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Abstract
In recent years, data augmentation has become
an important field of machine learning. While
images can use simple techniques such as crop-
ping or rotating, textual data augmentation
needs more complex manipulations to ensure
that the generated examples are useful. Varia-
tional auto-encoders (VAE) and its conditional
variant the Conditional-VAE (CVAE) are often
used to generate new textual data, both relying
on a good enough training of the generator so
that it doesn’t create examples of the wrong
class. In this paper, we explore a simpler way
to use VAE for data augmentation: the train-
ing of one VAE per class. We show on several
dataset sizes, as well as on four different binary
classification tasks, that it outperforms other
generative data augmentation techniques.

1 Introduction

Data augmentation (DA) has been shown to
be an efficient technique for deep neural net-
works (Ramirez Rochac et al., 2019), consisting
in artificially creating new labelled examples and
therefore inflating the size of the dataset. While a
great number of data augmentation techniques have
been developed in recent years, most of these re-
quire external data, either in a database form (Wei
and Zou, 2019), pretrained embeddings (Marivate
and Sefara, 2020), or neural networks (Wu et al.,
2019). Even if these techniques help improve clas-
sifiers, they cannot be used in a variety of contexts,
most notably in artificial intelligence for rare lan-
guages, where there simply isn’t enough training
data to pre-train efficient models (Feldman and
Coto-Solano, 2020), or where the collection of la-
belled data for fine-tuning is difficult. The ethi-
cal importance of considering smaller communi-
ties and other languages in machine learning re-
search has been noted repeatedly (Bender et al.,
2021; Fazelpour and De-Arteaga, 2022), and con-
sequently, it is important to develop techniques that
can work for languages other than English.

In this paper, we take a special look at generative
models for data augmentation, and more specifi-
cally at Variational Auto-Encoders (VAE), for bi-
nary classification tasks. Generative algorithms
such as the VAE are especially interesting because
they do not require external data and, therefore, can
be used on a variety of domains. In particular, we
show that using one separate VAE per class and
generating new data by random sampling of the
latent space is a very efficient way of inflating the
size of a dataset. To the best of our knowledge, this
technique has been considered only once before, in
the context of balancing unbalanced datasets, and
with somewhat disappointing results (Qiu et al.,
2020). Contrary to them, we study the technique
in the context of pure data augmentation, on more
datasets and various starting sizes of datasets, and
conclude that it is an efficient technique. We test
two variations of this method, with or without shar-
ing parameters between the VAEs, and show that
both variations are equally efficient.

We compare this technique to two others genera-
tive techniques that are commonly used in the DA
literature, mainly using VAEs as a paraphrasing
system, or using a Conditional VAE (CVAE) for di-
rectly generating from a given class. We show that
they perform consistently worse than the separate
VAE approach. We surmise that this is because,
while we lose the ability to perform style transfer
between classes, we gain a stronger guarantee that
the generated examples will not be of an erroneous
class. We furthermore compare to another tech-
nique that showed excellent results, CBERT (Wu
et al., 2019), and show using one VAE per class for
DA outperforms it as well.

This paper is organized as follows: Sections 2, 3,
and 4 present respectively a brief summary of
VAEs, the relevant literature to our paper, and the
description of our various generative DA methods.
Then, Section 5 and 6 present our datasets and the
results of our experiments. Finally, we present a
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discussion of the results in Section 7, the broader
implications of our work in Section 8, and conclude
in Section 9.

