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Abstract

This paper analyses the degree to which dialect
classifiers based on syntactic representations
remain stable over space and time. While pre-
vious work has shown that the combination of
grammar induction and geospatial text classifi-
cation produces robust dialect models, we do
not know what influence both changing gram-
mars and changing populations have on dialect
models. This paper constructs a test set for
12 dialects of English that spans three years
at monthly intervals with a fixed spatial distri-
bution across 1,120 cities. Syntactic represen-
tations are formulated within the usage-based
Construction Grammar paradigm (CxG). The
decay rate of classification performance for
each dialect over time allows us to identify re-
gions undergoing syntactic change. And the
distribution of classification accuracy within
dialect regions allows us to identify the degree
to which the grammar of a dialect is internally
heterogeneous. The main contribution of this
paper is to show that a rigorous evaluation of
dialect classification models can be used to find
both variation over space and change over time.

1 Geographic Variation Over Time

This paper experiments with the stability of dialect
classification models over space and time in order
to determine the degree to which they capture lan-
guage variation and change. The assumption in pre-
vious work has been that a geo-referenced corpus
(Davies and Fuchs, 2015; Cook and Brinton, 2017;
Dunn, 2020) captures the linguistic behaviour of
specific populations. This paper experiments with
the spatial and temporal stability of dialect mod-
els by systematically constructing monthly test sets
spanning a three-year period. This allows us to eval-
uate the continuing effectiveness of dialect models
over time, an important criteria for determining
their validity. Because different locations represent
different populations, we use spatial sampling to
construct test sets which represent different local

populations within each country. This allows us to
determine the degree to which a dialect like New
Zealand English adequately represents the varied
populations within New Zealand.

Dialect classification is the task of predicting
the location of origin for the individual who pro-
duced a given sample (Dunn, 2019b; Chakravarthi
et al., 2021; Gaman et al., 2020). Thus, dialect
classification, by focusing on the latent proper-
ties of geo-referenced samples, differs from geo-
location (Rahimi et al., 2017) which focuses on pre-
dicting the location of the sample itself and from
geo-characterization (Adams and McKenzie, 2018)
which focuses on predicting attributes of the lo-
cation. While all three tasks rely on geographic
information, dialect classification is unique in mod-
elling variations in the linguistic system. Beyond
this, dialect classification is part of ensuring that
NLP represents the world’s population, including
non-standard and non-western populations.

The temporal evaluation (Section 6) shows that
most dialects share the same performance decay
rate. This indicates a general effect of model decay
rather than cases of change over time within indi-
vidual dialects. The spatial evaluation, however,
shows that prediction accuracy for all dialects is
spatially-conditioned within countries (Section 7).
This indicates that, while dialect models capture
proto-typical populations within each country, they
do not equally describe all local populations.

The experiments in this paper use construction
grammar (CxG: Goldberg 2006; Langacker 2008;
Croft 2013) to represent syntactic structure for the
purpose of observing dialectal variation. CxG is
a usage-based approach to syntax, a bottom-up
theory of language in which frequent exposure is
hypothesized to lead to the emergence of grammat-
ical units (Hopper, 1987; Bybee, 2006). The use of
syntactic representations for dialect classification
ensures that the model does not rely on extraneous
information like place names or local topics of in-
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terest. From this perspective, a GRAMMAR is a set
of constructions that together represent the struc-
ture of a language. A DIALECT MODEL is a matrix
of spatial weights in which the number of rows
corresponds to the number of constructions in the
grammar and the number of columns corresponds
to the number of dialects. These weights, learned
using a Linear SVM, support dialect classification
and also represent spatial variation in the grammar.

In order to undertake a spatio-temporal evalu-
ation, we collect a balanced corpus of tweets to
represent 12 varieties of English around the world.
The basic experimental paradigm is to train models
on a fixed period (July through December 2018)
and then test those models at monthly intervals
from 2019 to 2021. Each monthly test set main-
tains the same geographic distribution as the train-
ing data, so that fluctuations in performance are not
caused by changes in the locations represented.

