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Abstract

Learning word embeddings is an essential topic
in natural language processing. Most existing
works use a vast corpus as a primary source
while training, but this requires massive time
and space for data pre-processing and model
training. We propose a new model, HG2Vec,
that learns word embeddings utilizing only dic-
tionaries and thesauri. Our model reaches the
state-of-art on multiple word similarity and re-
latedness benchmarks. We demonstrate that
dictionaries and thesauri are effective resources
to learn word embeddings. In addition, we ex-
ploit a new context-focused loss that models
transitive relationships between word pairs and
balances the performance between similarity
and relatedness benchmarks, yielding superior
results.

1 Introduction

Word embeddings are highly effective for various
applications, ranging from recommender systems
to named entity recognition (Kubal and Nimkar,
2019). They aim to map words into vectors in a
high dimensional space, such that a higher simi-
larity between word embeddings captures a closer
semantic relationship, whereas a low or negative
similarity indicates unrelated or opposite meaning.
As a result, predicting whether the embeddings of
two words are similar or not is a common approach
to evaluate the quality of the embeddings.

There are two main perspectives to describe the
relationship between a pair of words according to
Hill et al. (2015): similarity and relatedness. Simi-
larity means that the two words can substitute for
each other without generating grammatical mis-
takes, while relatedness means that the two words
always appear together in a context. For example,
coffee and tea is a word pair with high similar-
ity and low relatedness. Being popular breakfast
drinks, they share many similar properties (both
physically and grammatically), but they are not

related to each other. On the other hand, green
and tea is a word pair with high relatedness and
low similarity since green tea is a common type of
tea. They do not share similar proprieties, but it is
common for them to appear together in a sentence.

Most existing works utilize a large corpus to
train word embeddings. However, as pointed out
by Kiela et al. (2015), models based on associa-
tion data, like Wikipedia corpus, have better perfor-
mance on relatedness tasks, whereas models based
on thesauri have better performance on similarity
tasks. Therefore, in this paper, we propose a new
model, HG2Vec, that only relies on dictionaries
and thesauri to construct contexts via a heteroge-
neous graph. We demonstrate that this method can
improve the performance of relatedness tasks while
maintaining high accuracy on similarity tasks. Our
main contributions are as follows:

• We utilize dictionaries and thesauri as the only
resources (without using any text corpus) to
train word embeddings, and obtain state-of-art
results on several benchmarks.

• We demonstrate that learning synonyms and
antonyms is necessary for word embedding
models, so a model can distinguish the words
with opposite meanings that appear in similar
contexts.

• We propose a context-focused loss to boost
learning in closely related contexts. It is based
on modeling transitive synonym and antonym
relationships from the thesauri as well as word
co-occurrences from dictionary definitions,
which balances the performance between sim-
ilarity and relatedness tasks.

2 Related Work

Many models require a large corpus to learn word
embeddings; Word2Vec (Mikolov et al., 2013) is
one of them. It iterates through the text with each
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target word generating a surrounding context win-
dow and corresponding negative samples. The goal
is to learn embeddings that maximize the similarity
between the target and context words while mini-
mizing the similarity between the target and neg-
ative sampled words. BERT (Devlin et al., 2018)
is an effective contextual embedding model. It
tokenizes the input sentences, iterates through the
corpus text by blocks, and learns token embeddings
by utilizing the attention-based transformer model.
BERT uses masked-language modeling and next
sentence prediction as the self-supervised tasks dur-
ing pre-training.