2 Variational Auto Encoders

VAEs are generative models introducing a latent
variable z ∼ p(z), where data points (in our case,
sentences) are assumed to be generated following
p(x|z). VAEs follow the general auto-encoder
structure, with an encoder that predicts the pa-
rameters associated with the latent distribution,
most often a diagonal Gaussian, and a decoder
that takes samples from the latent distribution and
transforms them into sentences. At training time,
sampling is done using the reparametrization tech-
nique (Kingma and Welling, 2014), which samples
from z = µ+ σϵ, where ϵ ∼ N (0, 1). This allows
the gradient to flow through µ and σ. The training
objective is the ELBO, or Evidence Lower Bound:

L = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))
(1)

where ϕ represents the parameters of the encoder,
and θ, the parameters of the decoder. The CVAE
is a modification of the VAE where we instead
assume that x is generated conditioned on both the
class of the example and the latent space, formally
p(x|z, c), where c is the class. In practice, this
means that we give the class to the model while
both training and generating, so that we can directly
generate examples from the desired class (Yan et al.,
2016).

In order to use the VAE for text, the standard
solution is to replace both the encoder and the de-
coder with Recurrent Neural Networks (RNN). We
show a simple example of a textual VAE model in
Figure 1.

Figure 1: A textual VAE model. Image from Semeniuta
et al. (2017).

This, however, often comes with the problem
of KL-collapse, where the VAE relies entirely on
the powerful decoder to generate sentences and
collapses the latent distribution to a single point.

To prevent this, we resort to two common tech-
niques, namely KL-annealing, which slowly brings
the strength of the KL-term in the ELBO from 0
to 1, and word dropout, which randomly masks
words for the decoder while training (Bowman
et al., 2016). Both of these techniques encourage
the VAE to rely on the latent distribution.

3 Related Work

Data augmentation has been studied exten-
sively (Feng et al., 2021; Shorten and Khoshgoftaar,
2019). We focus our review on studies targeting
data augmentation for sentence classification, as
well as works using the VAE for DA, which are the
most pertinent studies for our work.

The general principle of data augmentation is
fairly direct: starting with a dataset of fixed size,
we generate new (hopefully) diverse data that we
can then use to feed the classifier, diminishing gen-
eralization error. While DA for images can perform
simple operations, such as cropping or rotating the
images (Wang et al., 2017), things are a little more
complicated for textual data, since operations on
words (such as replacing or deleting words), have a
chance of generating examples of the wrong class.
As such, a lot of the focus is put on class-coherence,
which simply means that generated examples have
the class we want them to.

Many approaches have been developed for data
augmentation for sentence classification, the sim-
plest ones consisting in performing word-level op-
erations. For example, the authors of (Marivate
and Sefara, 2020) use W2V (Mikolov et al., 2013)
for replacing random words in a sentence, picking
words that are close to the original one in a pre-
trained embedding space. In (Xiang et al., 2021),
replacements are made using the part of speech
information to ensure they only replace content
words. More operations can also be considered,
as in EDA (Wei and Zou, 2019; Liesting et al.,
2021), which performs four operations on the sen-
tences: replacement by a synonym, deletion of
words, swapping words, and inserting synonyms of
words at random positions. In EDA, synonyms are
found by using WordNet (Miller, 1995) instead of
pretrained embeddings.

Substitutions can also be made using pretrained
neural networks with a masked word task, such as
an LSTM (Kobayashi, 2018), or conditional-BERT
(CBERT) (Wu et al., 2019), which is a simple ex-
tension of BERT where we prepend the class of
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the example to the sentence, in the hope that it will
learn to generate class-coherent outputs.

Generative models, and most notably VAEs, are
frequently used in data augmentation, often using
a conditional model to directly generate from a
given class (Zhuang et al., 2019; Malandrakis et al.,
2019; Wang et al., 2020; Rizos et al., 2019). This,
however, relies on the assumption that the CVAE is
learning to correctly generate from the wanted class.
While CVAEs have made tremendous progress in
recent years, it remains a difficult task for textual
CVAE.

