
Proceedings of the 29th International Conference on Computational Linguistics, pages 3210–3225
October 12–17, 2022.

3210

CogBERT: Cognition-Guided Pre-trained Language Models

Xiao Ding, Bowen Chen, Li Du, Bing Qin, Ting Liu
Harbin Institute of Technology

{xding, bwchen, ldu, qbing, tliu}@ir.hit.edu.cn

Abstract

We study the problem of integrating cogni-
tive language processing signals (e.g., eye-
tracking or EEG data) into pre-trained mod-
els like BERT. Existing methods typically fine-
tune pre-trained models on cognitive data, ig-
noring the semantic gap between the texts and
cognitive signals. To fill the gap, we propose
CogBERT, a framework that can induce fine-
grained cognitive features from cognitive data
and incorporate cognitive features into BERT
by adaptively adjusting the weight of cognitive
features for different NLP tasks. Extensive ex-
periments show that: (1) Cognition-guided pre-
trained models can consistently perform better
than basic pre-trained models on ten NLP tasks.
(2) Different cognitive features contribute dif-
ferently to different NLP tasks. Based on this
observation, we give a fine-grained explana-
tion of why cognitive data is helpful for NLP.
(3) Different transformer layers of pre-trained
models should encode different cognitive fea-
tures, with word-level cognitive features at the
bottom and semantic-level cognitive features
at the top. (4) Attention visualization demon-
strates that CogBERT can align with human
gaze patterns and improves its natural language
understanding ability.1

1 Introduction

Pre-trained models such as BERT (Devlin et al.,
2019), GPT (Radford and Narasimhan, 2018) and
RoBERTa (Liu et al., 2019) have brought promis-
ing improvements to natural language processing
(NLP) tasks, such as event prediction (Li et al.,
2019) and sentiment analysis (Hoang et al., 2019).

On the other hand, from a language processing
perspective, cognitive neuroscience studies the bi-
ological and cognitive processes underlying lan-
guage processing in human brains. Researchers
specifically designed pre-trained models to cap-
ture how the brain represents language meaning

1Our code will be released upon publication.

The ISIS has done so many terrible things in Syria and caused chaos in the Mid East

The ISIS has done so many terrible things in Syria and caused chaos in the Mid East

The ISIS has done so many terrible things in Syria and caused chaos in the Mid East

NR

SC

NER

Human Attention (number of fixations)Task

0

5
fix(a)

(b)

(c)

Figure 1: Human attention in different settings. NR
(Normal Reading) means human reading without tasks.

(Schwartz et al., 2019; Toneva and Wehbe, 2019).
Prior work mainly incorporates cognitive signals
by explicitly fine-tuning the pre-trained model to
predict language-induced brain recordings.

However, this line of work cannot give a fine-
grained analysis and interpretation of why cogni-
tive data is helpful for NLP. This is of great im-
portance to guide future cognition-inspired NLP
studies on what kind of cognitive features should
be induced from cognitive data and how these cog-
nitive features contribute to NLP tasks. For exam-
ple, Figure 1 shows eye-tracking data from native
speakers of English, where Figure 1 (a) illustrates
the number of fixations during the normal reading
of humans. Figure 1 (b) and (c) show the num-
ber of fixations given the NLP task of sentiment
classification (SC) and named entity recognition
(NER), respectively. We can observe that human
attention is different for the same sentence, given
different NLP tasks. In particular, for the SC task,
people pay more attention to emotion words, such
as “terrible” and “chaos”. While for the NER task,
people tend to focus on named entity words, such
as “ISIS” and “Syria”. Unfortunately, prior studies
cannot give such fine-grained analysis by simply
fine-tuning pre-trained models on cognitive data.

To facilitate this, we propose CogBERT, a
cognition-guided pre-trained model. Specifically,
we focus on the effects of using eye-tracking data,
which provides gaze information from native speak-
ers by tracking eye movements and measuring fixa-
tion duration. Instead of directly fine-tuning BERT



3211

Name Independent Strands Index
Word Position ✓ Lower 1
Word Length ✓ Lower 2
NER Word ✓ Lower 3
Content Word ✓ Lower 4
Noun Phrase ✓ Upper 5
Emotion Word ✓ Upper 6
Active/Passive Aux

✓ Upper 7Poss/Prep Mod
Coordinating Conj
Prep/Adj Comp

✓ Upper 8Prep Obj

Table 1: Cognitive feature set. For syntactic features, to
avoid sparsity issue, we group active and passive aux,
poss and prep mod, and coordinating conj as one feature.
Prep, adj comp, and prep obj are grouped as one feature.
Aux, Poss, Prep, Mod, Conj, Adj, Comp, Obj are abbre-
viations for auxiliary, possession, preposition, modifier,
conjunction, adjective, complement and objective.

on cognitive data, we first extract psycholinguistic
features based on cognition theory (Scarborough
et al., 2009). Then we filter out statistically in-
significant features in the eye-tracking data (which
means that the human attention of words with these
features is not significantly higher/lower than the
average attention of words). Subsequently, we in-
corporate these cognition-validated features into
BERT by fine-tuning on different NLP tasks. In
the fine-tuning process, we would learn different
weights for each type of feature according to differ-
ent NLP tasks.

Our results show that CogBERT can perform
better than baseline systems on three benchmark
datasets across ten NLP tasks. We give a detailed
quantitative analysis of the contributions of differ-
ent cognitive features to different NLP tasks. Case
studies show that CogBERT does learn patterns of
human reading behavior compared to BERT. Our
findings can provide more insights into cognition-
enhanced NLP.

2 CogBERT

CogBERT works in a two-stage setting. The first
stage is to induce cognitive features from texts and
assign weights for these features guided by hu-
man reading signals. In the second stage, we inte-
grate cognitive features into BERT and learn task-
specific feature weights for different NLP tasks.

2.1 Cognitive Features Induction and
Validation

Psycholinguistic studies (Scarborough et al., 2009)
indicate that the acquisition of human reading abil-

Figure 2: Feature prediction by the Bi-LSTM.

ity is reflected in two aspects: “lower strands”
and “upper strands”. The lower strands (including
phonology, morphology, etc.) work together as the
reader becomes accurate and automatic with repe-
tition and practice. Meanwhile, the upper strands
(including language structures, semantics, etc.) re-
inforce each other and weave together with the
lower strands to produce a skilled reader. Inspired
by previous work, we construct an initial cogni-
tive feature set including 46 fine-grained cogni-
tive features extracted from texts using the spaCy
tool (Honnibal and Montani, 2017) and divide them
into lower strands features (word-level) and upper
strands features (semantic/syntax-level).

However, not all cognitive features are statis-
tically significant in eye-tracking data (Zuco 1.0
(Hollenstein et al., 2018), Zuco 2.0 (Hollenstein
et al., 2020), and Geco (Cop et al., 2016))2. Hence,
we filter out cognitive features that the human atten-
tion of words with these features is not significantly
higher/lower than the average attention of words,
retaining 14 usable cognitive features and group
them as 8 independent features shown in Table 1.
The statistically significant values of each cognitive
feature and details of feature validation are shown
in Appendix Table 1.

2.2 Learning Weighted Cognitive Feature
Vector

We can extract features from texts by using the
spaCy tool. Nevertheless, these features should not
be assigned to the same or random weights, as their
contributions to fitting human understanding of sen-
tences are different. Hence, as shown in Figure 2,
given an input sentence S = {w1, w2, . . . , wl}
with l words, we train a four-layer Bi-LSTM to

2Eye-tracking data is preprocessed by averaging across
readers.