Several approaches leverage dictionaries and
other external sources to improve the performance
of Word2Vec and BERT. Faruqui et al. (2014) pre-
train with other models and then use a dictionary-
based relational graph to retrofit semantic informa-
tion. The paper minimizes the difference between
a word embedding from pre-trained models and
its corresponding embeddings from the relational
graph, and maximizes the similarity between a re-
lational graph word embedding with its neighbors.
dLCE (Nguyen et al., 2016) extends the skip-gram
model with negative sampling introduced by (Levy
and Goldberg, 2014) with synonyms and antonyms.
Dict2Vec (Tissier et al., 2017) introduces dictionar-
ies as a resource to train word embeddings. Word
pairs are grouped into two types: strong pairs and
weak pairs. For each target word, Dict2Vec max-
imizes the similarity between a context word and
its strong and weak pairs for each target word.
DRG2Vec (Shu et al., 2020) creates a graph based
on the TF-IDF relationship between word pairs in
dictionaries. It applies both depth-first and breadth-
first based sampling to generate context paths from
the graph. It trains the model on both the Wikipedia
corpus and the generated context. Dict-BERT (Yu
et al., 2021) appends the definition of rare words at
the end of the input corpus. Besides mask language
modeling, it maximizes the mutual information
between the context and the definitions. It also
samples wrong definitions during training to check
whether the model can distinguish them.

Some models do not rely on a text corpus. CPAE
(Bosc and Vincent, 2018) is an auto-encoder model
that only relies on dictionaries. It uses an LSTM to
reproduce the target word after processing its def-
initions. Ruzzetti et al. (2021) propose DefiNNet
and DefBert to utilize dictionaries to predict the
meanings for out-of-vocabulary words. Jana et al.

(2022) create a Distributional Thesaurus Network
to gather the information from thesauri, showing
that utilizing thesauri can improve the performance
of Word2Vec. In addition, Zhang et al. (2019) lever-
age dictionaries as a tool to visualize how other
word embeddings contribute to the target word em-
bedding, which is helpful in analyzing the model
and improving the performance.

Our model is an enhancement over Dict2Vec and
DRG2Vec, where we create a heterogeneous graph
from dictionaries and thesauri, and generate doc-
uments from the sampled paths. Then, we train
the documents to maximize the similarity with re-
lated pairs, explicitly considering synonyms and
antonyms (along with their transitive relationships),
as well as strong and weak pairs.

3 HG2Vec Methodology

3.1 Graph Construction

We first parse the word pairs from the dictionaries
and thesauri, and construct a heterogeneous graph
for sampling paths. Fig. 1 shows an example of an
undirected heterogeneous graph. Each node refers
to a word, and each edge refers to a relationship be-
tween two words. There are four different types of
edges: strong edge (purple), weak edge (blue), syn-
onym edge (black), and antonym edge (red). The
edges also have weights, so the graph is weighted,
and heterogeneous in terms of edges.

Figure 1: A sample undirected heterogeneous graph in
HG2Vec. Each node refers to a word, and each edge
refers to a relationship between words. There are four
types of edges: strong (purple), weak (blue), synonym
(black), and antonym (red). There may be more than one
type of edge between two nodes, but all nodes are of the
same type (for illustration only, we use green to mark
the synonyms of grant, and red to mark its antonyms).
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Strong and Weak Edges Following the ap-
proach in Dict2Vec (Tissier et al., 2017), for a word
pair (wa, wb), if wa appears in the definition of wb

in a dictionary, then there is a weak edge between
them. If wb also appears in wa’s definition, we in-
stead add a strong edge between the two. In Fig. 1,
since agree appears in the definition of allow, there
is a weak edge between the two. Since consent
and allow both appear in each other’s definition,
there is a strong edge between them. To model
the relative importance of these two relationships,
the weight of strong vs. weak edges is 2 : 1 in our
undirected heterogeneous graph.

Synonym and Antonym Edges We directly ex-
tract the synonym and antonym pairs from thesauri.
For a word pair (wa, wb), if wa appears as a syn-
onym of wb, then there is a synonym edge between
wa and wb. If wa appears as an antonym of wb,
then there is an antonym edge between them. For
example, in Fig. 1, refuse is a synonym of deny and
an antonym of grant. The weights of synonym and
antonym edges are 1 : −1 in the graph.

Heterogeneous Graph From Fig. 1, we can see
that there may be more than one type of edge be-
tween two nodes. In most cases, strong edges and
weak edges indicate a relationship between words
with similar meanings. However, some corner
cases refer to the opposite meaning. For example,
there is an antonym edge and a weak edge between
grant and deny. As a result, although strong edges
and weak edges can depict the relatedness of differ-
ent words, they may also contain negative words
in terms of semantics. If we only use strong edges
and weak edges, the model may obscure the op-
posite meanings. Instead, we leverage thesauri as
an external source to automatically consider these
related but opposite pairs.