The use of unconditional VAEs is also com-
monly explored. In Islam et al. (2021), the bound-
ary decision is found in the latent space so that
generation can be made on either side of it, depend-
ing on the class we want to generate data for. A
popular technique is to use the VAE as a paraphrase
machine (Mesbah et al., 2019; Malandrakis et al.,
2019), encoding and decoding the data points and
relying on the stochasticity of the system to gen-
erate variations of the examples. This technique,
however, is also based on the hope that the algo-
rithm will learn to generate from the same class
as the input example. Finally, VAEs have also
been used to generate new data that is not class
dependent, such as spoken utterances for spoken
language understanding (Yoo et al., 2019).

Qiu et al. (2020) attempt, similarly to our pa-
per, to use one VAE per class for balancing data.
They compare it to CVAE as well as EDA. They
show, however, that generative algorithms barely
outperform sampling strategies when balancing the
data, on two datasets. Contrary to them, we study
the use of one VAE per class in a pure data aug-
mentation context, with already balanced classes,
and show that it does work better than other algo-
rithms. We also test all the algorithms on several
dataset sizes and on four datasets, providing anal-
ysis and examples of why and how it works. Last
but not least, we show that it works with modern
classification algorithms (in this case, BERT), and
show that it works better than state-of-the-art data
augmentation.

4 VAE for data augmentation

In this paper, we revisit the technique of Qiu et al.
(2020), which trains one VAE per class for generat-
ing new examples for unbalanced data, but use it for
general data augmentation. We test two variants of
this, one with parameter sharing (sharing of the en-

coder and embeddings), denoted VAE-Linked, and
one where everything is separated, denoted VAE-
Sep. Concretely, in VAE-Sep we initialize and train
m VAEs, where m is the number of classes, and
each VAE is trained only on the data of one class,
that is to say on all examples xi|yiϵck, where yi
is the class of the example xi, and ck is the class
number k. For VAE-Linked, we initialize one VAE
model with m decoders, each decoding only exam-
ples of one class. When generating, we first choose
the class we want to generate from, select the corre-
sponding VAE, and generate by randomly sampling
from its latent space. This process is illustrated in
Figure 2.

Figure 2: Illustration of the generation process of a neg-
ative movie review with the three VAE models tested in
this paper. In VAE-Par, the new examples are created
by passing sentences through the VAE and relying on
its stochasticity to create paraphrases. In CVAE, the
sentence is generated by sampling from the latent space
and conditioning the decoding on the negative class. Fi-
nally, in VAE-Sep, we train two different VAEs, one
for the negative sentences and one for the positive ones.
We generate negative examples by sampling from the
latent space and using the negative decoder. In VAE-
Linked, the generation happens identically to VAE-Sep,
but while training, we share the encoder and the embed-
dings between classes. Positive examples are generated
in a similar way but passing a positive sentence, the
positive label, or using the positive decoder.

We compare this to two popular DA techniques
using VAEs: conditional generation (CVAE) and
paraphrasing (VAE-Par). While both VAE-Sep and
VAE-Linked lose the advantage of style transfer
between classes and also have fewer data points to
learn to generate sentences, it also greatly reduces
the risk of generating examples of the wrong class.

As mentioned, generative models for textual DA
are interesting due to the fact that they do not need
external data to work. As such, we do not use pre-
trained embeddings in the RNNs of the VAEs1. We

1While outside the scope of this study, preliminary exper-
iments with GLoVE embeddings (Pennington et al., 2014),
in place of embeddings initialized randomly, did not bring a
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discuss in Section 9 ideas for future research in a
context where the use of external data is encour-
aged.

5 Datasets

We compare the models on four binary sentence
classification tasks. We use movie critics clas-
sification with SST-2 (Socher et al., 2013), de-
tection of fake news articles with the FakeNews
dataset2, detection of ironic tweets with the dataset
Irony (Van Hee et al., 2018), and detection of sub-
jective questions with Subj (Bjerva et al., 2020).
Characteristics of the datasets are summarized in
Table 1.

Dataset # Ex. Av. Sent. Length
SST-2 6920 19.3

FakeNews 12799 12.5
Irony 2683 14.3
Subj 13990 5.6

Table 1: Characteristics of the datasets used in this study.
The average length represents the average number of
words, when tokenized at white spaces.