3212

Figure 3: CogBERT Architecture. The Bi-LSTM generates feature vectors, which are used to generate feature
matrices m and feature vectors v. The readability score R and embeddings of [CLS] tokens HCLS are used to
compute feature weights o.

map each word embedding to a weighted eight-
dimensional cognitive feature vector. According to
the cognitive theory (Scarborough et al., 2009), we
believe that cognitive features can explain the allo-
cation of human gaze information. Hence, we use
gaze information (the number of fixations, nFix) of
eye-tracking data (Zuco 1.0, Zuco 2.0, and Geco)
as the supervision signals to train the Bi-LSTM
model (We also use fixation duration as the super-
vision signals and achieve the same experimental
results). We use the Mean Square Error (MSE)

loss lossG =
1

l

∑l
i=1(xi − yi)

2, where x ∈ Rl is

the predicted nFix score and y ∈ Rl is the golden
feature score.

On the other hand, to avoid predicting an un-
reasonable feature score, we also compute the
MSE between the predicted feature score matrix
P = {p1, . . . ,pl} ∈ Rl×r and the golden score
matrix Q = {q1, . . . ,ql} ∈ Rl×r (for exam-
ple, if a word wi is a NER word, its golden fea-
ture score is 1 on the feature dimension of NER),
where pi and qi is a r-dimensional vector and
r is the number of features, which we denote as

loss lossF =
1

l

∑l
i=1

1

r

∑r
j=1(pij − qij)

2. Then
the model is trained with the objective lossT =
α× lossG + (1− α)× lossF , where α ∈ [0, 1] is
a model parameter to weight the two loss functions
(the best development results were obtained with
α = 0.5).

Note that we use the Bi-LSTM model to predict
cognitive features rather than using a regression
model to compute the feature score. The main
reason is that our goal is to learn the human reading
behavior rather than simply fitting the data.

2.3 Incorporating Cognitive Features into
BERT

2.3.1 Feature Vectors/Matrices Generation
As shown in Figure 3 (a), for each input sentence
S with l words, we can obtain its an l × r feature
matrix from the Bi-LSTM model.
• For each lower strands feature (i.e., word length,
word position, NER and content word), we can
generate an initial l-dimensional feature vector v
for it from the Bi-LSTM model, respectively.
• For each upper strands feature (i.e., NP chunk,
emotion word, Mod&Aux and Obj&Comp), we
can generate an initial l × l feature matrix m for
it from the Bi-LSTM model, respectively. If k
adjacent words make up an upper strands feature,
its value in m is the average feature score of k
adjacent words obtained from the Bi-LSTM model.
The rest of values in m are filled with 0.

2.3.2 Task-Specific Feature Weight Sampling
We argue that different cognitive features should
be given different weights when learning different
NLP tasks. For example, the emotion word feature
should be more important than others for a senti-
ment classification task. To address this issue, we
utilize the Flesch readability assessment (Kincaid
et al., 1975) to evaluate the contribution of cog-
nitive features to sentence readability of different
NLP tasks. In other words, given a specific task, if
a feature can improve the readability of the input
sentence, it should be given a higher weight.

Formally, we use the Flesch readability assess-
ment score R and the embedding of [CLS] token
HCLS of a layer in BERT to control the weights of
different features. Given a sentence S, the number



3213

of words in S is sw and the number of syllables in
S is ss. Then the readability score of this sentence
is calculated as R(S) = 206.835 − 1.015sw −
84.6

ss
sw

, where constants (i.e., 206.835, 1.015 and

84.6) in R(S) are empirical values from Kincaid
et al. (1975).

Since R ∈ R1 is a one-dimensional number,
HCLS ∈ Rn×1 is a n-dimensional vector (n = 768
for BERT-Base) and cognitive features set T con-
tains eight features including {v1, ..v4,m1, ..m4},
where v represents a feature vector and m repre-
sents a feature matrix, respectively, we first need to
map R and HCLS to an eight-dimensional vector
O, to assign a reasonable weight for each feature.

In particular, as shown in Figure 3 (b), we map R
and HCLS to a variance set σ = {σ1, . . . σr} ∈ Rr

of a normal distribution B ∼ Norm(0, σ2), where
the mean of B is zero. σ is computed as:

σ = f (NTR) ◦ f (MTHCLS ) = {σ1 , . . . , σr}, (1)

where ◦ is the Hadamard product and f is the tanh
activation function. N ∈ R1×r is a mapping vector
and M ∈ Rn×r is a mapping matrix. Then the
weighted feature set T

′
is computed as:

T
′
= T ◦O = {o1v1, . . . , o4v4, o5m1, . . . , orm4},

O = B(0, σ2) =
1

σ
√
2π

exp

(
− x2

2σ2

)
x=0

=
1

σ
√
2π

= {o1, . . . , or},

(2)

where oi is the ith feature weight sampled from the
normal distribution B with sample point x = 0.

2.3.3 Cognitive Feature Enhanced Attention
Inspired by the previous work (Jawahar et al.,
2019), which indicates that BERT captures surface
features in lower layers and semantic features in
higher layers, as shown in Figure 3 (c), we incorpo-
rate different cognitive features in different layers,
where lower strands are in lower layers and upper
strands are in higher layers. We use CNN (Le-
Cun et al., 2015) to compute a feature-enhanced
attention score for lower strands and upper strands,
which we denote as ML ∈ Rl×l and MU ∈ Rl×l,
respectively,

ML = Diag(1DCNN(v1,v2,v3,v4)),

MU = 2DCNN(m1,m2,m3,m4),
(3)

where Diag refers to filling the output of 1DCNN
in the diagonal of the feature-enhanced attention

matrix ML, this is because the generated lower
strands features by the Bi-LSTM are word-level fea-
ture vector rather than a matrix, and 1DCNN and
2DCNN means 1-dimensional and 2-dimensional
CNN network. The kernel size of both 1DCNN
and 2DCNN is 3, respectively. Then we obtain
the cognitive feature-enhanced lower layer atten-
tion matrix A′

L ∈ Rl×l and higher layer attention
matrix A′

U ∈ Rl×l as:

A′
L = ML ◦GL +AL ◦ (1−GL),

A′
U = MU ◦GU +AU ◦ (1−GU ),

GL = f(JTHL),

GU = f(JTHU ),

(4)

where AL ∈ Rl×l and AU ∈ Rl×l are the orig-
inal attention matrix of lower and higher layers,
respectively. G ∈ R1×l is a gated vector for a
transformer head, which is used to balance the
combination between the original attention and
the cognitive feature-enhanced attention. H =
{HCLS , H0 . . . , Hl} ∈ Rn×l is the hidden state of
the input sentence S, in which HCLS is the em-
bedding of [CLS] token of BERT. J ∈ Rn×1 is a
vector to map H to the gate vector G in a specific
head. The ◦ is the row-level Hardmard product that
each value of G multiplies with each row of the
matrix (e.g., ML), so that the size of the matrix
remains the same after multiplication. The process
is same for all layers of BERT.

2.4 Training Details
We train the Bi-LSTM model with hidden size 256,
dropout ratio 0.15, 300-dimensional GloVe em-
bedding (Pennington et al., 2014) and 40 epochs.
In experiment, we fine-tune the CogBERT using
AdamW (Loshchilov and Hutter, 2017) optimizer
with learning rate from [1e-5, 3e-5, 5e-5], warm-up
ratio of 0.1. The training epochs are form [3, 5, 10]
and batch size from [16, 32] for GLUE Benchmark.
For CoNLL2000 Chunking, we use batch size from
[64, 128], learning rate from [5e-6, 1e-5, 5e-5], and
epochs from [40, 60].

3 Experiments

To show the effectiveness of CogBERT, we com-
pare it with baselines on three benchmark datasets
across ten NLP tasks and an eye-tracking predic-
tion task.

