valid sentences with higher prob-
abilities. If skipping the bracket, GPT-3 tends to
generate long sentences that are dissimilar to the
demonstrations; for the two-sentence tasks, GPT-3
is less likely to generate correctly formatted pairs
without the bracket.

4.2 Filtering Incorrect Test Cases
The test cases generated by GPT-3 may fail to sat-
isfy tests as they (1) do not satisfy the required
format; for example, the tasks of paraphrase de-
tection and natural language inference require a
pair of sentences as a test case while sometimes
only one sentence could be found in the GPT-3
generation, (2) do not satisfy the tests expressed in
the prompts (i.e., the requirement or description of
the test case); for example, the generated test case
("Joe isn’t at the party.", "Joe is at the party.") for
natural language inference is incorrect as it violates
the required label "entailment" for natural language
inference task; the "This food isn’t bad, but I wasn’t
expecting much." for sentiment classification does
not meet the requirement for the test description "I
thought something was negative, but it was neutral.
because the former part is not negative, neither is
the latter neutral.

To address the issues above, we create a validity
filter that automatically removes the invalid test
cases generated by GPT-3. The filter is constructed
by training a binary classifier. The training data
for the binary classifier comes from our manual
annotation of the validity of the GPT-3 generated
sentences. We follow the following two-phase pro-
cess for the filter. In the first phase, we instruct
GPT-3 to generate 30-50 cases for each test de-
scription, and two annotators manually annotated
the validity of the test case by checking the two
types of errors discussed in Section 4.24. The tests

4The annotators were two of the authors; they are both



3484

whose test cases were predominately valid5 were
expected to generate valid cases most of the time;
otherwise, we proceeded to the second phase. In
the second phase, we keep instructing GPT-3 to
generate sentences until at least 100 invalid and
100 valid cases were collected. The sentences in
the second phase were then used as the training set
to fine-tune a roberta-base classifier, while
the sentences in the first phase were used as the test
set. Afterward, we could use the trained classifiers
together with GPT-3 to generate test cases in a fully
automatic manner.

4.3 Expanding GPT-3 Generated Test Cases
into Templates

After obtaining the generated test cases from GPT-
3, we can further augment the test suite by ex-
panding the GPT-3 generated cases into templates.
More specifically, if a word in a seed test case reap-
pears in the GPT-3 generated test cases, it can be
converted back into the slot, and we can vary the
slot words using the pre-defined list. For example,
using the template "No one [pos_verb_present]s
[the] [air_noun]." from CheckList and the pre-
defined word "appreciates" for [pos_verb], we cre-
ate the seed sentence "No one [appreciates] that
airline.". By demonstrating this seed sentence to
GPT-3, it generates the new sentence "No one [ap-
preciates] that air traffic controller.". Since "ap-
preciate" appears again, we can convert it back to
the slot [pos_verb], resulting in a new template
"No one [pos_verb] that air traffic controller.". As
misplaced pronouns yield nonsensical sentences,
we only take the nouns, verbs, and adjectives (i.e.,
content words) into account when creating new
templates; for example, even though "that" also
reappears in the generated sentence, we do not cre-
ate a new slot at its location.

5 Experiments

In this section, we evaluate the effectiveness of Tes-
tAug and compare it with existing work (Ribeiro
et al., 2020; Tarunesh et al., 2021) in multiple as-
pects. First, we compare TestAug’s ability to detect
the model failures with existing work (Section 5.2).
Second, we quantitatively investigate the diversity
of test cases (Section 5.3). Since test cases are

graduate students in computer science working on NLP-
related research. Their agreement rate is reported in Table 6.

5The threshold is 90% for sentiment classification and para-
phrase detection tasks and 80% for natural language inference
task

automatically generated with TestAug, we also in-
vestigate the validity of the generated cases, e.g.,
whether the generated test cases correctly satisfy
each capability (Section 5.4). Finally, we quanti-
tatively evaluate the manual efforts saved by Tes-
tAug compared to CheckList (Section 5.5). Before
reporting these results, we first explain our experi-
mental settings in Section 5.1.