3.2 Path Generation

Our heterogeneous graph has edges with both pos-
itive and negative weights, so we cannot directly
sample paths from the graph. We first illustrate the
sampling for positive edges (strong and weak pairs,
and synonyms) and then discuss how to handle
negative weights (antonyms).

As such, dictionaries generate strong and weak
edges, and thesauri generate synonym and antonym
edges. We first generate the paths comprising
strong and weak edges and then generate the paths
comprising synonym and antonym edges.

Random Walks We generate the paths via ran-
dom walks 1 that combine both Depth-first Sam-
pling (DFS) and Breadth-frist Sampling (BFS)
as first introduced in Node2Vec (Grover and
Leskovec, 2016). We denote by nx the x-th node
in a walk, and we start generating the walk with
node n0. For a node nx = vi, the next node is
denoted nx+1 = vj , and the previous node is de-
noted nx−1 = vh. Both vh and vj are neighbors of
vi. After we randomly choose one of vi’s neighbor
as nx+1, we choose one of vj’s neighbor as nx+2.
We keep iterating until the path reaches a desired
length L (we use L = 20 in our model). The proba-
bility that we choose a node vj from the neighbors
N(vi) of vi is defined as follows:

p(nx+1 = vj |nx = vi) =
πij∑

a∈N(vi)
πia

(1)

where

πij = α(h, j) · |wij | (2)

In Eq. (2), wij is the edge weight from node vi
to node vj . Since we have edges with negative
weights, we use the absolute value of edge weight.
Therefore, an antonym edge is equivalent to a syn-
onym edge when calculating the probability. Note
also that the probability of jumping to vj also de-
pends on the previous node vh, which can be at
a distance of d = 0, 1, or 2 hops from vj in the
walk. As detailed below in Eq. (3), α(h, j) is a
coefficient that controls the tendency of sampling
between DFS and BFS; if α(h, j) = 1, the algo-
rithm is exactly the same as a random walk.

Node Sampling The distance from a node to
the origin is increasing along the walk for DFS,
which tends to explore the nodes away from the
source. For example, in Fig. 1, the path may
be consent, agree, grant, deny if we utilize DFS.
In contrast, BFS samples all the neighbors from
the source first. It tends to explore the nodes
around the origin. In Fig. 1, the path may be
consent, agree, allow, grant if we utilize BFS.

As above, let nx−1 = vh, nx = vi, and
nx+1 = vj for a sampled walk vh, vi, vj . Here,
vh = nx−1 is the node visited in the previous turn,
and vj = nx+1 is the node sampled in the next
turn. In Eq. (2), α(h, j) is a coefficient to balance

1We allow paths to have repeated nodes.
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between DFS and BFS, defined as:

α(h, j) =


p−1, if d(h, j) = 0

1, if d(h, j) = 1

q−1, if d(h, j) = 2

(3)

In Eq. (3), d(h, j) is the distance between vh and vj .
If d(h, j) = 0, it means the next node is the same
as the previous node, so it reflects the tendency to
return to the source. When d(h, j) = 1, vj and vi
are both neighbors of vh. It reflects the tendency
to explore around the node nx−1. Finally, when
d(h, j) = 2, the parameter reflects the tendency to
sample new nodes away from the origin. Here, p is
called return parameter, and a smaller p increases
the tendency to return to the origin, whereas q is
called in-out parameter, and a smaller q leads to
a tendency to explore new nodes. For example, in
Fig. 1, if vh is grant and vi is agree, a small p leads
to choosing grant as vj , a small q leads to choosing
consent, and the walk samples allow if both p and
q are large.

Generating Paths We separately sample the
walks comprising of strong and weak edges, and
those consisting of synonyms and antonym edges.
The former directly uses the random walk approach
outlined above. Fig. 2 shows a sample path con-
sisting of strong and weak edges sampled from the
heterogeneous graph in Fig. 1.

Figure 2: A path with strong (purple) and weak (blue)
edges.