3.1 Baselines
We compare CogBERT with:



3214

Models SST2 COLA MRPC RTE MNLI(m/mm) QQP STS-B QNLI
BERT-Base 93.5 51.7 87.2 67.2 84.3/83.7 71.1 85.4 90.4
Syntax-BERT-Base 94.0 54.1 89.2 68.9 84.9/84.6 72.0 86.7 91.1
fMRI-EEG BERT-Base 93.4 52.9 87.4 67.5 84.3/83.8 71.2 85.3 90.5
Eye-tracking BERT-Base 93.3 51.9 87.5 67.3 84.3/83.7 71.2 85.8 90.6
CogBERT-Base (Random) 93.2 51.1 85.4 66.0 84.1/83.2 71.0 85.3 88.6
CogBERT-Base 94.0 55.1 89.5 69.4 84.9/84.6 72.1 87.2 91.3
BERT-Large 94.9 60.5 89.3 70.1 86.8/85.9 72.1 86.5 92.7
Syntax-BERT-Large 96.1 61.9 92.0 74.7 86.7/86.6 72.5 88.5 92.8
fMRI-EEG BERT-Large — — — — — — — —
Eye-tracking BERT-Large 94.7 60.7 89.2 70.2 86.6/85.7 72.3 86.7 92.5
CogBERT-Large (Random) 94.4 60.1 88.7 69.2 86.3/85.4 71.8 86.3 92.4
CogBERT-Large 96.1 62.1 92.1 74.9 86.8/86.6 72.8 89.7 92.8
RoBERTa-Base 95.4 57.1 90.8 73.8 86.3/86.2 72.5 87.4 92.2
Syntax-RoBERTa-Base 96.1 63.3 91.4 81.2 87.8/85.7 73.5 88.3 94.3
CogRoBERTa-Base (Random) 95.3 56.8 90.5 73.4 86.1/85.8 72.1 87.2 92.0
CogRoBERTa-Base 95.7 63.5 91.7 79.3 88.1/86.2 73.8 88.5 93.9
RoBERTa-Large 96.3 63.8 91.0 84.2 89.5/89.7 72.7 90.2 94.2
Syntax-RoBERTa-Large 96.9 64.3 92.5 85.0 90.2/90.0 73.1 91.4 94.5
CogRoBERTa-Large (Random) 96.1 63.6 90.7 83.8 89.2/89.4 72.3 90.0 94.0
CogRoBERTa-Large 96.5 64.6 92.8 85.3 90.4/90.3 73.5 90.5 94.5

Table 2: Results on the test set of GLUE Benchmark. F1 scores are reported for QQP and MRPC. Spearman
correlations are reported for STS-B, and accuracy scores are reported for the other tasks. The best results are bold.
For the SST2 task, the Emotion feature weight of CogBERT is set as 0.

• BERT (Devlin et al., 2019): A transformer-based
pre-trained language model achieved SOTA perfor-
mances on various NLP tasks.
• Syntax-BERT (Bai et al., 2021): A syntax-
enhanced pre-trained model outperformed conven-
tional pre-trained models on various NLP tasks.
• fMRI-EEG BERT (Schwartz et al., 2019): This
model is fine-tuned on EEG and fMRI data, which
showed improvements in brain activity prediction
and achieved competitive performances on various
NLP tasks.
• Eye-tracking BERT: It fine-tunes BERT on nFix
eye-tracking data following the method used in
fMRI-EEG BERT.
• CogBERT (Random): The feature weight of
CogBERT is randomly generated rather than super-
vised learning by human reading signals.

3.2 GLUE Benchmark

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) is a set
of tasks to test the model’s ability to understand
natural language. We implement our method in
BERT, RoBERTa on its development set. Results
are shown in Table 2. Based on the observation of
the experiment results, we find that:

(1) Compared with BERT and RoBERTa, Cog-
BERT achieves consistently better results (when
compared with RoBERTa, we use RoBERTa as the
base pre-trained model of CogBERT) on all tasks
from SST2 to QNLI showing the effectiveness of

Models P (%) R (%) F1 (%)
BERT-Base-Cased 95.32 95.23 95.33
SeqVat (unsupervised) 95.39 95.47 95.45
SeqVat (supervised) 96.36 96.31 96.34
CogBERT-Base (Random) 94.46 95.03 94.74
CogBERT-Base 96.48 96.59 96.54

Table 3: Results of CoNLL-2000 text chunking. Cog-
BERT is based on BERT-Base-Cased.

incorporating eye-tracking can be useful for vari-
ous tasks.

(2) Comparison between Syntax-BERT and Cog-
BERT shows that cognitive features can further
improve the performance of BERT on NLP tasks.
This is mainly because on the one hand cognitive
features used in this paper have already included
fine-grained syntax structure features. On the other
hand, we involved more psycholinguistic features
in CogBERT validated by eye-tracking data.

(3) CogBERT outperforms fMRI-EEG BERT
and Eye-tracking BERT, which indicates that fine-
tuning on cognitive data cannot fully exploit the
value of cognitive data. By inducing fine-grained
cognitive features from cognitive data can provide
a new perspective for this line of work.

(4) Compared to CogBERT (Random), Cog-
BERT achieves consistently better performances,
which confirms that different cognitive features
contribute differently to language comprehension
in brains. Learning weighted cognitive feature vec-
tor is effective for CogBERT.



3215

Tasks Word Length Content Word NER Word Position Emotion NP Chunk Mod & Aux Comp & Obj
COLA 0.42 0.56 0.59 0.41 0.78 1.00 0.83 0.60
MRPC 0.52 0.68 1.00 0.45 0.95 0.76 0.88 0.74
RTE 0.54 0.83 0.67 0.52 0.91 1.00 0.73 0.64
CoNLL-2000 Chunking 0.54 0.83 0.94 0.52 0.92 1.00 0.64 0.93
CoNLL-2003 NER 0.44 0.51 1.00 0.49 0.42 0.39 0.49 0.51

Table 4: Results of intrinsic evaluation of CogBERT-base. The numbers are feature weights in different tasks.

3.3 Sequence Labeling

In addition to the GLUE benchmark, we also eval-
uate CogBERT on the CoNLL-2000 dataset (Sang
and Buchholz, 2000) for text chunking and the
CoNLL-2003 dataset (Sang and Meulder, 2003)
for NER. The results are shown in Table 3 (as the
space is limited, the results of NER are shown in
Appendix Table 3). Note that for the Chunking and
NER task, the NP Chunk and NER feature weight
of CogBERT is set as 0, respectively, to ensure no
data leakage problem.

We compare CogBERT with SeqVat (Chen et al.,
2020), which uses virtual adversarial training to im-
prove the model’s performance and robustness on
the CoNLL-2000 text chunking task. We observe
that our method outperforms all baselines on the
benchmark dataset, which demonstrates that Cog-
BERT could also benefit sequence labeling tasks.

3.4 Intrinsic Evaluation

As shown in Table 4, we present an intrinsic evalu-
ation to output the feature weight of CogBERT in
different tasks, which is sampled from the Gaus-
sian Distribution in Equation (2). Due to the space
limitation, we only demonstrate feature weights
of the BERT-base model in COLA, MRPC, RTE,
CoNLL-2000 Chunking, and CoNLL-2003 NER
tasks. The feature weight C

′
f ∈ Ri scaled by the

data size and the feature density is calculated as:

fd =
1

Z

z∑
k=1

Uk/(sum(Uk)),

Cs =
1

Z

z∑
k=1

Ck/fd,

C
′
f = Cs/max(Cs),

(5)

where the data size of a task is Z ∈ Rz , the aver-
aged feature weight of 12 layers from CogBERT is
C ∈ Rr×z , and the density of feature is fd ∈ Rr.
Cs is the feature weight scaled by fd, and the count
of each feature in the task is U ∈ Rr×z (for exam-
ple, if there are 3 entity words in a training example,
the count of NER feature of this example is 3).