After considering related work on dialect classi-
fication and other geographic models (Section 2),
we consider the corpora used in these experiments
(Section 3). We then present the syntactic represen-
tations used (Section 4) and the basic experimental
methods (Section 5). The performance of dialect
models over time is presented in Section 6 and the
performance over space in Section 7. The main
contribution of this paper is to show that the per-
formance of dialect classification models remains
stable over time but that there is significant spatial
variation in performance within dialect areas.

2 Related Work

Early work showed that part-of-speech trigrams are
able to distinguish between some regional dialects
(Sanders, 2007), a method that continues to appear
in recent work (Kreutz and Daelemans, 2018). Sim-
ilar methods have been used for authorship analysis
(Hirst and Feiguina, 2007) and for characterizing
immigrant populations (Nerbonne and Wiersma,
2006). In other contexts, non-syntactic features
can out-perform syntactic features for modelling di-
alects (Kroon et al., 2018), so that many approaches
to distinguishing between dialects are similar to
language identification models (Ali, 2018).

More recent work has modelled geographic syn-
tactic variation by combining grammar induction
with geospatial text classification (Dunn, 2018a,
2019b,c). The use of grammar induction to learn a
syntactic feature space mitigates the fact that most
grammars represent standard varieties (Jørgensen

et al., 2015), thus poorly representing many dialects
around the world. In this paradigm, the learned
grammar provides a feature space (c.f., Section 4)
and the frequency of grammatical constructions in
each sample is used to model dialects: a bag-of-
constructions approach to text classification.

Most work on geographic variation is focused
on lexical variation (Eisenstein et al., 2010) and
change (Eisenstein et al., 2014). Recent work has
shown a close correspondence between lexical vari-
ation in tweets and lexical variation in a dialect
survey (Grieve et al., 2019). This work is important
for showing that digital usage mirrors face-to-face
usage. Other work has shown that geographic varia-
tion can be taken into account during language iden-
tification to ensure the inclusion of non-standard
varieties (Jurgens et al., 2017). Models of lexi-
cal variation have generally failed to account for
polysemy, so that competition between senses is
not captured (Zenner et al., 2012), but more recent
work has been able to account for polysemy in this
context (Lucy and Bamman, 2021).

A related line of work uses language data to
model non-linguistic properties of populations and
places. For example, the problem of geo-location
is to predict the location of a user given properties
of a document (Wing and Baldridge, 2014; Alex
et al., 2016; Rahimi et al., 2017). This task differs
from dialect classification in that named entities
and topic features can provide significant informa-
tion. A related task is to model the characteristics
of a particular place rather than the population of
that place (Adams, 2015; Adams and McKenzie,
2018; Hovy and Purschke, 2018; Villegas et al.,
2020). While there is a close connection between a
place and its population, this line of work remains
focused on characterizing non-linguistic attributes.

This paper makes two main contributions: First,
it experiments with geographic syntactic variation
over time and within dialect regions, significantly
expanding our understanding of geographic varia-
tion in syntax. Second, from a more practical per-
spective, this paper evaluates the degree to which
geographic models remain robust over space and
time, an evaluation not previously available.

3 Geographic Language Data

This paper draws on social media data from the
Corpus of Global Language Use (CGLU), using
geo-referenced tweets that are identified for lan-
guage using the idNet package (Dunn, 2020). The
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Circle Region Country N. Cities N. Words
Inner-Circle Oceania Australia 98 3.9 mil
Inner-Circle Oceania New Zealand 99 2.0 mil
Inner-Circle North American Canada 95 4.9 mil
Inner-Circle North American United States 86 4.5 mil
Inner-Circle European Ireland 100 3.6 mil
Inner-Circle European United Kingdom 89 5.5 mil
Total Inner-Circle 3 6 567 24.4 mil
Outer-Circle African Ghana 69 1.1 mil
Outer-Circle African Kenya 98 1.8 mil
Outer-Circle South Asian India 96 2.5 mil
Outer-Circle South Asian Pakistan 100 1.0 mil
Outer-Circle Southeast Asian Malaysia 99 0.8 mil
Outer-Circle Southeast Asian Philippines 91 1.1 mil
Total Outer-Circle 3 6 553 8.37 mil

Table 1: Inventory of Regions, Countries, and Cities for Data Collection (One Month)

collection method for social media in the CGLU

involves geographic searches from co-ordinates of
individual cities. Here we sample from 1,120 cities
representing 12 countries and six regions, as shown
in Table 1. This table shows the amount of data
by place by month. The total data set contains six
months for training and 36 months for testing. The
data set as a whole is visualized at earthLings.io.