5.1 Experiment Settings

Evaluated Tasks. We compare our framework
with existing works by following their experiment
settings (Ribeiro et al., 2020; Tarunesh et al., 2021).
We investigate the following NLP tasks: sentiment
classification (i.e., the Stanford Sentiment Tree-
bank (SST) dataset6 (Socher et al., 2013)), para-
phrase detection (i.e., the Quora Question Pair
(QQP) dataset7), and natural language inference
(i.e., the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015)). Exist-
ing work also studied extractive question answer-
ing (Ribeiro et al., 2020) and hate speech detec-
tion (Röttger et al., 2021); in this paper, however,
we skip the two tasks for the following reasons. We
skip extractive QA because we find it empirically
challenging for GPT-3 to generate examples where
all the required components (context, question, an-
swer) meet the requirements at the same time. We
thus leave extractive QA for future work. We skip
hate speech detection because GPT-3 cannot be
prompted for generating profanity words8.
Evaluated Models. Existing work (Ribeiro
et al., 2020) evaluated their capability-based test-
ing frameworks on state-of-the-art NLP models
such as BERT, RoBERTa, and commercial APIs
such as Google Cloud’s Natural Language API
or Microsoft’s Text Analytics API. In this paper,
we focus on testing only the open-source models
because the underlying model of these APIs are
inaccessible for us to fine-tune, which is critical in
our evaluation. For all our three tasks (i.e., SST,
QQP, and SNLI), there exist publicly available fine-
tuned models on the HuggingFace model Hub9;
thus, we reuse these fine-tuned models to test our

6We used discretized binary version – SST2.
7https://www.kaggle.com/c/quora-question-pairs
8Our attempts to generate profanity words were denied

with a flagged warning message from GPT-3: "These state-
ments are all incredibly harmful and oppressive. They promote
hatred and bigotry against a marginalized group of people, and
they should not be tolerated."

9https://huggingface.co/models

https://www.kaggle.com/c/quora-question-pairs
https://huggingface.co/models


3485

Figure 2: Capability-wise error rates of sentiment clas-
sification.

framework. A complete list of models we evaluate
can be found in Table 10.

5.2 Evaluating TestAug’s Ability for Bug
Detection

5.2.1 Metric
Patched Failure Rate. To the best of our knowl-
edge, we are not aware of any existing method that
directly compares the effectiveness of two NLP test
suites. One may think the most straightforward ap-
proach is directly comparing the failure rates of the
same model on the two test suites. Despite the sim-
plicity, we argue that these two failure rates are in
fact incomparable: the effectiveness of a test suite
is defined by how many bugs it can find (Kochhar
et al., 2015); as a result, it is unclear whether a test
suite with a lower failure rate but more error cases
has a better performance.

To compare the effectiveness of test suites
T1, T2,⋯, TN , we propose to create new training
and testing sets as follows.

TTest ← Sample(
N

⋃
n=1

Tn), T (n)
Train ← Tn−TTest

Then we use the training sets T (n)
Train to patch (or

fine-tune) the model M and evaluate the patched
(or fine-tuned) model M̂n on the test set TTest. We
compare a model M̂n’s patched failure rate on
different training sets; a lower rate thus indicates a

stronger capability in finding bugs.

FR
(n)
Patched =

∣TTest∣
∑
i=1

1(M̂n(xi) ≠ yi)

Additionally, we note that our evaluation method
involves random partitions of T and fine-tuning of
the target models; the results of both depend on
the choice of random seeds. We, therefore, re-
peated our experiments with 5 different random
seeds when partitioning T 10; we fixed the model
fine-tuning seed to 42 to prevent evaluation results
from being affected by the randomness of training.

5.2.2 Analysis
In Table 3, Figure 2 and Figure 3 of the Appendix,
we report the failure rates of TestAug and compare
it with existing work (Ribeiro et al., 2020; Tarunesh
et al., 2021). The three tasks we study contain 12
capabilities.

First, in Table 3, we report the average failure
rates across all capabilities for each task, compared
with existing work. We use TTestAug to represent
the test suite by TestAug, and TCheckList to rep-
resent the suite by existing work (Ribeiro et al.,
2020; Tarunesh et al., 2021). We use the evaluation
methodology in Section 5.2.1 to merge TTestAug

and TCheckList for comparing their failure rates. We
also report the failure rate on the common test set
without the fine-tuning/patching for comparison. In
addition, we ablate study TTestAug’s performance
by removing the cases directly from GPT-3 (i.e.,
TGPT−3) and the expansion (i.e., TExpansion), us-
ing only the resulting subset for patching. We can
observe that the resulting failure rate of TTestAug