6 Experiments

Because we are interested in domains where data
is limited, we sample portions of the datasets to
act as our initial training sets. We test 4 different
datasets sizes: 500, 1000, 1500, and 2000. When
sampling, we make sure to balance classes. We run
each experiment 15 times and report the average
results. As our baseline, we train BERT without
data augmentation.3

We report in Table 2 the basic hyperparameters
for all four variational algorithms. We use a GRU
with 1 layer as our RNN for both the encoder and
decoder, and a sigmoid function σ(x) for annealing
the KL-divergence from 0 to 1, which takes in the
parameters x0, controlling where σ(x) = 0.5, and
a parameter k which controls the strength of the
slope. While we fix x0 at 15 (out of 30 epochs),
we calculate it in practice according to the total
number of batches, taking a step of annealing at
every batch. Doing so allows us to keep a fixed k
parameter, which makes the final KL-weight lower

better performance to VAE-Sep. We leave the exploration of
this phenomenon for future work.

2https://www.kaggle.com/c/fake-news/
overview

3Code is available at https://github.com/
smolPixel/DACOLING2022

x0 15
k 0.0025

Batch Size 32
Latent Size 15
Hidden Size 2048
Nb Epoch 30
Dropout 0.5

Word dropout 0.6
Nb layers GRU 1

Table 2: Basic hyperparameters used for all three varia-
tional algorithms

Figure 3: Annealing of the KL weight for various
dataset sizes.

for a smaller dataset size (which are more prone
to KL-collapse) and achieves 1 for a larger dataset
size, as shown in Figure 3. We found that this
setting worked well for all four sizes tested. To
simulate a real world environment, we fine-tune to
generate good sentences before testing on the test
set.

It is to note that this might not be ideal, as it
also means that the smaller dataset sizes will have
a stronger KL term from the beginning, but we
leave the full fine-tuning for future work. In the
same vein, variational auto-encoders can be finicky
to train correctly, so while the hyperparameters
presented in Table 2 hold true for most experi-
ments, we sometimes had to fine-tune it a bit fur-
ther, mostly by changing the latent size.

In addition to the four generative DA algorithms
mentioned in Section 4, we compare ourselves
to CBERT4, a data augmentation algorithm that
showed good results on sentence classification (Wu
et al., 2019). CBERT predicts masked words in

4https://github.com/1024er/CBERT_aug

https://www.kaggle.com/c/fake-news/overview
https://www.kaggle.com/c/fake-news/overview
https://github.com/smolPixel/DACOLING2022
https://github.com/smolPixel/DACOLING2022
https://github.com/1024er/CBERT_aug
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a sentence using BERT (Devlin et al., 2019). To
ensure class coherence, the label is prepended to
the sentence so that BERT learns to generate words
of the right class. Finally, we use BERT from the
jiant toolkit (Pruksachatkun et al., 2020) as our
classifier.

Table 3 shows the average accuracy over the
four datasets for each algorithm and starting sizes,
while doubling the number of sentences5. Standard
deviations over the 15 runs and all datasets range
from 0.4 to 1.0, with CBERT and VAE-Sep achiev-
ing the lowest on average. We can also observe
that VAE-Sep and VAE-Linked perform the best,
surpassing the other algorithms by 0.3 points, on
average. Linking the encoders and embeddings
ultimately does not improve the performance over
having completely separate systems. We posit that
this is because the main advantage of VAE-Sep is
that the separate decoders have little chance of gen-
erating examples of the wrong class, and therefore
sharing the encoders is not advantageous as long as
the system is good enough to help correctly train
the decoder(s). We analyze this phenomenon fur-
ther in Section 7. We show that even if the improve-
ment is small in terms of performance, VAE-Sep
and VAE-Linked bring a clear advantage over the
other generative algorithms when looking at the
number of erroneous sentences generated.