This corpus is designed to provide a balanced
representation of different varieties of English over
time. The colonial history of English has led to a
distinction within the World Englishes paradigm
(Kachru, 1990) between inner-circle varieties that
represent the first diaspora (e.g., Canada) and outer-
circle varieties that represent the second diaspora
(e.g., India). We include six dialects/varieties each
from the inner-circle and outer-circle groups.

Within each group we include three regions, each
with two country-level varieties. As shown in Ta-
ble 1, the inner-circle group contains three regions:
Oceania (Australia and New Zealand), North Amer-
ica (Canada and the US), and Europe (the UK and
Ireland). The collection of data from these coun-
tries is distributed across 567 cities, where each
city represents a 50km radius from the city center.
For each month, we sample 24.4 million words
representing these inner-circle varieties.

The outer-circle group also contains three re-
gions: Africa (Ghana and Kenya), South Asia (In-
dia and Pakistan), and Southeast Asia (Malaysia
and the Philippines). The collection of data from
these countries is distributed across 553 cities, with
a comparable sample of 8.37 million words for

each month across the training and testing periods.

To maintain a comparable geographic distribu-
tion over time, we maintain the same number of
samples from each city. This means, for example,
that the relative influence of Brisbane and Perth
in Australia remain constant over time. A sample
for the purposes of this paper is an aggregation of
individual tweets from the same place and time
until the sample reaches 500 words. These larger
samples provide more syntactic information for
each dialect than do individual tweets. While previ-
ous work has used samples of 1,000 words (Dunn,
2019b), here we use smaller samples in order to
increase the capacity for error analysis. As with
many tasks, there is a trade-off between the higher
accuracy provided by larger sample sizes and the
flexibility provided by smaller sample sizes.

The distribution of samples across cities is taken
from the training period (2018). Thus, the density
of data by location across time is fixed to repre-
sent the density during the training period. This
allows us to control for changes in the collection:
for example, if Wellington began to produce more
data in 2021, this change in distribution within
New Zealand would appear to be syntactic varia-
tion while actually reflecting a change in the means
of observation. Data collection spans from 07-2018
until 12-2021, a period of 42 months. The train-
ing period is 2018 and the testing period is 2019
through 2021. The geographic distribution across
countries, as shown in Table 1, is held constant
across this period, controlling for other sources of
variation that might impact dialect models.

https://www.earthlings.io
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4 Syntactic Representations

This section details the main ideas of construction
grammar (CxG), including both (i) the grammar
induction algorithm used to learn syntactic repre-
sentations here and (ii) examples of constructions
used in the dialect models. The basic approach
here is, first, to use grammar induction to learn a
grammar and, second, to use the frequency of the
constructions in that grammar to undertake geospa-
tial text classification (Dunn, 2019b,c).

CxG can be distinguished from other approaches
to syntax given its three core ideas: First, CxG
posits a continuum between the lexicon and the
grammar rather than a strict separation (for exam-
ple, into a vocabulary and a set of phrase structure
rules). This CONSTRUCTICON contains both lexi-
cal items and traditional syntactic structures. For
example, a grammar-and-lexicon approach would
analyze (a) below as an intransitive sentence by
labelling the verb laugh as intransitive. The prob-
lem is that verb valency is quite fluid, as shown
in (b) and (c). The CxG analysis of this fluidity
is that (a) represents an INTRANSITIVE construc-
tion into which laugh is merged and (b)/(c) repre-
sent a CAUSED-MOTION construction into which
laugh is merged. Thus, the fluidity of the argument
structure here is explained by an underlying con-
struction, itself meaningful, which interacts with
specific lexical items. (Note that the grammar used
for modelling dialects does not contain any individ-
ual lexical items as constructions).