The sampling for synonym and antonym edges
is more involved. We assume that all the nodes in
one path have similar semantic meanings, so we
cannot append an antonym to a path with synonyms
since their meanings are opposite. However, since
an antonym’s antonym is essentially a synonym,
we can directly attach that to an existing path. We
then generate two paths: one for synonyms and
another for antonyms. The first path stores the
origin and nodes with a similar semantic meaning
to the origin. The second path stores the nodes
with opposite semantic meanings to the origin. We
start at the source and generate the synonyms path
via application of Eq. (1). However, when we en-
counter an antonym (of the source), we put this

node as the first node in the antonyms path. We
continue appending nodes to the antonyms path
for all additional synonym edges encountered. If
we visit another antonym, it means that the new
node has a similar semantic meaning to the source,
so we append the new node to the synonyms path.
We continue to append to the synonyms path if we
encounter additional synonym edges, and so on.
Fig. 3 illustrates this process.

Figure 3: Random walks with synonym (black) and
antonym (red) edges. The path on the top is if we were
to sample both edges together. Instead, we divide it
into two paths: the synonyms path stores the source
node and other nodes with similar meanings, whereas
the antonyms path stores the nodes with opposite mean-
ings to the source. As a result, the nodes have a similar
semantic meaning within each path. Starting with ac-
knowledge, when we encounter refute, it goes to the
antonyms path along with its synonyms contradict and
deny. When we encounter grant, which is an antonym
of deny, we append it to acknowledge. Finally, refuse
again goes to the antonyms path.

3.3 Sampling Set for Training

We treat each sampled path above as a text doc-
ument in our model. Next, we iterate through
each text document with a context window. For
a target word t at position x in a document, using
window size ϕ, the context comprises the words
[x − ϕ/2 : x + ϕ/2]. For example, consider the
path refute, contradict, deny, refuse in Fig. 3. With
window size ϕ = 3, for the target word contra-
dict, its context, denoted C(t), is (refute, contra-
dict, deny). The window selects the context nodes
surrounding the target node, indicating a strong
positive correlation with the target.

For each context word c ∈ C(t), we sample
five negative, strong, weak, synonym, and antonym
word pairs for c, denoted as N (c), S(c), W(c),
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Y(c), and A(c), respectively. The negative words
N (c) are the words sampled from the word dictio-
nary that do not appear in the context C(t). The
other word pairs are sampled from the dictionaries
and thesauri, from the set of c’s strong and weak
pairs, or from c’s synonyms and antonyms.

3.4 Context-focused Model
Like Word2Vec, we have two embeddings for each
word w: input embeddings I(w), and output em-
beddings O(w). After training, we use the output
embeddings for testing and evaluation.

To maximize the similarity of two embeddings,
a and b, we calculate their dot product p = a · b. A
large positive value suggests that the two objects
are similar, a large negative value suggests that they
are negatively related, and a value around 0 sug-
gests that the two are unrelated. We use − log σ(p)
as the loss function where σ(p) = 1/(1+exp(−p))
denotes the Sigmoid function.

Context-focused Transitive Loss HG2Vec con-
siders six different contextual features to learn ef-
fective embeddings, namely, the context, negative
sampled words, strong and weak pairs, and syn-
onyms and antonyms. Each of these contributes to
the overall loss function.

For a given target word t, we first maximize the
similarity between t and its surrounding context
words c. We use the output embeddings for the tar-
get words and the input embeddings for the context
words. Therefore, the loss is given as the sum over
each word pair (t, c) where c ∈ C(t):

It =
∑

c∈C(t)

− log σ(O(t) · I(c))

To calculate the terms in overall loss, for each
word c ∈ C(t), we sample a set of strong pairs
S(c), weak pairs W(c), synonyms Y(c), antonyms
A(c), and negative words N (c). The aim is to
maximize the similarity of c with its strong, weak,
and synonym pairs; and to minimize the similarity
with its antonym and negative pairs. Therefore, we
divide these sets into two groups, the positive group
P+(c) = {S(c),W(c),Y(c)}, and the negative
group P−(c) = {A(c),N (c)}.