We also notice that CBERT and CVAE perform
the second-best on average. While CBERT per-
forms well when the dataset size is bigger, it under-
performs on small datasets. CVAE on the other
hand performs well on small dataset sizes, but
badly on larger ones, similarly to the VAE-Par. Fi-
nally, we observe that the larger the initial dataset
size, the harder it is to get an augmentation of per-
formance, as noticed in (Dai and Adel, 2020).6

In Figure 4, we show the performances of our
algorithms on the individual datasets. We see that
while VAE-Sep globally outperforms other algo-
rithms, it sometimes has more difficulties, such as
for the Irony or FakeNews datasets. It is possi-
ble that this is due to the nature of the data itself,
where differences between the classes come more
from syntactic differences than from differences in
vocabulary. This implies that chances of generat-

5For reference, the maximum accuracy obtained when
training with all data and no data augmentation is of 90.9%
for SST-2, 95.6% for FakeNews, 69.0% for Irony, and 99.96%
for Subj.

6We also note that even if it has a small standard deviation,
the performance of CBERT is very uneven through the datasets
and dataset sizes.

500 1000 1500 2000 Aver.
Baseline 81.2 83.8 85.6 86.8 84.4
CBERT 82.2 84.5 85.8 86.9 84.9
VAE-S 83.1 85.0 86.0 87.0 85.2
VAE-L 83.0 84.8 85.9 87.0 85.2
VAE-P 82.2 84.0 85.3 86.3 84.5
CVAE 83.0 84.6 85.6 86.5 84.9

Table 3: Average accuracy for the four starting sizes
over the four datasets. VAE-S stands for VAE-Sep,
VAE-L for VAE-Linked, and VAE-P for VAE-Par. By
running a multivariate t-test between the baseline results
and the augmentation, we found that all presented a
significant difference (p<0.05) except for CBERT 1500,
VAE-S 1500, VAE-L 1500, CVAE 1500, and VAE-S
2000. Bold results indicate the best results for each
starting sizes.

ing from the wrong class augment, and therefore it
loses a bit of its advantage.

In Table 4, we show examples of generated sen-
tences, which help give a clearer picture of the out-
put of the algorithms. We analyze the results and
the limits of each algorithms in the next section.

7 Analysis

We showed that the VAE-Sep method outperformed
other methods by 0.3% globally. In this section, we
analyze the algorithms and posit some hypothesis
as to why it works better.

7.1 Erroneous sentences

We first take a look at the generated sentences and
present the percentage which is erroneous (either
has the wrong label or a human is unable to label
it), as well as the percentage of sentences that are
copies of genuine examples. For the former, we
take the data generated for SST-2 with a starting
size of 1000 (see Table 4), and manually look at
100 randomly selected examples, 50 positives and
50 negatives. For the latter, we look through all
starting dataset sizes and all datasets and compute
the percentage of generated sentences that are iden-
tical to a sentence in the training set (a total of 5000
sentences per algorithm). We also report various
averages of length to give a better idea of the gen-
eration process, namely the length of erroneous
sentences, the length of identical sentences, and the
average length of generated examples.

Table 5 presents the results of our analysis. We
see first that VAE-Sep, VAE-Linked, and CBERT
clearly produce less errors than the other meth-
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(a) SST-2

(b) FakeNews

(c) Irony

(d) Subjectivity

Figure 4: Performance of the various augmentation tech-
niques on four dataset sizes (500, 1000, 1500, 2000) for
the four datasets. Results are averaged over 15 runs.

Algo Generated sentence Polarity

VAE-S

a rather brilliant little cult
item: a pastiche of chil-
dren’s entertainment, su-
perhero comics.

Positive

the problem with all of the
characters, the characters
forget their lines and no
surprises.

Negative

VAE-L

it’s a pleasure to watch. Positive
it’s a frankenstein-monster
of a film that doesn’t know
what to be.