Models Zuco Geco (EN) Geco (NL)
BERT-EN 93.42(0.02) 93.68(0.14) —
BERT-NL — — 91.81(0.23)
BERT-MULTI 93.74(0.05) 93.73(0.12) 91.90(0.16)
XLM-17 92.05(2.25) 91.79(1.75) 91.04(0.70)
XLM-100 93.97(0.09) 93.04(1.40) 92.31(0.22)
CogBERT (Random) 93.23(0.13) 93.36(0.38) 91.59(0.35)
CogBERT 93.99(0.02) 93.90(0.14) 91.97(0.09)

Table 5: Results of eye-tracking prediction. Standard
deviation of 5 runs is reported in parentheses.

We find that CogBERT can assign reasonable
weights to different features in various tasks. In the
COLA (a linguistic acceptability judgment task),
CogBERT evaluates NP Chunk (i.e., the noun
phrase) as the most important feature and gives a
high score to other syntax-related features. This is
because the syntax structure helps judge linguistic
acceptability. In the MRPC (a sentence paraphras-
ing task), CogBERT considers NER and emotion as
the two most important features. The main reason
is that if two sentences do not share the same entity
and emotion, they are probably not a paraphrase. In
the RTE (a text entailment task), CogBERT thinks
of NP Chunk as the most important feature, and
this is probably because if a sentence can be in-
ferred from another sentence, they might have a
similar phrasal structure or meaning. In CoNLL-
2000 Chunking and CoNLL-2003 NER tasks, it is
not surprising that CogBERT ranks NP Chunk and
NER as the most crucial feature, respectively.

3.5 Eye-tracking Prediction

We argue that CogBERT can be useful not only for
NLP tasks but also for language comprehension in
brains. Hence, we also evaluate the effectiveness
of CogBERT on eye-tracking prediction (Hollen-
stein et al., 2021) tasks using three eye-tracking
benchmark datasets, including Zuco (Zuco 1.0 and
Zuco 2.0), Geco (EN), and Geco (NL). The training
details are the same with Hollenstein et al. (2021)3.
This task tests the model’s ability to learn human
eye-tracking data, including first fixation duration
(FFD), total reading time (TRT), number of fixa-

3Geco (EN) and Geco(NL) are the English and Dutch parts
of Geco eye-tracking data, respectively.



3216

Models SST2 MRPC RTE
CogBERT 93.7 89.7 70.1
w/o lower strands 93.4 89.1 68.2
w/o upper strands 92.9 88.7 67.3
w/o all strands 92.3 87.4 66.4
w/o readability 93.2 88.9 68.5
w/o layer-wise 93.1 88.5 67.9

Table 6: Results of ablation study.

tions (nFix), mean fixation duration (MFD), first
pass duration (FPD), fixation proportion (FProp),
number of re-fixations (NREFIX), re-read propor-
tion (REPROP). The performance is evaluated by
the mean absolute error (MAE), and we report
100–MAE as the result in this experiment.

We compare our method with BERT-EN, BERT-
NL (de Vries et al., 2019), BERT-MULTI, (Wolf
et al., 2020)4 and XLM (Lample and Conneau,
2019) (XLM is a cross-lingual pre-trained language
model. XLM-17 pre-trains on 17 languages and
100 for XLM-100 ). CogBERT is based on BERT-
EN and BERT-NL, respectively. The results are
shown in Table 5.

We find that CogBERT outperforms BERT-
EN, BERT-NL, BERT-MULTI, and XLM-17 and
achieves comparable performance with XLM-100,
even though CogBERT is based on BERT, which
only pre-trained on one language whereas XLM-
100 pre-trained on more than 100 languages. This
also shows the effectiveness of our cognitive fea-
tures induced from cognitive data for understanding
and explaining human gaze behavior.

3.6 Ablation Study

We conduct ablation studies over several factors
related to CogBERT’s performance on the down-
stream tasks. All results are obtained on the devel-
opment sets of SST2, MRPC and QNLI, and are
shown in Table 6.

We observe that replacing lower or upper strands
cognitive features can decrease the model perfor-
mance, and removing all strands cognitive features
would further affect the model performance. We
also notice that although the readability is not as
important as cognitive features for our model, re-
moving it also harms the performance. This is
mainly because this factor also constrains the learn-
ing process of CogBERT from a cognitive perspec-
tive. Without layer-wise means that we integrate
all features into each layer of BERT, The poor per-

4BERT-EN, BERT-NL and BERT-MULTI, are English,
Dutch and multilingual version of BERT.

Figure 4: Performances of layer study.

formance of without layer-wise demonstrates that
incorporating features in a layer-wise manner is an
effective way for cognition-guided NLP.

3.7 Layer Study
In this section, we quantificationally discuss which
layer of BERT should be the boundary for the lower
and upper strands cognitive features. We conduct
comparative experiments on the development sets
of SST2, MRPC, QNLI and STS-B tasks, and illus-
trate results in Figure 4. The Y -axis is the perfor-
mance for different NLP tasks. The X-axis is the
number of layers. For example, if the number of
layer is 6, we incorporate lower strands cognitive
features into 1-6 layers of BERT and upper strands
cognitive features into the rest.

We find that all tasks reach the best performance
when the layer boundary is around 4, which means
that BERT’s lower layers are more suitable for in-
corporating lower strands cognitive features and
upper strands cognitive features are more useful
when we incorporate them in higher layers. These
results can effectively guide the future research
of cognition-enhanced pre-trained models. Simi-
larly, previous research (Tenney et al., 2019) also
finds that the BERT behaves like a pipeline manner
where the lower layer processes basic information
and upper layer processes the sentence based on
the information of previous layers, in which its
argument is similar to ours and our research fur-
ther validates their research and further proved this
argument from the perspective of model implemen-
tation level.

3.8 Attention Visualization
To qualitatively analyze the effectiveness of our
method, we visualize the attention case of Cog-
BERT and compare it with BERT and humans. We
select cases from SST2, NER and MRPC tasks. To
compare with human cognition, given a specific



3217

Figure 5: Attention cases selected from the SST2 and CoNLL-2003 NER task, respectively.

NLP task, we ask four annotators to highlight their
attention words when reading the sentences. For
BERT and CogBERT, we select attention scores
from higher layers of pre-trained models, which
can capture task-specific features (Merchant et al.,
2020). The attention visualizations of SST2 and
NER are illustrated in Figure 5 (MRPC is shown
in Appendix Figure 1).

Figure 5 (a) presents the attention visualiza-
tion for the CoNLL-2003 NER task, illustrating
that CogBERT pays more attention to NER words
‘Asian Cup’, ‘Japan’ and ‘Syria’ like humans,
whereas BERT gives little attention to these words.
Figure 5 (b) illustrates the attention visualization
for the SST2 task, showing that CogBERT cap-
tures the critical emotion words ‘fun’ and ‘okay’,
which are also important for the human judgments.
In contrast, BERT fails to focus on these words.
These experimental results indicate that although
pre-trained models have achieved promising im-
provements in numerous NLP tasks, they are still
far from the level of human intelligence. Cognition-
guided pre-trained models can provide an effective
way to approach human cognition, by learning the
attention mechanism in human reading.