The loss functions within each group are similar;
we use synonym pairs as an example. We want
to maximize the similarity of c to any of its syn-
onyms in Y(c); at the same time, the synonyms
of other words in C(t) may also be synonyms of
c. For example, in Fig. 1, for the context (consent,

allow, grant), the synonyms of grant (e.g., acknowl-
edge) are also the synonyms of consent. However,
there is no such synonym path from acknowledge
to consent in the graph since thesauri do not in-
clude all the possible transitive relations. However,
HG2Vec models these transitive synonym relation-
ships by sampling five synonyms for each context
word (e.g., if the context window is 5, then we will
consider 25 synonyms in a context). We maximize
the similarity between the word c and all the sam-
pled synonyms from the context. The synonym
loss for c is given as:

L+
Y(c) = βY

∑
x∈C(t)

∑
p∈Y(x)

− log σ(O(c) · I(p))

Here, βY is a hyperparameter, denoting the impor-
tance of synonyms to the overall loss.

For the negative group P−, we want to min-
imize the similarity. Considering all (transitive)
antonyms of c in a context, the loss is given as:

L+
A(c) = βA

∑
x∈C(t)

∑
p∈A(x)

− log σ(−O(c) · I(p))

Here, βA specifies the weight for antonyms. As
such βP+ = {βS , βW , βY}, and βP− = {βA, βN }
specify the weights for each set in the positive and
negative groups.

The loss for one target word t in a path (or docu-
ment) is given as:

Lt = It +
∑

c∈C(t)

∑
X∈P+(c)

L+
X (c)

+
∑

c∈C(t)

∑
X∈P−(c)

L−
X (c)

(4)

Finally, we sum over all the targets in a path and
sum up all the paths to get the total loss.

4 Experiments

For training, all experiments were conducted on a
machine with a dual 20 core 2.5 GHz Intel Xeon
Gold 6248 CPU, and Nvidia Tesla V100 GPU with
32GB memory. Our HG2Vec implementation is
available as open source at https://github.
com/Qitong-Wang/HG2Vec.

4.1 Datasets
Dictionaries and Thesauri For the strong pairs
and weak pairs, we use the same data sources as
Dict2Vec (Tissier et al., 2017) and DRG2Vec (Shu
et al., 2020). After removing stop words, they

https://github.com/Qitong-Wang/HG2Vec
https://github.com/Qitong-Wang/HG2Vec
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extract the strong and weak pairs from the Cam-
bridge, Oxford, and Collins dictionaries, and dic-
tionary.com. We extract the synonym and antonym
pairs from Roget’s Super Thesaurus 4th Edition
(McCutcheon, 2010). In total, our heterogeneous
graph contains 211,675 unique nodes/words, with
4,273,743 strong and weak edges, and 119,512 syn-
onym and antonym edges.

Wikipedia HG2Vec does not rely on text corpus
data, so we do not need to use Wikipedia corpus
during training. However, for the baseline models,
we pre-process the Wikipedia corpus from Nov.
2021 (https://dumps.wikimedia.org/),
using the first 50 million words from the cleaned
data.

4.2 Experimental Settings

Hyperparameters The hyperparameters for
Dict2Vec and DRG2Vec are the same as those re-
ported in their papers. For HG2Vec, for generating
the paths, we use ϕ = 5, p = 1.5, q = 5.0 and
L = 20. Word embedding size is 300. We use
five strong, weak, synonym, antonym, and nega-
tive samples for the loss computation. We train the
model for five epochs; in each epoch, we sample
one strong-weak path and one synonym-antonym
path per node in the heterogeneous graph. To tune
the β hyperparameters, we use a grid search from
0.1 to 5. We find that βS = 0.4, βW = 0.4, βY =
1.0, βA = 1.0, βN = 3.5 give the best results.
We try from 0.001 to 0.01 for the learning rate
and choose 0.003 as the default. The weight for
strong vs. weak edges is 2 : 1, and for synonym vs.
antonym edges is 1 : −1. Since both types of paths
are sampled independently, the edge weights have
importance only within their group.