is consistently lower than TCheckList, indicating
that TTestAug can find more bugs. We also find
TTestAug\TExpansion to outperform TTestAug in 4
cases, whereas TTestAug\TGPT−3 outperforms the
latter in only 1 case, this result indicates that GPT-3
generated cases are more important than the ex-
panded cases, whereas the expanded cases are not
always helpful. Next, we plot the capability-level
failure rates for three tasks (Figure 2, Figure 3 in
Appendix) From Figure 2 and Figure 3, we can
observe that TTestAug does not consistently outper-
form TCheckList when looking at each linguistic
capability; for example, when evaluating sentiment
classification task (Figure 2), the ALBERT’s tem-
poral capability gives us a higher failure rate of

10These seeds {11, 14, 25, 42, 74} are also randomly gen-
erated integers.



3486

Table 3: The comparison of the bug detection ability between TestAug and CheckList. Each cell shows the failure
rate, i.e., the error rate on the held-out validation dataset. For each cell, the experiments were randomized 5 times
and their mean and standard deviation are reported. The complete model path of each model can be found from
Table 10. As we have not implemented the template-expansion model for NLI task, the cells are marked as "/".

Model type Original Unpatched Patched

TCheckList TTestAug
TTestAug
\TGPT−3

TTestAug
\TExpansion

Sentiment Classification

ALBERT 7.3 32.6±5.7 13.4±6.5 11.3±10.0 10.6±6.6 9.6±8.2

BERTBase 7.6 33.9±6.1 9.0±4.2 8.3±4.2 8.5±1.6 9.9±4.9

DistillBERT 10.0 29.5±10.9 6.5±3.4 3.9±2.1 4.9±2.1 5.1±3.3

RoBERTaBase 5.7 14.2±6.1 3.7±2.3 1.6±1.0 2.7±2.7 1.4±1.2

Paraphrase Detection

ALBERT 9.3 38.1±3.8 7.1±0.8 0.6±0.4 5.8±1.8 0.4±0.4

BERTBase 9.1 36.0±4.9 6.2±1.5 0.5±0.4 5.6±1.1 0.4±0.3

DistillBERT 10.3 49.8±10.2 12.5±16.4 1.1±2.4 6.4±3.9 7.3±15.8

Natural Language Inference

ALBERT 9.9 42.8±1.9 30.1±4.2 23.0±1.6 / /

DistillBERT 12.6 34.7±3.6 23.6±6.1 16.5±3.9 / /

RoBERTaLarge 8.1 17.8±4.0 8.3±3.1 8.0±3.1 / /

TTestAug after patching, indicating our augmented
test suite has a weaker bug detection ability; a
similar phenomenon could be found when testing
vocabulary capability of BERTBase in paraphrase
detection task and syntactic and presupposition ca-
pability of RoBERTaLarge in natural language in-
ference task. This shows that, despite the overall
ability to find more bugs (Table 3), the additional
test cases from GPT-3 do not uniformly contribute
to the improvement of each specific linguistic ca-
pability.

5.3 Evaluating the Diversity of TestAug
Results

5.3.1 Metric

As existing approaches rely on manually created
templates, they have low linguistic variations. Such
issues can be alleviated with the help of GPT-3. In
this section, we evaluate the linguistic diversity of
the generated test cases. We use two metrics to
evaluate the diversity: first, we leverage the Self-
BLUE score to evaluate the diversity of an entire
test suite; second, to measure the test case-level di-
versity, we introduce a new metric, i.e., the average
number of unique dependency paths in each test

case.
Self-BLEU. Self-BLEU is an extension of the reg-
ular BLEU that evaluates the diversity of gener-
ated texts (Zhu et al., 2018). Given a list of texts
Ŷ = {Ŷ1, Ŷ2,⋯, ŶN}, Self-BLEU is the average
BLEU score between every single sentence and all
other sentences,

Self-BLEU(Ŷ) = 1

N

N

∑
i=1

BLEU({Ŷi}, Ŷ≠i) (1)

When k is fixed, a lower Self-BLEU score indicates
a higher diversity of the sentence.
Number of Unique Dependency Paths. We pro-
pose to use the number of unique dependency
paths to measure the diversity at the test case
level. Each path is a path of POS tags connected
by edges in the dependency tree (Jurafsky and
Martin, 2000). For example, for the sentence
"I (NOUN) love (VERB) chicken (NOUN)", the
unique paths are NOUN→VERB, VERB→NOUN,
NOUN→VERB →NOUN.