Negative

CVAE

it is a coming-of-age, and
cautionary parable, but
he was a great character
study.

Positive

ultimately, the film
amounts to being lectured,
you’s not up for the mate-
rial, and offer’s spiritual
quest to sustain it.

Negative

VAE-P

about schmidt is nichol-
son’s goofy, heartfelt king
lear.

Positive

the whole is a disaster, but
capra are rolling in the
face.

Negative

CBERT

like a tarantino movie with
heart, alias betty is richly
detailed, deftly executed
and utterly absorbing.

Positive

an awkwardly garish
showcase that diverges
from anything remotely
probing or penetrating.

Negative

Table 4: Examples of generated sentences for each al-
gorithm for the SST-2 dataset and with a dataset size of
1000.

ods, which is unsurprising due to the nature of
the algorithms, and highlights the benefits of us-
ing separate decoders instead of a unique one. We
note that CBERT has a very large proportion of
examples that are identical to the starting exam-
ples. We find that this is a natural consequence
of using a large pre-trained model. As they are
trained to predict masked words, they will natu-
rally tend to predict the correct masked words with
high accuracy, and therefore often produce identi-



3460

VAE-S VAE-L CVAE VAE-P CBERT
Av. len 12.7 13.9 13.2 13.9 15.1

% wrong 5 6 34 27 5
Av. len 12.8 15.2 18.1 18.8 7.8

% id 1.5 6.7 1.1 2.9 43.5
Av. len 7.7 10.6 8.8 7.2 12.4

Table 5: Some statistics on the generated sentences for
the five algorithms. % wrong refers to the percentage
of erroneous sentences (unable to label or of the wrong
class), and % id refers to the percentage of identical
sentences generated by the algorithm.

Algo Sentence

VAE-S
he’s rare to be said, but it’s never.
a sleek advert youthful anomie
anomie that strives for equals.

VAE-L
amazingly dopey.
a company.

VAE-P

he doesn’t take a great, and he
doesn’t have a very real.
ponderous a kiss, a film is a fea-
ture film.

CVAE
an exit, while that this is that it,
not entirely.
the story is as the get-go.

CBERT
not enjoyable.
a processed marvelous chop suey.

Table 6: Examples of erroneous sentences (pos/neg) for
the SST-2 dataset with a starting dataset size of 1000.

cal examples. This also explains why their average
length is much higher than for the generative algo-
rithms, which have a tendency to produce duplicate
examples when they end their generation process
prematurely. CBERT, in opposition, produces du-
plicates as a natural consequence of its inner work-
ing. It is curious that VAE-Linked tends to produce
more duplicate examples than the other genera-
tive algorithms. Most of these happens when the
dataset size is small (500, 1000), and we posit that
it is because using separate decoders for important
characteristics (in this case, the class) makes the
model more robust than a normal VAE, allowing
it to have a lower reconstruction error. While this
is supported by our qualitative analysis of the gen-
erated sentences of the VAE-Linked, which seems
better than both generated sentences by VAE-Sep
and VAE-Par, a full analysis of this phenomenon is
outside the scope of this work.

Figure 5: Accuracy vs final dataset size for a starting
size of 1000 and the SST-2 task.

In Table 6, we show examples of erroneous sen-
tences for all five algorithms. We observe that for
the four generative algorithms, errors come mostly
from examples that are neither positive nor nega-
tive. Rather, they are simply ill-formed. VAE-Sep
and VAE-Linked create fewer of these because, as
they are trained on the vocabulary of only one class,
there are generally some words that pop up that al-
low us to determine, however tenuously, the correct
class.

7.2 Number of generated sentences

Up to now, we asked the DA methods to double the
size of the starting set. Here, we wonder whether
generating more data would be useful, and to what
extent.