Testing After we train the model, we extract the
output word embeddings O(w), and use them for
the benchmark evaluation. We train each model
three times and report the average performance.

4.3 Benchmarks

We evaluate our model on word similarity bench-
marks, which provide several pairs of words with a
human-evaluated similarity score. We calculate the
cosine similarity between the embedding vectors
for each pair and rank the values from largest to
smallest. Then, we use Spearman rank correlation
to compare the order of pairs for each model versus
the ground truth. A higher value indicates that the

rank order of word pairs generated by a model is
similar to the ground truth.

We collect the following datasets: Card-660
(Pilehvar et al., 2018), MC-30 (Miller and Charles,
1991), MEN-TR-3K (Bruni et al., 2014), MTurk-
287 (Radinsky et al., 2011), MTurk-771 (Halawi
et al., 2012), RG-65 (Rubenstein and Goodenough,
1965), RW-STANFORD (Luong et al., 2013), Sim-
Lex999 (Hill et al., 2015), SimVerb-3500 (Gerz
et al., 2016), WS-353-ALL (Finkelstein et al.,
2001), WS-353REL (Finkelstein et al., 2001), WS-
353-SIM (Finkelstein et al., 2001), YP-130 (Yang
and Powers, 2006). Among these datasets, MEN-
TR-3K, MTurk-771, RG-65, YP-130, and WS-353-
REL focus on testing the relatedness, and Sim-
Lex999, SimVerb-3500, and WS-353-SIM focus
on testing the similarity between the word pairs.
WS-353-ALL is the combination of WS-353-REL
and WS-353-SIM. Card-660 and RW-STANFORD
focus on testing rare words.

After generating the Spearman correlation of
each dataset, we also report the weighted average
over all the datasets, with the weight of each dataset
being proportional to its size.

4.4 Baseline Methods

We compare HG2Vec with Word2Vec(Mikolov
et al., 2013), Dict2Vec(Tissier et al., 2017), and
DRG2Vec(Shu et al., 2020). For comparison, We
include HG2Vec(wiki), for which we use the 50M
Wikipedia corpus with dictionaries and thesauri
as the input resource. We also compare with a
target-only based model HG2Vec(target) where we
replace C(t) with t in Eq. (4). This allows us to
compare the effectiveness of context-focused loss.
Note also that we report the result of Dict2Vec and
DRG2Vec based on our runs. If we use wiki corpus
as an external source and we use paths sampled
with TF-IDF pairs from strong and weak pairs, we
obtain DRG2Vec. If we omit the graph and use
wiki corpus with strong and weak pairs, we obtain
Dict2Vec. Finally, we also report ablation results
when we omit strong, weak, synonyms, antonyms,
and negative pairs, one at a time.

5 Evaluation

5.1 Similarity and Relatedness Experiments

Effectiveness of Dictionaries and Thesauri The
results of evaluating the similarity and related-
ness benchmarks are shown in Table 1. We can
see that HG2Vec scores higher than Word2Vec,

https://dumps.wikimedia.org/
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Type Benchmark Word2Vec Dict2Vec DRG2Vec HG2Vec HG2Vec HG2Vec
wiki target

MEN-TR-3K 0.612 0.688 0.721 0.771 0.782 0.779
MTurk-287 0.577 0.568 0.558 0.666 0.642 0.650

Relatedness MTurk-771 0.540 0.609 0.640 0.755 0.778 0.773
RG-65 0.617 0.814 0.845 0.895 0.915 0.913

WS-353-REL 0.548 0.579 0.605 0.671 0.658 0.660
YP-130 0.257 0.528 0.610 0.756 0.780 0.771

SimLex999 0.338 0.444 0.476 0.735 0.742 0.752
Similarity SimVerb-3500 0.190 0.379 0.425 0.732 0.732 0.742

WS-353-SIM 0 .679 0.696 0.728 0.813 0.811 0.811
Rare Card-660 0.234 0.388 0.513 0.667 0.657 0.668

Words RW-STANFORD 0.398 0.476 0.482 0.549 0.552 0.558
Mixed MC-30 0.682 0.748 0.738 0.867 0.898 0.900
Words WS-353-ALL 0.626 0.682 0.699 0.747 0.736 0.734

Average 0.416 0.529 0.558 0.712 0.717 0.721

Table 1: Evaluation of HG2Vec versus baseline methods for similarity and relatedness benchmarks. Spearman rank
correlation values shown for each benchmark, as well as a weighted average across datasets. Best results in bold.