(a) Peter laughed.
(b) The audience laughed Peter off the stage.
(c) His marriage laughed Peter into rehab.
(d) Peter laughed all the way to the bank.

A second main idea in CxG is that syntactic
structure varies in its level of abstractness, with
some representations being quite item-specific.
The constructicon is an inheritance hierarchy
in which fully-productive constructions like the
CAUSED-MOTION construction in (b)/(c) have item-
specific children like the idiom in (d). Essentially,
(d) is a non-compositional and idiomatic version
of the construction in (b)/(c) with some of the slots
constrained to require a fixed phrase.

(e) [SYN:NP – SYN:VP]
(f) [SYN:NP – SYN:VP – SEM:object – SEM:loc]
(g) [SYN:NP – SYN:VP – LEX:all the way to the bank]

A third main idea in CxG is that constructions
are constraint-based representations in which slot-
fillers are drawn from lexical, syntactic, and se-
mantic categories. Each unit in a construction is a
slot, separated by dashes in (e)/(f)/(g) above. Each
slot is defined using a slot-constraint. For exam-
ple, the INTRANSITIVE construction in (e) can be
represented using only syntactic constraints. In
contrast, the CAUSED-MOTION construction in (f)
has two semantic constraints; these are labelled for
purposes of exposition as object and location. The
construction in (g) is item-specific and idiomatic,
so that it can only be described using lexical con-
straints. The point, then, is that different levels
of abstraction are captured in CxG using different
types of slot-constraints.

This paper draws on previous approaches to
the unsupervised learning of constructions (Dunn,
2017, 2018b). The first challenge is to build the
inventory of lexical, syntactic, and semantic con-
straints that constructions are built on. Here we
use the most frequent 100k words across the en-
tire corpus of tweets as the lexicon. The syntactic
constraints are drawn from the Universal Part-of-
Speech tagset (Petrov et al., 2012) as implemented
by the Ripple-Down-Rules tagger (Nguyen et al.,
2016). The semantic constraints are drawn from
fastText embeddings (Grave et al., 2019) clustered
into discrete semantic domains using k-means. A
complete inventory of these semantic domains is
provided in the supplementary material; this ap-
proach ignores polysemy in lexical items when
defining semantic constraints, using a single repre-
sentation for each word-form.

From the perspective of varying levels of ab-
stractness, syntactic constraints are the most gen-
eral because they are divided into the smallest in-
ventory of labels (only 14). Lexical constraints are
the least general, with a lexicon of 100k words.
And semantic constraints are in the middle, with an
inventory of 1,000 domains. This parameter choice
(i.e., using 1,000 semantic domains) results from
the desired granularity in domains, falling between
the very general syntactic constraints and the very
specific lexical constraints. Thus, constructions are
a sequence of slots, each of which is defined by a
slot-constraint. Each type of slot-constraint (lexi-
cal, semantic, and syntactic) differ in their level
of abstractness. For instance, lexically-defined
constructions are more idiomatic and item-specific
than syntactically-defined constructions.

https://jdunn.name/2022/09/12/stability-of-syntactic-dialect-classification-over-space-and-time/
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This work relies on a loss function based on Min-
imum Description Length (Goldsmith, 2006; Grün-
wald and Rissanen, 2007) and a construction parser
with a beam-search strategy (Dunn, 2019a) that
operates on top of a psychologically-plausible asso-
ciation measure, the ∆P (Ellis, 2007). The contri-
bution of this paper is to analyze syntactic variation
across space over time using previous work on com-
putational CxG; thus, we do not provide a fuller de-
scription of the framework here. Previous work has
shown that these grammars converge onto stable
representations as the amount of training data is in-
creased (Dunn and Tayyar Madabushi, 2021), that
grammars of individuals are significantly different
than grammars of groups of individuals (Dunn and
Nini, 2021), and that transformer-based language
models can be fine-tuned using constructional in-
formation (Tayyar Madabushi et al., 2020).