4 Related Work

Prior neuroscience studies have demonstrated that
cognitive data is associated with language compre-
hension activity in human brains (Just and Carpen-

ter, 1980; Brooks and Meltzoff, 2005), showing
longer duration links to a greater processing load
in different language units (words, clauses, texts).
These studies established the theoretical grounding
for cognition-guided NLP.

In cognitively motivated NLP, researchers in-
vestigate the impact of cognitive language pro-
cessing signals on NLP tasks, especially focusing
on improving neural networks by utilizing cogni-
tive data. Early researches mainly used LSTM
or CNN to incorporate cognitive signals (Barrett
et al., 2018; González and Søgaard, 2018; Hollen-
stein and Zhang, 2019; Sood et al., 2020; Ren and
Xiong, 2021; Takmaz et al., 2020).

As pre-trained models have shown their great
power on various NLP tasks, a line of work focuses
on exploring cognitive-data-enhanced pre-trained
models (Hollenstein et al., 2019, 2021; McGuire
and Tomuro, 2021), mainly by fine-tuning pre-
trained models on cognitive data.

However, these methods cannot give a fine-
grained analysis of how cognitive data contributes
to different NLP tasks. In contrast, CogBERT is
inspired by the theory in psycholinguistics and en-
codes cognitive features induced from eye-tracking
data into pre-trained models in a layer-wise manner
with carefully designed architecture, enabling us to
perform a fine-grained analysis of how cognitive
data contributes to different NLP tasks and further
improved the performance of pre-trained models
comparing to previous simply fine-tuned ones.



3218

5 Conclusion

We present CogBERT, a framework that can effec-
tively incorporate cognitive signals into pre-trained
models. Experimental results show that CogBERT
achieves new SOTA results on three NLP bench-
mark datasets. Analyses suggest that CogBERT
can adaptively learn task-specific cognitive feature
weights to give fine-grained explanations of how
cognitive data works on NLP tasks. This work
provides a new paradigm in learning cognition-
enhanced pre-trained models, and extensive elabo-
rated experiments can guide future researches.

References
Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,

Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
bert: Improving pre-trained transformers with syntax
trees.

Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek
Rei, and Anders Søgaard. 2018. Sequence classi-
fication with human attention. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 302–312, Brussels, Belgium.
Association for Computational Linguistics.

Rechele Brooks and Andrew Meltzoff. 2005. The devel-
opment of gaze following and its relation to language.
Developmental science, 8:535–43.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. SeqVAT: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8801–8811, Online.
Association for Computational Linguistics.

Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter
Duyck. 2016. Presenting geco: An eyetracking cor-
pus of monolingual and bilingual sentence reading.
Behavior Research Methods, 49.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. Bertje: A dutch bert model.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Ana Valeria González and Anders Søgaard. 2018.
Learning to predict readability using eye-movement
data from natives and learners. In AAAI.

Mickel Hoang, Oskar Alija Bihorac, and Jacobo Rouces.
2019. Aspect-based sentiment analysis using BERT.
In Proceedings of the 22nd Nordic Conference on
Computational Linguistics, pages 187–196, Turku,
Finland. Linköping University Electronic Press.

Nora Hollenstein, Antonio de la Torre, Nicolas Langer,
and Ce Zhang. 2019. Cognival: A framework for
cognitive word embedding evaluation.

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena
Jäger, and Lisa Beinborn. 2021. Multilingual lan-
guage models predict human reading behavior.

Nora Hollenstein, Jonathan Rotsztejn, Marius Troen-
dle, Andreas Pedroni, Ce Zhang, and Nicolas Langer.
2018. Zuco, a simultaneous eeg and eye-tracking re-
source for natural sentence reading. Scientific Data,
5:180291.

Nora Hollenstein, Marius Troendle, Ce Zhang, and
Nicolas Langer. 2020. Zuco 2.0: A dataset of physio-
logical recordings during natural reading and annota-
tion.

Nora Hollenstein and Ce Zhang. 2019. Entity recogni-
tion at first sight: Improving ner with eye movement
information.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Marcel Adam Just and Patricia A. Carpenter. 1980. A
theory of reading: from eye fixations to comprehen-
sion. Psychological review, 87 4:329–54.

J. Peter Kincaid, Robert P. Fishburne, Richard Lawrence
Rogers, and Brad S. Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel.

Reinhold Kliegl, Ellen Grabner, Martin Rolfs, and Ralf
Engbert. 2004. Length, frequency, and predictabil-
ity effects of words on eye movements in reading.
European Journal of Cognitive Psychology - EUR J
COGN PSYCHOL, 16:262–284.

Victor Kuperman, Michael Dambacher, Antje Nuth-
mann, and Reinhold Kliegl. 2010. The effect of
word position on eye-movements in sentence and
paragraph reading. Quarterly journal of experimen-
tal psychology (2006), 63:1838–57.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436–444.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2021. Improving bert with syntax-aware local
attention.

http://arxiv.org/abs/2103.04350
http://arxiv.org/abs/2103.04350
http://arxiv.org/abs/2103.04350
https://doi.org/10.18653/v1/K18-1030
https://doi.org/10.18653/v1/K18-1030
https://doi.org/10.1111/j.1467-7687.2005.00445.x
https://doi.org/10.1111/j.1467-7687.2005.00445.x
https://doi.org/10.18653/v1/2020.acl-main.777
https://doi.org/10.18653/v1/2020.acl-main.777
https://doi.org/10.3758/s13428-016-0734-0
https://doi.org/10.3758/s13428-016-0734-0
http://arxiv.org/abs/1912.09582
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/W19-6120
http://arxiv.org/abs/1909.09001
http://arxiv.org/abs/1909.09001
http://arxiv.org/abs/2104.05433
http://arxiv.org/abs/2104.05433
https://doi.org/10.1038/sdata.2018.291
https://doi.org/10.1038/sdata.2018.291
http://arxiv.org/abs/1912.00903
http://arxiv.org/abs/1912.00903
http://arxiv.org/abs/1912.00903
http://arxiv.org/abs/1902.10068
http://arxiv.org/abs/1902.10068
http://arxiv.org/abs/1902.10068
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1080/09541440340000213
https://doi.org/10.1080/09541440340000213
https://doi.org/10.1080/17470211003602412
https://doi.org/10.1080/17470211003602412
https://doi.org/10.1080/17470211003602412
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/2012.15150
http://arxiv.org/abs/2012.15150


3219

Zhongyang Li, Xiao Ding, and Ting Liu. 2019. Story
ending prediction by transferable bert.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Erik McGuire and Noriko Tomuro. 2021. Relation clas-
sification with cognitive attention supervision. In
Proceedings of the Workshop on Cognitive Model-
ing and Computational Linguistics, pages 222–232,
Online. Association for Computational Linguistics.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to bert embeddings
during fine-tuning?

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. volume 14, pages 1532–1543.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Yuqi Ren and Deyi Xiong. 2021. Cogalign: Learning
to align textual neural representations to cognitive
language processing signals.

Erik Sang and Sabine Buchholz. 2000. Introduction
to the conll-2000 shared task: Chunking. Proc of
CoNLL-2000 and LLL-2000.

Erik Sang and Fien Meulder. 2003. Introduction to
the conll-2003 shared task: Language-independent
named entity recognition. Proceeding of the Compu-
tational Natural Language Learning (CoNLL).

H.S. Scarborough, F. Fletcher-Campbell, Janet Soler,
and G. Reid. 2009. Connecting early language and lit-
eracy to later reading (dis)abilities: Evidence, theory,
and practice. Approaching difficulties in literacy de-
velopment: assessment, pedagogy, and programmes,
pages 23–39.

Dan Schwartz, Mariya Toneva, and Leila Wehbe. 2019.
Inducing brain-relevant bias in natural language pro-
cessing models.