5.3.2 Analysis
We compare the Self-BLEU and the number of
unique dependency paths between TestAug and



3487

CheckList in Table 5, where we control the num-
ber of test cases under each test11. From Table 5,
we can observe that the linguistic diversity of the
test suites TGPT−3 show substantial improvement
over the template-based counterparts TCheckList:
the Self-BLEU4 score has a decrease at least 5.3%
(the natural language inference task) and the num-
ber of unique dependency paths is of at least 1.81
times compared to the original test suite (the natu-
ral language inference task).

Table 4: TestAug saves manual efforts in generating new
test cases and expands the set of available templates.

#Uniuqe Seed
Sentences

#Unique New
Sentences

#Seed
Templates

#New
Templates

Sentiment Classification

292 3275 (11.2×) 29 1441 (49.7×)

Paraphrase Detection

124 6427 (50.4×) 17 1307 (76.9×)

Natural Language Inference

150 4976 (33.2×) 50 /

Table 5: Linguistic diversity of test suites.

Self-BLEU4 (↓)
Number of Unique
Dependency Paths (↑)

Sentiment Analysis

TTestAug 0.634 480
TCheckList 0.853 84

Paraphrase Detection

TTestAug 0.627 418
TCheckList 0.775 117

Natural Language Inference

TTestAug 0.430 210
TCheckList 0.454 116

5.4 Evaluating the Validity of TestAug Results

In this section, we evaluate the effectiveness of
our pipeline of filtering incorrect test cases (i.e.,
Section 4.2). As is shown in Table 11 of the Ap-
pendix, the two-phase approach successfully filters
the invalid cases: the classification accuracy is con-
sistently higher than the validity threshold (90% for
sentiment classification and paraphrase detection

11We sampled 100 unique sentences per test with a fixed
seed of 42 for both test suites. This gave us 1100, 1700,
and 1200 sentences in sentiment classification, paraphrase
detection, and natural language inference task, respectively.

Table 6: Annotation Cohen’s κ and agreement rate.

Agreement

Total
Cohen’s κ

Sentiment Analysis 438
461

= 95.0% 0.741

Paraphrase Detection 365
401

= 91.0% 0.812

Natural Language Inference 151
156

= 96.8% 0.746

and 80% for natural language inference)12. At the
same time, the Cohen’s κ on test set annotation
indicates substantial agreement (McHugh, 2012).

5.5 Evaluation of the Manual Efforts Saved
by TestAug

Finally, we quantitatively evaluate the manual ef-
forts saved by TestAug compared to CheckList;
the results are reported in Table 4. When query-
ing GPT-3 with a few hundred sentences per task,
we obtained a new set of valid test cases 11.2 to
50.4 times in size. The template expansion in turn
increased the number of available templates to at
least 49.7 times, reducing manual efforts by at least
98.0% (Table 4)13. This result thus shows that Tes-
tAug can largely save manual efforts in creating
the test suites.

6 Discussion, Conclusions, and Future
Work

This paper introduces a novel framework TestAug
for capability-based NLP testing. Addressing cur-
rent system’s heavy dependence on manual creation
of templates, our framework can save at least 98.0%
of the manual annotation effort with GPT-3; mean-
while, the test suites generated with our framework
reveal more bugs than existing systems and show
better diversity. Our framework guarantees the cor-
rectness of the generated cases by removing the
invalid output from GPT-3.

The main limitation of TestAug is that GPT-3
fails to generate highly structured test cases, such
as cases for extractive question answering. It also
struggles to generate cases that require logic or
math reasoning. We leave the exploration of these
cases for future work.

12Additional capabilities in NLI tasks are below 80% valid
threshold. Automatic filtering these cases out with trained
classifiers are left as future work.

13New templates do not cost additional manual efforts
when considering all templates as a whole, leading to at least

1441

1441+29
× 100% = 98.0% saving. With the help of our au-

tomatic filtering pipeline, both sentence and template counts
could be further increased with additional queries.



3488

Ethical Considerations

Annotator Rights
Two of the authors (one male and one female; both
identified themselves as Asians) annotated the data
following annotation guidelines; the guidelines are
discussed and finalized after thorough discussions
(the violations of these guidelines are discussed
in Section 4.2). We acknowledge the annotators’
efforts with shared authorship.