The grammar used in these experiments is
learned from the training period (2018) but includes
a wider pool of 18 English-speaking countries in
order to provide a global grammar of English. This
larger training corpus for grammar induction con-
tains 478 million words. The fastText embeddings
are trained on this same extended corpus, but cover-
ing the entire period in order to increase the amount
of data available for training; this larger corpus
contains 4.2 billion words. This results in a single
grammar that contains 6,119 individual construc-
tions, some of which are shown in (h) through (n)
below. Dialect models are learned by parsing each
sample using this grammar, counting the frequency
of each construction in each sample, and using
the resulting feature space for dialect classification.
The complete grammar, along with examples from
the training data for each construction, is available
in the supplementary material.

The following examples illustrate the nature of
constructions; both constructions like (h) and ex-
amples like (h1) are drawn from the grammar used
in the experiments. Each slot in (h) is separated
by dashes and each slot-constraint is defined us-
ing lexical (LEX), syntactic (SYN), or semantic
(SEM) categories. Lexical constraints are words
given in italics; syntactic constraints are drawn
from part-of-speech tags; and semantic constraints
are formulated using numbers that refer to clustered
embeddings, such as <443> in (k). For dialect clas-
sification, each construction (h) provides a feature
and the frequency of that construction (h1 through
h3) provides a sample-specific quantification.

(h) [LEX:it – SYN:AUX – SYN:V]
(h1) ‘it is set’
(h2) ‘it was shut’
(h3) ‘it can go’

The first example, in (h), shows a simple clause
with an expletive it as subject and a variable aux-
iliary verb. The example in (i) is a lexically-
constrained noun phrase with ability as the head of
an infinitival verb. A further lexically-constrained
noun phrase in (j) shows the importance of a tweet-
specific grammar: ur replaces the more traditional
your as the pronoun.

(i) [LEX:ability – LEX:to – SYN:V]
(i1) ‘ability to focus’
(i2) ‘ability to live’
(i3) ‘ability to wait’

(j) [LEX:ur – SYN:ADJ – SYN:N]
(j1) ‘ur new journey’
(j2) ‘ur own money’
(j3) ‘ur mad tunes’

The adposition phrase in (k) contains a semantic
constraint on the complement noun, in this case a
type of location. As an example of how construc-
tions themselves can be meaningful, (l) shows a
copula construction with an ending conjunction.
But the construction as a whole marks a caveat on
the evaluation that is expressed by the copula.

(k) [SYN:ADP – SYN:N – <443>]
(k1) ‘along airport road’
(k2) ‘in union station’
(k3) ‘into police station’

(l) [SYN:N – LEX:was – SYN:ADJ – SYN:CC]
(l1) ‘bike was awesome but’
(l2) ‘birthday was great and’
(l3) ‘movie was better but’

The more complicated verb phrase in (m) con-
tains a main verb, myself as a direct object, and an
infinitival verb. This implicitly constrains the main
verb to verbs of thinking like compare and tell,
showing that implicit semantic constraints arise
from interactions between slots. Finally, the com-
plex noun phrase in (n) reflects a specific template
of NP + ADP. In this way, constructions capture
grammatical units of varying size and abstractness.

https://jdunn.name/2022/09/12/stability-of-syntactic-dialect-classification-over-space-and-time/
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Figure 1: F-Score Against Baselines Over Time, All Varieties

(m) [SYN:V – LEX:myself – LEX:to – SYN:V]
(m1) ‘allowing myself to hope’
(m2) ‘forcing myself to sleep’
(m3) ‘tell myself to stop’

(n) [LEX:the–SYN:N – LEX:of – SYN:DET – SYN:N]
(n1) ‘the happiness of another person’
(n2) ‘the owner of the station’
(n3) ‘the masters of the game’

This section has presented CxG as a paradigm
for usage-based syntax and reviewed previous work
on computational CxG. An unsupervised construc-
tion grammar is learned from the training period,
providing an adaptable feature space that contains
structures from many different dialects. As the dis-
cussed examples show, these learned constructions
provide a rich syntactic feature space for modelling
geographic variation in production over time.