Timothy Slattery and Mark Yates. 2017. Word skipping:
Effects of word length, predictability, spelling and
reading skill. The Quarterly Journal of Experimental
Psychology, 71:1–30.

Ekta Sood, Simon Tannert, Philipp Mueller, and An-
dreas Bulling. 2020. Improving natural language
processing tasks with human gaze-guided neural at-
tention.

Ece Takmaz, Sandro Pezzelle, Lisa Beinborn, and
Raquel Fernández. 2020. Generating Image Descrip-
tions via Sequential Cross-Modal Alignment Guided
by Human Gaze. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4664–4677, Online. As-
sociation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Mariya Toneva and Leila Wehbe. 2019. Interpreting and
improving natural-language processing (in machines)
with natural language-processing (in the brain).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

A Appendix

A.1 Training Details
A.1.1 Bi-LSTM Model Training
The eye-tracking data to train the Bi-LSTM model
contains 1637 sentences and 76,937 words. The
embedding size of Glove Vector (Pennington et al.,
2014) is 300, which is accessible on the page.5

We used the embedding trained on Common Crawl
corpus, and the embedding is not trained along
with the Bi-LSTM model. The hidden size of Bi-
LSTM is 256, the dropout ratio in the feed-forward
network is 0.15. We train the Bi-LSTM model with
40 epochs with learning rate 1e-3, and we use the
AdamW optimizer(Loshchilov and Hutter, 2019).
We evaluate the LossG on the test set of nFix and
select the model with the best performance.

A.1.2 CogBERT Model Training
For Transformers, we set layer number as 12 to
keep the layer setting the same with the different
base versions of pre-train models, the hidden di-
mension of intermediate layers as 512, dropout

5https://github.com/stanfordnlp/GloVe

http://arxiv.org/abs/1905.07504
http://arxiv.org/abs/1905.07504
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.48550/ARXIV.1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/2021.cmcl-1.26
https://doi.org/10.18653/v1/2021.cmcl-1.26
http://arxiv.org/abs/2004.14448
http://arxiv.org/abs/2004.14448
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/2106.05544
http://arxiv.org/abs/2106.05544
http://arxiv.org/abs/2106.05544
https://doi.org/10.3115/1117601.1117631
https://doi.org/10.3115/1117601.1117631
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
http://arxiv.org/abs/1911.03268
http://arxiv.org/abs/1911.03268
https://doi.org/10.1080/17470218.2017.1310264
https://doi.org/10.1080/17470218.2017.1310264
https://doi.org/10.1080/17470218.2017.1310264
http://arxiv.org/abs/2010.07891
http://arxiv.org/abs/2010.07891
http://arxiv.org/abs/2010.07891
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.18653/v1/P19-1452
http://arxiv.org/abs/1905.11833
http://arxiv.org/abs/1905.11833
http://arxiv.org/abs/1905.11833
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://github.com/stanfordnlp/GloVe


3220

ratio as 0.15, and the dimension of the fully con-
nected layer before Softmax activation as 2000.
The learning rate is initialized as 5e-4 for the
AdamW optimizer, and we use the linear learning
rate schedule with the warm-up ratio of 0.1.

For BERT and RoBERTa, we use the pre-trained
version of different models released by Hugging-
Face.6For GLUE Benchmark. We use AdamW
optimizer with learning rate from [1e-5, 3e-5, 5e-
5] on GLUE benchmark. The training epochs are
from [3, 5, 10]. We also use the linear learning rate
schedule with a warm-up ratio of 0.1. The batch
size is 32 for all tasks. The kernel size for both
1DCNN and 2DCNN is 3. The 2DCNN module
does not have bias, and the padding strategy is the
"same".

For CoNLL-2000 chunk and CoNLL-2003 NER
tasks, we use AdamW optimizer with learning rate
from [1e-6, 3e-6, 5e-6]. The training epochs are
from [40, 60]. We also use the linear learning rate
schedule with a warm-up ratio of 0.1. The batch
size is 32 with a gradient accumulation step of 4 to
avoid memory issues.

For the Eye-tracking Prediction task, we follow
Hollenstein et al. (2021) and replace the BERT
model with our model. The training setting is pre-
cisely the same as the original task setting released
on the page.7 The results are AdamW optimizer
with a learning rate of 5e-5 and a weight decay
of 0.01. We employ a linear learning rate decay
schedule over the total number of training steps.
We clip all gradients exceeding the maximal value
of 1. We train the models for 100 epochs, with early
stopping after seven epochs without improving the
validation accuracy.

A.2 Eye-tracking Feature Validation
For word-level features, the results are computed
using the percentage of the word that carries a spe-
cific feature with a higher nFix value than sentence
average, which means the feature is a strong indi-
cator for this word that carries this feature to be
fixated or not.

For semantic features, the strategy is different.
For noun phrases, we take the nFix of the first word
and found that the first word of nFix always has
a below-average nFix value, which shows that a
below-average first word of a phrase is an indicator
to show that this is a noun phrase. We take the nFix

6https://huggingface.co/transformers/
7https://github.com/DS3Lab/

multilingual-gaze

average of the emotion phrase and compare it with
the sentence average nFix value. For dependency
relation, we check the equality relation between the
nFix of two words, and the percentage is computed
using that the ratio of a head word has a nFix that
is greater or less than the tail word. We checked
46 features that cover a large portion of existing
syntax features, and the results are in Table 7.

Additionally, some dependency relations are
very uncommon, which does not hold a statistical
count above one hundred in those eye-tracking cor-
pora. We do not use uncommon relations with less
than 100 counts in the corpus, which we label these
relations as sparse in the Table 7. In this research,
we do not consider any relationship that is sparse in
the model. We hope this table is helpful for future
research in this area. Since word length and po-
sition are already proven to be directly connected
to eye-tracking data in psycholinguistics (Slattery
and Yates, 2017;Kliegl et al., 2004;Kuperman et al.,
2010), therefore we do not further validate these
two features again in our research.

A.3 CoNLL-2003 NER Task
We are not able to reproduce the BERT results in
CoNLL-2003 NER tasks, which is also discussed
in different GitHub issues8910. The official GitHub
page of BERT says they used a complicated pre-
processing script to process the entity word before
training using BERT. However, they are not plan-
ning to release the pre-processing script.

A.4 MRPC Attention Case
Besides SST2 and CoNLL-2003 NER task, we
also present another attention case in MRPC. In
this example. Sentence 1 is "Sanitation is poor..
there could be typhoid and cholera" and sentence
2 is "Sanitation is poor drinking water is generally
left behind..there could be typhoid and cholera".
These two sentences are a paraphrase, which states
poor sanitation might cause typhoid and cholera.

From the cognition of humans, human labels
"Sanitation is poor," "typhoid" and "cholera" as
the keywords to label these two sentences as a para-
phrase.