Intended Uses
TestAug’s intended use is as a tool to augment
template-based test suites with newly generated
test cases from GPT-3; two sets of test cases are
then used altogether to evaluate an NLP models’
linguistic capabilities; we believe this application
of existing datasets are consistent with their in-
tended uses. We showed the effectiveness of this
system in Section 5. We hope the adoption of Tes-
tAug into the NLP model development could make
newly built NLP models more linguistically capa-
ble. Meanwhile, the TestAug includes GPT-3 as a
component, we urge users of our system to follow
the OpenAI’s usage guidelines 14.

Potential Misuse
TestAug might be misused to overestimate the
models’ linguistic capabilities. Specifically, even
though failures on the test suites show models’
shortcomings in a given linguistic capability, the
absence of failures does not mean the models being
tested are free from bugs; it is likely that test suites
are not yet capable enough to reveal the model’s
bugs. We, therefore, call for a judicious interpre-
tation of an NLP model’s performance based on
TestAug test suites. Moreover, we believe NLP
testing is an iterative process; it might take mul-
tiple iterations of applying TestAug to reveal the
model’s issues in linguistic capabilities.

References
Bing Bai, Jian Liang, Guan Zhang, Hao Li, Kun Bai,

and Fei Wang. 2021. Why attentions may not be in-
terpretable? Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.
14https://beta.openai.com/docs/

usage-guidelines

Samuel R Bowman and George E Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? The 2020 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL-HLT2020).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, et al.
1996. Using the framework. Technical report, Tech-
nical Report LRE 62-051 D-16, The FraCaS Consor-
tium.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. ArXiv, abs/1908.07898.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In ACL.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel R. Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural language
inference data. In NAACL.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models IMPPRESsive? Learning IMPlicature
and PRESupposition. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8690–8705, Online. Association
for Computational Linguistics.

Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020a. TaxiNLI: Taking a ride up
the NLU hill. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 41–55, Online. Association for Computational
Linguistics.

Pratik M. Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020b. Taxinli: Taking a ride up the
nlu hill. In CONLL.

Dan Jurafsky and James H. Martin. 2000. Speech and
language processing.

https://beta.openai.com/docs/usage-guidelines
https://beta.openai.com/docs/usage-guidelines
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.conll-1.4
https://doi.org/10.18653/v1/2020.conll-1.4


3489

Hannah Rose Kirk, Bertram Vidgen, Paul Röttger, Tris-
tan Thrush, and Scott A Hale. 2021. Hatemoji:
A test suite and adversarially-generated dataset for
benchmarking and detecting emoji-based hate. arXiv
preprint arXiv:2108.05921.

Pavneet Singh Kochhar, Ferdian Thung, and David
Lo. 2015. Code coverage and test suite effective-
ness: Empirical study with real bugs in large sys-
tems. In 2015 IEEE 22nd international conference
on software analysis, evolution, and reengineering
(SANER), pages 560–564. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. Wanli: Worker and ai collaboration
for natural language inference dataset creation.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ArXiv, abs/2107.13586.

M. L. McHugh. 2012. Interrater reliability: the kappa
statistic. Biochemia Medica, 22:276 – 282.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 67–81, Brussels, Belgium.
Association for Computational Linguistics.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen,
Chris Callison-Burch, and Jason Wei. 2021. A recipe
for arbitrary text style transfer with large language
models. ArXiv, abs/2109.03910.

Laria Reynolds and Kyle McDonell. 2021a. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Laria Reynolds and Kyle McDonell. 2021b. Prompt
programming for large language models: Beyond the
few-shot paradigm. Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing
Systems.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41–58, Online. Association for
Computational Linguistics.

Felipe Salvatore, Marcelo Finger, and Roberto Hirata Jr.
2019. A logical-based corpus for cross-lingual eval-
uation. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 22–30, Hong Kong, China.
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021. Generat-
ing datasets with pretrained language models. In
EMNLP.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/pdf/2104.08773.pdf
https://arxiv.org/pdf/2104.08773.pdf
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://ojs.aaai.org/index.php/AAAI/article/view/6397
https://ojs.aaai.org/index.php/AAAI/article/view/6397
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170


3490

Ishan Tarunesh, Somak Aditya, and Monojit Choud-
hury. 2021. Lonli: An extensible framework for
testing diverse logical reasoning capabilities for nli.
In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence (AAAI-22), volume abs/2112.02333.