5 Dialect Models

The task of dialect classification or identification
is to predict the location of origin for the author
of a sample given some set of linguistic features.
The classification here predicts country-level di-
alects like New Zealand English or Australian En-
glish. From the perspective of linguistics, dialect
classification allows us to study variation in a high-
dimensional space: variation across an entire gram-
mar (Dunn, 2019b) rather than variation in individ-
ual and independent features (Grieve et al., 2019).
From the perspective of NLP, dialect classification
is part of the general problem of ensuring that lan-
guage technology represents the world’s population
rather than privileged sub-sets of the world’s popu-
lation (Dunn and Adams, 2020).

Because part of the goal is to model spatio-
temporal variation in the grammar, a dialect model
takes the form of a matrix in which each feature

(a construction in the grammar) is a row and each
dialect (a country-level label) is a column. This
matrix represents the degree to which a given part
of the grammar is subject to geographic variation.
Taken row-wise, this matrix provides a measure
of whether a particular construction varies across
space. And, taken column-wise, this matrix pro-
vides a description of each dialect that, for example,
can be compared with every other dialect to deter-
mine which are the most similar. As discussed
below, dialect models are implemented as Linear
SVMs that are trained using a bag-of-constructions
approach in which the parser counts how many
times each construction occurs in each sample.

Using the data from 2018 for training, we com-
pare three models: First, a syntactic model based
on the frequencies of the constructional features
described above. Second, a baseline model that
uses the frequency of function words like of or
was, a common baseline for problems in authorship
analysis (Grieve, 2007; Stamatatos, 2009; Arga-
mon, 2018) when content words need to be avoided.
Third, for the purpose of comparison, we include a
unigram lexical model with TF-IDF weighting and
function words removed so that it contains no syn-
tactic information. Each of these models are imple-
mented as a Linear SVM. Within this task, SVMs re-
main competitive, as shown by recent shared tasks
on Romanian dialect identification (Gaman et al.,
2020) and on identifying similar Uralic languages
(Chakravarthi et al., 2021). In each case, we use a
development set to determine parameters.

In each case, we train three models: INNER con-
tains only inner-circle varieties like American En-
glish; OUTER contains only outer-circle varieties
like Indian English; and ALL contains all 12 vari-
eties. These are trained on the data from 2018 and
tested on data from 2019, 2020, and 2021. The
reason for maintaining separate models in some
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Figure 2: F-Score by Country Over Time for CxG Model, Inner-Circle Varieties

conditions is that inner-circle varieties have sig-
nificantly more training and testing data available,
which could lead to higher performance as an arti-
fact. Thus, for example, the inner-circle condition
contains only training and testing data from the six
countries listed as inner-circle in Table 1.

As an initial analysis, the f-scores of each of
these three models over time is shown in Figure
1, with the y-axis indicating the weighted f-score
and the x-axis indicating time. All three classifiers
are well above the majority baseline. The lowest
performing is the function word model, a weak
approximation for syntactic variation. The highest
performing is the lexical model. This hierarchy
remains stable across the three year testing period.

AU CA IE NZ
australia canada ireland nz
australian canadian irish zealand
mate ontario dublin auckland
melbourne trump cork jacinda
sydney toronto limerick te
abc vancouver galway kiwi
brisbane trudeau lads liked
labor km hurling lincoln
nsw kpa county hamilton
turnbull alberta final kph

Table 2: Top Lexical Features By Country

Given the results in Figure 1, could we use the
lexical model to examine dialects? The issue, as in
previous work, is that the information contained in
this model does not represent linguistic variation.
Table 2 shows the top lexical items for four inner-
circle countries: Australia, Canada, Ireland, and
New Zealand. Most of these terms are place-names
(like australia), place-specific named-entities (like
abc), or people associated with these countries (like

jacinda). Only a few terms would qualify as di-
alectal variants, for example mates vs lads. As
a representation of latent linguistic variation, the
lexical model is not relevant; we thus focus on the
syntactic models in the remaining analysis.