The attention of CogBERT, BERT, and humans
is in Figure 6. Since this is a classification task

8https://github.com/dmlc/gluon-nlp/
issues/593

9https://github.com/kyzhouhzau/
BERT-NER/issues/2

10https://github.com/google-research/
bert/issues/223

https://huggingface.co/transformers/
https://github.com/DS3Lab/multilingual-gaze
https://github.com/DS3Lab/multilingual-gaze
https://github.com/dmlc/gluon-nlp/issues/593
https://github.com/dmlc/gluon-nlp/issues/593
https://github.com/kyzhouhzau/BERT-NER/issues/2
https://github.com/kyzhouhzau/BERT-NER/issues/2
https://github.com/google-research/bert/issues/223
https://github.com/google-research/bert/issues/223


3221

Feature Zuco 2.0 Zuco 1.0 Geco Avg Sparse Trands
Word Length ✓ ✓ ✓ ✓ ✓ Lower
Word Position ✓ ✓ ✓ ✓ ✓ Lower
Punctuation × × × × × Lower
Marker 29.60% 29.41% 31.83% 30.28% True Lower
ContentWord 96.0% 98.20% 99.50% 97.90% False Lower
NER 67.70% 68.90% 83.10% 73.20% False Lower
Determiner 7.60% 10.80% 14.06% 10.82% False Lower
Negation 33.30% 43.62% 47.00% 41.31% False Lower
Emotion 75.00% 66.67% 88.89% 93.85% False Upper
NPChunk 75.00% 89.30% 85.60% 83.30% False Upper
Parent-Child 54.80% 55.20% 62.00% 57.33% False Upper
Token-Head 46.00% 47.90% 43.82% 46.00% False Upper
Word and subtree 56.67% 54.81% 64.49% 58.66% False Upper
Adjective Modifier 63.79% 62.85% 57.40% 61.35% False Upper
Noun Subject 35.88% 49.17% 32.47% 39.17% False Upper
Compound 60.79% 51.30% 35.58% 49.22% False Upper
Adjective Complement 81.30% 60.30% 85.76% 75.79% False Upper
Adjective Clause 52.94% 41.00% 54.50% 49.48% True Upper
Adverbial Clause Modifier 51.85% 59.45% 58.70% 56.67% False Upper
Adverbial Modifier 52.03% 46.70% 53.05% 50.59% False Upper
Agent 0.00% 5.71% 5.33% 3.68% True Upper
Appositional Modifier 40.62% 43.50% 58.30% 47.47% True Upper
Auxiliary 12.87% 21.95% 30.18% 21.67% False Upper
Passive Auxiliary 24.72% 14.38% 10.88% 16.66% False Upper
Coordinating Conjunction 5.71% 11.34% 17.46% 11.50% False Upper
Clausal Complement 53.13% 48.45% 48.52% 50.03% False Upper
Conjunct 51.34% 48.59% 53.05% 50.99% True Upper
Clausal Subject 0.00% 100% 83.33% 61.00% True Upper
Dative 33.33% 36.36% 25.19% 31.63% False Upper
Direct Object 38.55% 43.58% 37.32% 39.82% True Upper
Expletive 0.00% 76.47% 78.70% 52.00% True Upper
Interjection — 0.00% 44.23% 22.00% True Upper
Meta Modifier 0.00% 0.00% 0.00% 0.00% True Upper
Modifier of Nominal 70.00% 48.83% 44.44% 54.00% False Upper
Noun Phrase as Adverbial Modifier 60.29% 52.90% 59.09% 57.43% False Upper
Passive Nominal Subject 35.53% 32.43% 31.29% 33.08% False Upper
Numeric Modifier 41.13% 34.24% 31.29% 33.08% False Upper
Object Predicate 60.00% 54.54% 59.36% 58.00% True Upper
Parataxis 50.00% 12.50% 63.92% 42.00% True Upper
Complement of Preposition 66.67% 85.71% 88.15% 80.18% False Upper
Object of Preposition 91.21% 91.50% 84.43% 89.05% False Upper
Possession Modifier 29.00% 34.16% 26.56% 30.00% False Upper
Pre-correlative Conjunction 0.00% 47.05% 64.71% 37.00% True Upper
Predet 0.00% 14.29% 36.90% 17.00% True Upper
Prepositional 8.27% 12.44% 16.77% 12.00% True Upper
Particle 0.00% 32.25% 20.85% 18.00% True Upper
Modifier of Quantifier 70.00% 50.00% 20.05% 47.00% True Upper
Relative Clause Modifier 34.00% 40.00% 49.79% 41.00% True Upper
Open Clausal Complement 41.17% 40.43% 46.65% 42.75% True Upper

Table 7: Validation Table of Features nFix Data. — means this relation does not exist in this corpus based on the
annotation result of Spacy. ×means this relation cannot be checked. ✓means this relation has been verified by
previous research. Sparse means the number of this relation in any corpus is less than 100.

between two sentences, a [SEP] token will be in-
serted between them. In an ideal attention situation,
for the paraphrase classification task, sentence 1
should attend to the same words of sentence 2, and
sentence 2 should attend to the same words of sen-
tence 1, respectively.

From the Figure 6, we can see that CogBERT
can align more accurately with human annotation.
CogBERT can give more attention to "Sanitation
is poor" from sentence 1 to sentence 2 and from

sentence 2 to sentence 1. In contrast, the BERT
model gives very little attention to this phrase. Ad-
ditionally, CogBERT is also able to focus on the
"typhoid" word, which is tokenized into several
subwords. However, the BERT model is not able
to capture this in both sentences. Moreover, for the
word "cholera," even both CogBERT and BERT
can focus on it, CogBERT can give more attention
compared to the BERT model.



3222

Figure 6: MRPC Attention Case

Ex
ud

es
th

e
fiz

z
of a Bu

sb
y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t
of a sp

or
ts

ex
tra

va
ga

nz
a

Exudes
the
fizz

of
a

Busby
Berkeley
musical

and
the

visceral
excitement

of
a

sports
extravaganza

Noun Phrase

Ex
ud

es
th

e
fiz

z
of a Bu

sb
y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t
of a sp

or
ts

ex
tra

va
ga

nz
a

Exudes
the
fizz

of
a

Busby
Berkeley
musical

and
the

visceral
excitement

of
a

sports
extravaganza

Emotion

Ex
ud

es
th

e
fiz

z
of a Bu

sb
y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t
of a sp

or
ts

ex
tra

va
ga

nz
a

Exudes
the
fizz

of
a

Busby
Berkeley
musical

and
the

visceral
excitement

of
a

sports
extravaganza

Mod&Aux

Ex
ud

es
th

e
fiz

z
of a Bu

sb
y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t
of a sp

or
ts

ex
tra

va
ga

nz
a

Exudes
the
fizz

of
a

Busby
Berkeley
musical

and
the

visceral
excitement

of
a

sports
extravaganza

Comp&Obj

Figure 7: Upper strands feature matrices.

A.5 Model Efficiency

Since CogBERT works in a two-stage setting and
uses Spacy to annotate the sentence, it is necessary
to report the processing speed to show that process-
ing efficiency is not a significant concern in our
work.

A.5.1 Processing Efficiency

First, we report the training time to train the Bi-
LSTM model. In a 2GHz four-core Intel Core i5,
training the Bi-LSTM model requires 30 minutes
in 40 epochs.

The most time-consuming part is the Spacy an-
notation processing. In the same chip setting, take



3223

Models P (%) R (%) F1 (%)
LISA-Base 90.7 92.2 91.4
SGNET-Base 90.9 92.6 91.7
BERT-Base (Devlin et al., 2019) — — 92.4
BERT-Base (Li et al., 2021) 91.0 92.3 91.6
CogBERT-Base (Random) 90.3 91.2 90.7
CogBERT-Base 91.4↑ 92.6↑ 91.9↑
LISA-Large 91.3 92.6 92.0
SGNET-Large 91.5 92.8 92.1
BERT-Large (Devlin et al., 2019) — — 92.8
BERT-Large (Li et al., 2021) 91.7 93.1 92.4
CogBERT-Large (Random) 91.1 91.4 91.2
CogBERT-Large 92.0↑ 93.2↑ 92.6 ↑

Table 8: Results of CoNLL-2003 NER. CogBERT is
based on BERT-Cased. ↑ means that we outperform
previous implementation of BERT (Li et al., 2021).