Betty van Aken, Sebastian Herrmann, and Alexander
Löser. 2021. What do you see in this patient? behav-
ioral testing of clinical nlp models. NeurIPS 2021
Research2Clinics Workshop, Bridging the Gap: From
Machine Learning Research to Clinical Practice.

Jun Wang, Chang Xu, Francisco Guzmán, Ahmed
El-Kishky, Benjamin Rubinstein, and Trevor Cohn.
2021. As easy as 1, 2, 3: Behavioural testing of
NMT systems for numerical translation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4711–4717, Online.
Association for Computational Linguistics.

Peter West, Chandrasekhar Bhagavatula, Jack Hessel,
Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. 2021. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. ArXiv, abs/2110.07178.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. HELP: A dataset for identifying short-
comings of neural models in monotonicity reasoning.
In Proceedings of the Eighth Joint Conference on
Lexical and Computational Semantics (*SEM 2019),
pages 250–255, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu.
2019. Machine learning testing: Survey, landscapes
and horizons. ArXiv, abs/1906.10742.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval.

https://arxiv.org/pdf/2112.02333.pdf
https://arxiv.org/pdf/2112.02333.pdf
https://arxiv.org/pdf/2111.15512.pdf
https://arxiv.org/pdf/2111.15512.pdf
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027


3491

A Appendix

Table 7: Prompt designs for paraphrase detection and
natural language inference tasks.

Paraphrase Detection
Two sentences are equivalent when using according to.

- {{ Who do analysts think is the smartest footballer in the world? }
- { Who is the smartest footballer in the world according to analysts? }}

- {{ Who do students think is the top woman in the world? }
- { Who is the top woman in the world according to students? }}

- {{ Who do readers think is the worst gamer in the world? }
- { Who is the worst gamer in the world according to readers? }}

- {{ What does the data say about the most popular baby names? }
- { What are the most popular baby names according to the data? }}

Natural Language Inference
Write a pair of sentences that have the same relationship
as the previous examples. Examples:

- {{ Philip, Charles and Colin are the only children of Henry. }
- { Henry has exactly 3 children. }}

- {{ Grace, Thomas and Helen are the only children of Andrea. }
- { Andrea has exactly 3 children. }}

- {{ Don has 2 dollars. He received 8 more dollars. }
- { Don now has 10 dollars. }}

- {{ Mary has a cat. She also has a dog. }
- { Mary has two pets. }}

Table 8: Hyperperparamer choice for model fine-tuning

Hyperparameter Value

Learning rate 5e − 6
Batch size 16
Number of training epochs 10
Max. sequence length 128
Seed 42



3492

(a) Paraphrase Detection

(b) Natural Language Inference

Figure 3: Capability-wise error rates on paraphrase detection and natural language inference tasks.



3493

Table 9: Linguistic capabilities that appeared in the experiments and their explanations with corresponding examples.
The description of the tested linguistic capabilities follow the taxonomy and definition provided in previous work
(Ribeiro et al., 2020; Tarunesh et al., 2021; Joshi et al., 2020b).

Linguistic Capability Explanation Template and Example

Sentiment Analysis

Negation Resolving "not"
{neg} {pos_verb_present} {the} {air_noun}.
I didn’t admire that service.

SRL Resolving subjects and objects
Do I think {it} {be} {a:pos_adj} {air_noun}? No
Do I think that is an amazing aircraft? No

Temporal Resolving temporal changes
I {neg_verb_present} this airline, {change} in the past I would {pos_verb_present} it.
I regret this airline, although in the past I would appreciate it.

Vocabulary Resolving word choice variations
{it} {air_noun} {be} {neg_adj}.
That food was ugly.

Paraphrase Detection

Coref Resolving male and female names

S1: If {female} and {male} were alone, do you think he would reject her?
S2: If {female} and {male} were alone, do you think she would reject him?
S1: If Julie and Roy were alone, do you think he would reject her?
S2: If Julie and Roy were alone, do you think she would reject him?

Negation Resolving "not"

S1: What are things {a:noun} should worry about?
S2: What are things {a:noun} should not worry about?
S1: What are things a friend should worry about?
S2: What are things a friend should not worry about?