6 Syntactic Variation Over Time

We begin the analysis by looking at the weighted av-
erage f-score by model for the beginning of the test
period (2019-01) and the end (2021-12), as shown
in Table 3. This represents the impact of time on
the overall accuracy. First, we see that outer-circle
models have better performance. The most likely
reason for this is that outer-circle varieties are more
distinct from one another, in part because these va-
rieties exist in more linguistically-diverse settings.
For example, the US is less linguistically diverse
than India in digital settings (Dunn et al., 2020).
Although outer-circle varieties have a higher av-
erage f-score, they also have a greater change in
f-score. This indicates more variability over time.

Function Grammar
Inner-Only, 2019-01 0.44 0.66
Inner-Only, 2021-12 0.40 0.59
Inner-Only Decline 0.04 0.07
Outer-Only, 2019-01 0.75 0.83
Outer-Only, 2021-12 0.66 0.75
Outer-Only Decline 0.09 0.08
All Dialects, 2019-01 0.48 0.66
All Dialects, 2021-12 0.44 0.58
All Dialects Decline 0.04 0.08

Table 3: Change in Performance Over Time by Model

Second, we notice in Table 3 that the relative
performance of function words and the CxG model
remain similar across the testing period. The full
grammar model always out-performs the function
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word baseline. We use a regression analysis to
model the decay rate for each dialect in the CxG
models, examining the amount of change in pre-
cision and recall over time (c.f., Figure 2). The
basic idea here is that a consistent decay rate in-
dicates model error while a faster rate of decay
for individual dialects indicates change in those
dialects themselves. Among inner-circle varieties,
only NZ has a significant difference from the oth-
ers, for recall but not for precision. A decline in
precision would mean that samples from other di-
alects have become more similar to NZ; this does
not happen. The observed decline in recall means
that samples from NZ have become more similar to
other dialects. This indicates that there has been a
significant change in NZ but not in other dialects.
No outer-circle varieties have a different decay rate,
so that only NZ shows this type of change.

AU CA IE NZ UK US
AU 0 0 0 0 0 0
CA 0 0 0 0 0 0
IE 0 0 0 0 0 -.04
NZ .16 0 0 0 .28 0
UK 0 0 0 0 0 0
US 0 0 0 0 0 0

GH IN KE MY PK PH
GH 0 -1.01 0 0 -.28 -.40
IN 0 0 0 -.91 0 0
KE 0 0 0 0 0 0
MY 0 0 0 0 0 0
PK -.20 0 0 0 0 .13
PH 0 0 0 0 0 0

Table 4: Changing Relationships Between Dialects
Using a VECM Analysis of False Positive Errors

The decay rate represents the overall trend for a
given dialect but it does not take into account the
specific errors made. The confusion matrix for each
dialect provides a monthly representation of the dis-
tribution of false positive errors. For example, in
the CxG model that includes all dialects, Canadian
English has 1,488 false positives as American En-
glish in the first test period, but only 48 with India
and 7 with Pakistan. This distribution of false posi-
tive errors over time provides a more detailed view
of the classifier’s performance. Because the classi-
fication model itself does not change after training,
changes in the distribution of errors reflect changes
that have arisen in a given dialect after training.

The question here is whether the relationship be-

tween dialects (geographic variation) changes over
time. We model this using a Vector Error Correc-
tion Model (VECM: Lütkepohl and Krätzig 2004).
This model checks for relationships between multi-
ple time series, which in this case reflect changing
error patterns between dialects. The data represents
a non-stationary time series because the number of
errors in all dialects increases over time (i.e., there
is a decline in performance as shown in Table 3).
To partially control for the increase in errors over
time, we examine the relative frequency of false
positives by country by month. The VECM model
allows us to determine if there is a significant long-
term trend in the distribution of errors from a given
dialect, robust to short-term variations.

We examine the significant changes by country
for the inner-circle and outer-circle models with
CxG features in Table 4. Only significant changes
are shown; negative values indicate that samples
for the row have become more frequently mistaken
for the column. Thus, for the inner-circle varieties,
NZ becomes more similar over time to Australia
and the UK. This means that, in addition to lower
classification performance, NZ is also subject to the
most change in the way it is situated among other
dialects. Outer-circle varieties on the whole are
subject to more change in error distribution over
time than inner-circle varieties. The analysis of de-
cay rates also shows that NZ was subject to change
over time; the difference is that this analysis takes
into account the distribution of errors rather than
viewing the error rate as a black box. The outer-
circle varieties have a changing error distribution,
but not a changing error rate.