Dict2Vec, and DRG2Vec on all the tests. Among
the baselines, DRG2Vec typically outperforms oth-
ers except for mixed words datasets. Our HG2Vec
model improves the performance on all the relat-
edness tests. For example, compared to DGR2Vec,
on MTurk-771 it has 20.8% higher performance,
and on RG-65 8.0% higher. We have a consider-
able improvement on similarity tests, such as Sim-
Lex999 (57.9% higher) and SimVerb-3500 (74.6%
higher). Likewise, we see substantial improve-
ments on rare words. Looking at average cor-
relation scores, HG2Vec outperforms DGR2Vec
by 29.2%, Dict2Vec by 36.3%, and Word2Vec by
73.3%.

These improvements show that dictionaries and
thesauri are suitable replacements for a large corpus
for training word embeddings since our model does
not make use of any text corpus. Furthermore, since
Dict2Vec also uses dictionaries as a resource, the
improvement in similarity benchmarks indicates
that thesauri are a powerful resource for learning
the similarity of word embeddings. Other models
only use negative sampling to decrease the simi-
larity score between dissimilar word pairs, which
can contain high uncertainty. In contrast, thesauri
contain both synonyms and antonyms which are
more reliable sources for our model to learn the
word pairs with similar and opposite meanings.

Corpus Resource HG2Vec(wiki) includes both
the Wikipedia corpus and the dictionaries and
thesauri as the input resource. Compared with

HG2Vec, HG2Vec(wiki) has better performance
on MTurk-287 by 2.4 % and WS-353-REL by 1.7
%, which are both relatedness datasets. In con-
trast, HG2Vec has 2.3 % improvement on Sim-
Lex999 and 1.4 % improvement on SimVerb-3500.
It shows that combining Wikipedia corpus can in-
crease the performance of relatedness tests but can
also decrease the performance on similarity. How-
ever, since incorporating the Wikipedia corpus does
not lead to a significant improvement, and the data
pre-processing and training time are not negligible,
we choose to discard them from input resources.

Context-focused versus Target-only loss Com-
pared with the target-only model HG2Vec(target),
our context-focused model HG2Vec increases the
performance for similarity benchmarks while keep-
ing most of the performance for relatedness bench-
marks. Context-focused model has 1.3% improve-
ment on SimLex999 and SimVerb-3500. Further-
more, the context-focused model increases the per-
formance on benchmarks with rare words. It has
a 1.7% improvement on Card-660. Target-only
model only has a smaller improvement in related-
ness tests, such as a 1.2% improvement in YP-130.

5.2 Ablation Tests
We conduct ablation tests to examine the contri-
bution of each type of edge to the final Spearman
correlation, as shown in Table 2. We can see that
synonym and negative pairs contribute to both re-
latedness and similarity tasks. Strong pairs help
the models learn relatedness but negatively im-
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Type Benchmark -strong -weak -synonym -antonym -negative HG2Vec
MEN-TR-3K 0.762 0.688 0.788 0.782 0.426 0.779
MTurk-287 0.610 0.517 0.642 0.677 0.318 0.650

Relatedness MTurk-771 0.755 0.707 0.756 0.770 0.562 0.773
RG-65 0.902 0.826 0.899 0.913 0.715 0.913

WS-353-REL 0.642 0.542 0.641 0.650 0.359 0.660
YP-130 0.754 0.756 0.727 0.815 0.660 0.771

SimLex999 0.771 0.725 0.636 0.711 0.644 0.752
Similarity SimVerb-3500 0.755 0.715 0.626 0.694 0.671 0.742

WS-353-SIM 0.794 0.748 0.784 0.816 0.591 0.811
Rare Card-660 0.683 0.578 0.589 0.682 0.169 0.668