SRL Resolving subjects and objects

S1: Did {first_name} {verb[0]} the {obj}?
S2: Was {first_name} {verb[1]} by the {obj}?
S1: Did Sam remember the factory?
S2: Was Sam remembered by the factory?

Taxonomy Resolving external taxonomic hierarchy

S1: How can I become {a:x[1]} person?
S2: How can I become {a:x[0]} person?
S1: How can I become a frightened person?
S2: How can I become a scared person?

Temporal Resolving temporal changes

S1: Is {first_name} {last_name} {a:noun}?
S2: Did {first_name} {last_name} use to be {a:noun}?
S1: Is Dorothy Clarke an agent?
S2: Did Dorothy Clarke use to be an agent?

Vocabulary Resolving word choice variations

S1: How can I become less {x[1]}?
S2: How can I become more {x[1]}?
S1: How can I become less active?
S2: How can I become more active?

Natural Language Inference

Causal
Resolving actions between one
object and two entities

P: {NAME} moved the {OBJECT_TABLE} to {LOCATION_HOUSE1} from {LOCATION_HOUSE2}.
H: The {OBJECT_TABLE} is now in {LOCATION_HOUSE1}.
P: George moved the notebook to study room from bedroom.
H: The notebook is now in study room.

Conditional Resolving reasoning over conditions

P: If {NAME1} comes to the {LOCATION}, {NAME2} won’t come. {NAME1} did not come to the {LOCATION}.
H: {NAME2} didn’t come to the {LOCATION}.
P: If Kim comes to the park, William won’t come. Kim did not come to the park.
H: William didn’t come to the park.

Lexical Resolving word choice variations

P: {NAME} was born in {COUNTRY1}.
H: {NAME} is born in {COUNTRY2}.
P: Emily was born in Germany.
H: Emily is born in Malaysia.

Presupposition Resolving implications

P: {NAME}’s {T12_RELATION} is {ADJECTIVE_OF_PERSON}.
H: {NAME} has {A} {T12_RELATION}.
P: Florence’s brother is intolerant.
H: Florence has a brother.

Quantifier
Resolving "all" (universal quantification) and
"some", "none" (existential quantification)

P: None of the {OBJECTS} are {COLOUR1} in colour.
H: Some of the {OBJECTS} are {COLOUR2} in colour.
P: None of the cars are maroon in colour.
H: Some of the cars are pink in colour.

Syntactic Resolving ellipsis

P: {NAME} tried but wasn’t able to {VERB}.
H: {NAME} didn’t try to {VERB}.
P: Alan tried but wasn’t able to give.
H: Alan didn’t try to give.

World Resolving world knowledge such as geography

P: {NAME} lives in {T4_CAPITAL1}.
H: {NAME} lives in {T4_COUNTRY2}.
P: Ken lives in Kathmandu.
H: Ken lives in North Korea.



3494

Figure 4: The command line interface for data annotation. Annotators are given a test and three associated test cases
from the template-based test suite; they are asked to the annotate the validity of the GPT-3-generated sentences.
Annotators are reminded of the guidelines for filtering invalid samples when labeling each sentence (shown at
the top of the interface). We communicated explicitly for the intended uses of the annotated datasets before the
annotation.

Table 10: The fine-tuned models we evaluated in this paper.

Model name Task Size Checkpoint Identifier

DistillBERT Sentiment Analysis Small textattack/distilbert-base-cased-SST-2
ALBERT Sentiment Analysis Small textattack/albert-base-v2-SST-2
BERTBase Sentiment Analysis Base textattack/bert-base-uncased-SST-2
RoBERTaBase Sentiment Analysis Base textattack/roberta-base-SST-2
DistillBERT Paraphrase Detection Small textattack/distilbert-base-cased-QQP
ALBERTA Paraphrase Detection Small textattack/albert-base-v2-QQP
BERTBase Paraphrase Detection Base textattack/bert-base-uncased-QQP
DistillBERT Natural Language Inference Small textattack/distilbert-base-cased-snli
ALBERT Natural Language Inference Small textattack/albert-base-v2-snli
RoBERTaLarge Natural Language Inference Large ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli



3495

Table 11: Proportion of valid sentences and performance of trained classifiers for automatic filtering.