SST2 tasks for example; the training part of the
SST2 dataset contains 67,349 examples. In this
amount of data, producing feature vectors/matrices
with Spacy’s annotation for lower and upper strands
will take about 15 minutes in different runs. For
much larger datasets like QNLI that contains more
than 100,000 training examples, running the gener-
ation process will take about 40 minutes.

Since most of the data in our experiments are less
than 10,000 examples, we do not think the feature
vector/matrix generation process is a problem in
our model. The generation processing of most tasks
can be done in 10 minutes.

A.5.2 Storage Efficiency
Another point to mention is the data size of gener-
ated feature vector and matrix. We used a sparse
matrix to store the generated feature vector/matrix,
which enables us to store them efficiently and re-
cover them in only several lines of code.

Take SST2 for example, the size of generated
feature vector/matrix of the whole data is 158.3 Mb,
and 708.5 Mb for QNLI, roughly ten times the size
of the text version. Since text size is considerably
small in different tasks, our generated vector/matrix
does not use too much disk storage. Therefore disk
storage is not a concern in most tasks.

A.5.3 Training Efficiency
For the training speed of the second stage, since
we did not put too many parameters in our model,
which are just several linear transformations and
two CNN networks. For example, in the MRPC
task, the total parameter size of the BERT model is
109M, and the total parameter size of our model is
116M.

Additionally, the CNN network is efficient since
the architecture of CNN is suitable for parallel com-
putation. Thus, the training speed in downstream

Models nFix Loss Feature Loss
Bi-LSTM 0.092 —
Bi-LSTM (with feature) 0.051 0.006

Table 9: Results of nFix prediction. We sample 20%
nFix data as test set. The evaluation criteria is the MSE
loss.

tasks is close to the training speed in different base
pre-train models implementation.

A.6 nFix Prediction

First, we report the results of the nFix prediction
in Table 9. The base model is Bi-LSTM with four
layers only trained with nFix prediction, whereas
our model will first predict feature score and further
predict the nFix following our description.

From the results, we could tell that by training
with loss LT . Our model gives a lower loss, which
means the proposed training method can give a
more accurate nFix estimation by combining dif-
ferent feature scores. This proves that these fea-
tures help predict the nFix value, and the model
can assign adaptive weight to different features and
combine them to better estimate nFix.

A.7 The Effect of Spacy Tool

From the noun phrase in Figure 8, we could see the
annotation is not perfect, like the a Busby Berkeley,
this phrase is only a part of the whole noun phrase.

Reasonably, the performance of the Spacy tool
certainly affects our model’s performance. How-
ever, the annotation of Spacy is correct in most
situations. Details about the performance of the
Spacy tool are on the official website.11.In this re-
search, we use the medium size Spacy annotation
model in all tasks. For the Eye-tracking Prediction
task of Geco(NL), we also use the medium-sized
Netherlands model released by Spacy.

A.8 Sample Input/Output of Bi-LSTM Model

We present a sample Bi-LSTM prediction case in
Figure 8, the generated feature vectors for lower
strands are in Figure 9, and the generated feature
matrices for upper strands are in Figure 7.

Figure 9 presents the generated feature vectors
of lower strands, including Word Length, Word Po-
sition, NER, and Content Words. These features
correspond to a single word, which means these
features are word-level rather than phrase or sen-
tence level features. Therefore the output of the

11https://spacy.io/

https://spacy.io/


3224

1

2

3
nF

ix
(n

um
be

r o
f F

ix
at

io
ns

)
Target nFix
Prediction nFix

Exudes the fizz of a Busby Berkeley musical and the visceral excitement of a sports extravaganza.

Word Length

Word Position

Ner

Content

Noun Phrase

Emotion

Mod&Aux

Compl&Obj

0.71 0.45 0.55 0.32 0.16 0.64 0.8 0.76 0.45 0.45 0.8 0.86 0.32 0.16 0.71 0.91

0 0.059 0.12 0.18 0.24 0.29 0.35 0.41 0.47 0.53 0.59 0.65 0.71 0.76 0.82 0.94

0 0 0 0 0 1.7 1.4 0 0 0 0 0 0 0 0 0

2.9 0 1.8 0 0 2.1 1.7 1.4 0 0 2.2 2.9 0 0 2 2.6

0 0.76 0.88 0 0.9 0.78 0.87 0 0 0.93 0.77 0.62 0 0.9 0.78 0.65

0 0 0 0 0 0 0 1.2 0 0 0 0 0 0 0 0

0 1.8 0 1.4 1.4 0 0 0 1.1 1.3 0 0 1.2 1.3 0 0

0 0 0 0 0 0 1.1 0 0 0 0 0 0 0 0 1

Example of predicted nFix and assigned with-in feature score

Figure 8: Bi-LSTM Feature Prediction. The number inside each cell of the prediction map are weighted scores
computed by the Bi-LSTM model. The top part is the nFix prediction given by our model, the brown line means the
prediction, and the pink line means the target nFix measured by human gaze.

Ex
ud

es

th
e

fiz
z

of a Bu
sb

y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t

of a sp
or

ts

ex
tra

va
ga

nz
a

Word Length

Word Length

Ex
ud

es

th
e

fiz
z

of a Bu
sb

y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t

of a sp
or

ts

ex
tra

va
ga

nz
a

Word Position

Word Position

Ex
ud

es

th
e

fiz
z

of a Bu
sb

y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t

of a sp
or

ts

ex
tra

va
ga

nz
a

NER

NER

Ex
ud

es

th
e

fiz
z

of a Bu
sb

y

Be
rk

el
ey

m
us

ica
l

an
d

th
e

vi
sc

er
al

ex
cit

em
en

t

of a sp
or

ts

ex
tra

va
ga

nz
a

Content Word

Content Word

Figure 9: Lower strands feature vectors.

Bi-LSTM model will be directly used as feature
vectors for different lower strands features.

Figure 7 presents the generated feature matrices
of upper strands containing Noun Phrase, Emotion,
Mod&Aux, and Comp&Obj. These features might
correspond to several words or a phrase, which
means they are phrase-level features compared to
lower strands features.

For noun phrase, we take the average weight
from the prediction of the Bi-LSTM model of
words in the same noun phrase, then we assign the
average weight to the noun phrase feature matrix, if
the phrase length is N , then we have a noun phrase
feature matrix N ×N .In this example, we take the
noun phrase "the fizz" for example, the Bi-LSTM
predicts 0.76 and 0.88 for those two words in the
noun phrase dimension. The average weight is 0.82
for this phrase, and then we fill a 2× 2 matrix with

this value in the whole feature matrix. This pro-
cess is the same for both noun phrase feature and
emotion feature.

For dependency relations, if word wi is the tail
word of wj of the dependency relation we use in
this paper, then we assign the prediction of weight
for wi in this relation to Eij , where E is the feature
matrix of this feature. Take first "the" word of this
sentence in the Mod&Aux dimension, this word is
the determiner of the word "fizz," and "the" is the
tail word of the head word "fizz." The prediction
value from Bi-LSTM for word "the" in Mod&Aux
dimension is 1.8. Following our generation rules,
we assign 1.8 from word "the" to word "fizz" in
the corresponding position of the feature matrix
of Mod&Aux. In this case, we assign 1.8 to E23.
This process is the same for both Mod&Aux and
Comp&Obj features.



3225

A.9 Attention Annotation
To compare the attention produce by CogBERT,
BERT and human, we select several cases from
MRPC, SST2 and NER cases and asked four anno-
tators, which are all students majoring in Computer
Science and have background knowledge about
NLP, to highlight the words that they think are im-
portant for this task. We then collect the average
importance given by the annotators which repre-
sents as the importance score for words in that
sentence for different tasks.