7 Syntactic Variation Within Countries

While previous work has viewed a dialect area
as a homogeneous entity, here we have sampled
from approximately 100 points for each country
and maintained a consistent sample over time. To
what degree is the performance of dialect classi-
fiers driven by geographic trends within a country?
If a country like Australia has a single dominant
grammar, then the performance of the syntax-based
classifier should be relatively consistent within that
country. To test this hypothesis, we look at the
average accuracy over time for samples collected
from each point within a country.

This is shown in Table 5 with a global Moran’s I
used as a measure of spatial autocorrelation within
a country (Anselin, 1988). A common method in
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Moran’s I Mean Acc. Min Max
AU 0.30 61% 18% 83%
CA 0.54 65% 07% 100%
IE 0.17 58% 35% 89%
NZ 0.20 36% 08% 62%
UK 0.22 73% 41% 82%
US 0.18 79% 53% 97%

Moran’s I Mean Acc. Min Max
GH 0.30 86% 42% 94%
IN 0.38 84% 27% 95%
KE 0.24 89% 62% 97%
MY 0.70 79% 50% 95%
PK 0.42 70% 15% 87%
PH 0.20 77% 37% 88%

Table 5: Geographic Variation in Performance

geospatial statistics, Moran’s I measures the corre-
lation in a single variable (here, prediction accuracy
for dialect classification) across different locations.
This measure has values closer to 1 when the vari-
able is highly spatially organized and closer to 0
when there is no spatial organization. Given that
there are different numbers of samples from each
location, it is possible that a generic Moran’s I
would view sparse locations as outliers; thus, we
use the Empirical Bayes rate adjustment to control
for the level of precision in each location as well
(Xia and Carlin, 1998; Anselin et al., 2006).

The table also shows the mean accuracy across
cities and the min and max accuracy. These re-
sults show that there is an effect for location: the
dialect models work well in some places and not so
well in others. The Moran’s I determines whether
this variation in performance is spatially structured.
Because different locations represent different pop-
ulations, these are measures of how well the dialect
models work for the entire population of a country.
Full maps and spatial results are available in the
supplementary material.

All countries have a significant spatial pattern
to their accuracy distribution. Within inner-circle
countries, Canada has the highest deviation, with
a wide range in accuracy and a significant spatial
structure to that variation. The US and UK have the
highest accuracy, while NZ performs much worse
than other dialects, perhaps because of the change
over time discussed above. To explore this further,
we visualize the internal variation for NZ, the inner-
circle dialect with the lowest performance and the
most change over time, in Figure 3. Each collection

Figure 3: Map of Average City-Level Accuracy, NZ

point is a dot and the shading in the surrounding ra-
dius represents the accuracy for that collection area.
Darker colors represent higher accuracy. The main
cities (Auckland, Wellington, Christchurch) have
the most consistent performance. But areas with
known distinct linguistic landscapes like Northland
(far north) and Southland (far south) have much
lower accuracy. More rural areas around the coun-
try have consistently lower accuracy as well. The
main point in this spatial error analysis is that, be-
cause different locations represent different popu-
lations, the observed variations in accuracy show
that these dialect models do not equally represent
all populations within the country.

8 Conclusions

This paper has shown that syntax-based dialect
classifiers can reveal both spatial and temporal pat-
terns in linguistic variation. We find that the mod-
els remain robust over time, with a fixed decay
rate, with the exception of change observed in NZ.
This means that, while classification performance
does decline, the rate of decline is predictable and
evenly distributed. Within dialect regions, however,
there is a significant spatial effect on performance.
This evaluation is important for establishing an
understanding of how dialect models and other ge-
ographic models function in the face of on-going
linguistic change and population change over space
and time. Here, even the best dialect models do not
equally represent all speakers of a dialect.

https://jdunn.name/2022/09/12/stability-of-syntactic-dialect-classification-over-space-and-time/
https://jdunn.name/2022/09/12/stability-of-syntactic-dialect-classification-over-space-and-time/
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