Linguistic
Capability Test Accuracy F1

Proportion of
Valid Test Cases

Sentiment Analysis

SRL A negative sentiment sentence with negative sentiment question and word yes as the answer. / / 1.000

SRL A positive sentiment sentence with positive sentiment question and word yes as the answer. / / 0.994

SRL My opinion is more important than others’ when expressing positive sentiment. / / 0.948

SRL A negative sentiment sentence with positive sentiment question and word no as the answer. / / 0.928

Temporal I used to have negative sentiment to something, but now I have positive sentiment to it. / / 0.922

Negation A negative sentiment sentence with negated positive word. / / 0.910

SRL My opinion is more important than others’ when expressing negative sentiment. / / 0.900

Temporal I used to have positive sentiment to something, but now I have negative sentiment to it. 0.942 0.967 0.873

Negation I thought something was positive, but it was negative. 0.934 0.961 0.860

Vocabulary A negative sentiment sentence with negative words. 0.897 0.932 0.804

Negation A negative sentiment sentence with negated positive sentiment word and neutral contents in the middle. 0.915 0.935 0.653

Paraphrase Detection

Temporal Two sentences are different when talking about a person’s current job and his or her previous job. / / 1.000

Negation Two sentences are different when talking about someone should and should not do something. / / 0.973

Temporal Two sentences are different when talking about a person’s current job and his or her future job. / / 0.964

Vocabulary Two sentences are different when adjectives are modified by more and less. / / 0.912

Taxonomy Two sentences are equivalent when the nouns are modified by synonymous adjectives. 0.889 0.933 0.885

Coref Two sentences are different when swapping the subjects and objects. 0.980 0.989 0.843

Temporal Two sentences are different when talking about doing something before and after another thing. 0.982 0.989 0.800

Temporal Two sentences are different when describing doing something before and after some specific time. 0.982 0.988 0.782

Negation Two sentences are different when talking about the properties of doing or not doing something. 0.965 0.977 0.754

Vocabulary A sentence with the noun modified by an adjective is equivalent to the sentence without adjective. 0.920 0.946 0.740

SRL Two sentences are equivalent when using according to. 0.958 0.971 0.708

Negation Two sentences are different when describing a person with adjective and a clause including the negation of the same adjective. 0.871 0.913 0.690

Taxonomy Two sentences are equivalent when one has an adjective modified by more and the other one has an antonym modified by less. 0.920 0.909 0.511

Coref Two sentences are different when referring someone’s family using different pronouns. 0.940 0.940 0.500

SRL Two sentences are different when swapping active and passive action. 0.930 0.933 0.471

Natural Language Inference

Lexical / / / 0.975

Syntactic / / / 0.936

Presupposition / / / 0.903

World / / / 0.902

Quantifier / / / 0.895

Causal / / / 0.857

Conditional / / / 0.834

Table 12: Creating new templates based on test cases generated by GPT-3.

Original Template and Test Case Generated Test Case New Template
Sentiment Analysis

No one {pos_verb_present}s {the} {air_noun}.
No one enjoys that seat.

This is not an easy service to appreciate. This is not an easy {air_noun} to appreciate.
That customer service was not fun. That customer {air_noun} was not fun.
I don’t think your customer service is admired. I don’t think your customer {air_noun} is admired.

Paraphrase Detection

Is it {mid} to {activity} before {hour}{ampm}?
Is it {mid} to {activity} after {hour}{ampm}?
Is it healthy to drink before 10am?
Is it healthy to drink after 10am?

Is it bad to drink before 8pm
Is it bad to drink after 8pm

Is it bad to {activity} before 8pm
Is it bad to {activity} after 8pm

Is it acceptable to drink before 2pm
Is it acceptable to drink after 2pm

Is it {mid} to {activity} before 2pm
Is it {mid} to {activity} after 2pm

Is it advisable to eat before 8pm
Is it advisable to eat after 8pm

Is it advisable to {activity} before 8pm
Is it advisable to {activity} after 8pm


	Introduction
	Background
	Problem Definition
	The TestAug Framework
	Prompt Engineering for Instructing GPT-3 to Generate Test Cases
	Filtering Incorrect Test Cases
	Expanding GPT-3 Generated Test Cases into Templates

	Experiments
	Experiment Settings
	Evaluating TestAug's Ability for Bug Detection
	Metric
	Analysis

	Evaluating the Diversity of TestAug Results
	Metric
	Analysis

	Evaluating the Validity of TestAug Results
	Evaluation of the Manual Efforts Saved by TestAug

	Discussion, Conclusions, and Future Work
	Appendix