Figure 5 shows for SST-2 what happens when
we double, triple, etc, the size of the dataset with a
starting size of 1000 sentences. The figure reveals
an interesting phenomenon. None of the genera-
tive algorithms seem to benefit much from more
augmentation, but CBERT does. However, the per-
formance stops increasing at 88.6% of accuracy,
which VAE-Sep reaches by simply doubling the
dataset. This phenomenon is most likely directly
related to the repetition of sentences produced by
CBERT. In order to get the same amount of new
informative sentences as VAE-Sep, the augmenta-
tion algorithm has to be applied several times. An
alternative could be to introduce a filter that only
accepts augmented sentences if it is not already
present in the dataset, but since the focus of this
study was on the VAE models and not on improv-
ing existing DA techniques, we leave this for future
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work7.

8 Implications

In this work, we show that VAE-Sep, a data aug-
mentation algorithm that doesn’t require external
data, obtains a satisfying performance, even sur-
passing CBERT, a data augmentation algorithm
using a pretrained neural network. While the VAE-
Sep algorithm, at the moment, only on BERT for
English sentence classification, the next step of the
research is to test it on rare languages.

A large portion of NLP research focuses on En-
glish text, and even as pretrained multilingual mod-
els are allowing a good performance on multilin-
gual data, such as XLM (CONNEAU and Lample,
2019), mBart (Liu et al., 2020), or M2M100 (Fan
et al., 2021), labelled data in the target language is
still needed for fine-tuning.

The VAE-Sep approach that we use in this pa-
per does not require any form of external data, and
is therefore usable for data augmentation for rare
languages. We have also shown that it works well
on BERT, so we expect that it would also help on
multilingual pretrained transformers, most directly
mBERT (Pires et al., 2019), but we leave the con-
firmation of this hypothesis for future work.

9 Conclusion and future work

Efficiently augmenting datasets is a central issue in
machine learning. It can increase performance for
all kinds of tasks, and has also been shown to help
while distilling models (Kamalloo et al., 2021).

In this paper, we consider data augmentation us-
ing simple generative models based on the VAE
architecture, which has the advantage that they do
not need external data to work. We compare two
methods used in the literature, paraphrasing and
conditional generation, to another where we train
one separate VAE per class. Furthermore, we com-
pare ourselves to an established method, CBERT,
which performs substitutions of random words in
the sentence using a pre-trained conditionnal BERT
model. We show that VAE-Sep and VAE-Linked
consistently outperform other methods (CBERT,
CVAE, VAE-Par), with an average gain in accuracy
of 0.3%, on four binary classification tasks and four
initial dataset sizes.

7Preliminary experiments indicate however, that it does
not improve the performance of CBERT in any significant
manner.

This study opens the door to interesting follow-
up research. First, we contrasted generative ap-
proaches with CBERT, which showed good per-
formance. However, due to a lack of objective
comparison in the literature, we cannot guarantee
CBERT delivers SOTA results. Such a comparison
would help the field hone in on efficient techniques
and work with a common basis. It would also
be interesting to observe how VAE-Sep algorithm
performs on multi-class datasets, since each VAE
receives only members of one class and therefore
would receive less training data on multiclass tasks.

The VAE-Sep algorithm also has possibilities of
improvements. While in this study we used basic
textual VAEs, there are many systems that have
been developed for better VAEs that could be used.
As mentioned, we take interest in VAEs because
they allow data augmentation without using exter-
nal data, which is useful for domains with limited
data, but it would be interesting to see the perfor-
mance if we allowed the usage of external data, for
example by using pre-trained embeddings or even
pre-trained transformers (Park and Lee, 2021; Li
et al., 2020).

Finally, there is always the question of under-
standing why exactly data augmentation helps.
While it is starting to be studied (Jha et al., 2020),
we are far from fully understanding the DA pro-
cess. Understanding it would not only help create
stronger DA algorithms for modern deep neural net-
works, but furthermore help understand how these
networks learn data representation.
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