Words RW-STANFORD 0.553 0.555 0.504 0.569 0.352 0.558
Mixed MC-30 0.898 0.826 0.888 0.901 0.707 0.900
Words WS-353-ALL 0.720 0.654 0.720 0.732 0.499 0.734

Average 0.718 0.679 0.665 0.707 0.515 0.721

Table 2: Ablation study: Column indicates the omitted word pairs; HW2Vec is the full model. Best results in bold.

keyword DRG2Vec HG2Vec
Adjective Query Words

red
reds yellow blue carmine crimson vermillion

purple green orange scarlet fuchsia ponceau

local
locals regional district regional parochial locals
mudir municipal stations subregional provincial endemic

Verb Query Words

sleep
sleeps sleeping awake doze snooze shuteye
asleep quiescent waking slumber catnap siesta

listen
call attentively hear listened listeners relisten

listening listened callers listenin heed listener
Noun Query Words

animal
animals plant ruminant critter varmint brute
person pets organism beast mammal coyote

coffee
tea grape cocoa coffees coffea canephora

beverage beans drinks tea arabica coffeebeans

Table 3: Qualitative Evaluation: Top 6 similar words to the query word.

pact some similarity tasks, such as SimLex999 and
SimVerb-3500 (the model improves by removing
strong pairs for these datasets). For some similarity
datasets, omitting synonyms can sometimes help
(e.g., MEN-TR-3K). Likewise, for antonyms (on
YP-130). Overall, HG2Vec balances between re-
latedness and similarity tasks to yield the highest
performance.

5.3 Case Study

To qualitatively evaluate the word embeddings, we
divide the words into three types: adjectives, verbs,
and nouns. We sample query words from each cat-
egory and report the top six words with the highest

cosine similarity to the query word in Table 3.

We observe that for the adjective query red,
HG2Vec word pairs contain several of its syn-
onyms, such as vermillion and scarlet. DRG2Vec
lists other colors that co-occur in similar contexts,
like blue and green. Likewise, for the adjective
local, HW2Vec returns high similarity words, but
DRG2Vec generates nouns that frequently combine
with local, such as stations. In general, HG2Vec
outperforms other models since it can generate
more synonyms of the input word.

Comparing verb and noun queries is somewhat
harder, but overall, HG2Vec focuses more on se-
mantics, whereas DRG2Vec pays more attention



3162

to co-occurrence. For example, DRG2Vec outputs
awake as similar to the query verb sleep, but they
are in fact opposite in meaning. On the other hand,
the top results for HG2Vec are all similar to sleep.
Likewise, for the noun query animal, DRG2Vec
returns person, and for coffee it returns grape, as
one of the top similarity words. HG2Vec avoids
such obviously non-similar words. This suggests
that models can struggle to learn opposite word
pairs without thesauri if their contexts are similar.
HG2Vec performs better because of the synonym
and antonym edges.

6 Conclusions

We propose HG2Vec, a model that solely relies on
dictionaries and thesauri without the use of a huge
textual corpus. Despite this, our model yields state-
of-art on many similarity and relatedness bench-
marks. We also provide strong evidence (via the ab-
lation study) that learning synonyms and antonyms
is necessary for improved word embedding mod-
els. Our work highlights the use of dictionaries and
thesauri as effective sources to learn word embed-
dings.

One interesting finding is that when we parse the
thesaurus, some word pairs are both synonyms and
antonyms. For example, according to Roget’s Su-
per Thesaurus, the synonyms of advance are help,
hasten, quicken, aid, assist, further, forward, facili-
tate, back, and the antonyms of back are progress,
advance. The reason back is a synonym is because
to advance someone is to back them. On the other
hand, back is also an antonym since to go back
is the opposite of to advance. Thus, advance and
back are both synonyms and antonyms, suggesting
that the relationship between two words may be op-
posite in different contexts and situations. This is
a challenging topic for training word embeddings,
which we plan to investigate in the future.

In the future, we plan to also include more rela-
tionship types, such as derivative words and partici-
ples. Furthermore, while HG2Vec uses definitions
only to construct strong and weak pairs, we plan
to study ways of using the full definition text in
addition to the heterogeneous graph.
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