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Abstract

Pre-trained Language Models (PLMs) are the
cornerstone of the modern Natural Language
Processing (NLP). However, as PLMs become
heavier, fine tuning all their parameters loses
their efficiency. In this paper, we propose Lay-
erConnect (hypernetwork-assisted inter-layer
connectors) to enhance inference efficiency.
Specifically, a light-weight connector with a
linear structure is inserted between two Trans-
former layers, and the parameters inside each
connector are tuned by a hypernetwork com-
prising an interpolator and a down-sampler. We
conduct extensive experiments on the widely
used GLUE benchmark. The experimental
results verify the inference efficiency of our
model. Compared to Adapter, with our struc-
ture, parameters are reduced to approximately
11.75% for base PLMs and 8.82% for large
PLMs, while the performance degradation is
kept to less than 5% (2.07 points on average).

1 Introduction

The emergence of pre-trained language models
(PLMs) has brought Natural Language Process-
ing (NLP) to a new era (Qiu et al., 2020). Fine
tuning all PLMs parameters has become the most
common strategy to apply them to downstream
tasks (Zheng et al., 2021a; Lai et al., 2021; Wang
etal., 2021, 2022; Chen et al., 2022; He et al., 2022;
Zheng et al., 2020; Wang et al., 2020; Zheng et al.,
2021b,c; Zhang et al., 2020; Zhou et al., 2021).
However, in this manner, one should store a full
copy of a PLM for each downstream task because
all its parameters are updated during the fine-tuning
stage. Thus, this strategy challenges the usage of
the PLMs on edge devices (e.g., mobile phone and
embedded systems) that have limited storage space.
Under this background, parameter efficiency has
gradually attracted attention from both the research
*These two authors contributed equally.
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community and industries (Houlsby et al., 2019;
Li and Liang, 2021; Zaken et al., 2021; Liu et al.,
2021; Ding et al., 2022; Zhang et al., 2021). The
core concept of parameter efficiency is to reduce
the trainable parameters of PLMs. Consequently,
when deploying a PLM, only the different trained
parameters from multiple tasks must be stored, to-
gether with one copy of the shared frozen parame-
ters.

Currently, there are three main types of param-
eter efficiency methods: (1) Specification-based
methods train only a small part of the parameters in
the original PLM, while the others are frozen. For
example, Bitfit (Zaken et al., 2021) only updates
the parameters of the bias and task-specific layers
in PLMs. (2) Prompt-based methods prepend addi-
tional context (i.e., prompts) to the original input,
and change only the prompt parameters during fine
tuning. In this manner, P-tuning (Liu et al., 2021)
adopts an extra network to functionalize the op-
timization of the continuous prompt embedding.
Then, Prefix-tuning (Li and Liang, 2021) is pro-
posed to use trainable prefixes to accomplish a
parameter-efficiency task. (3) The Adapter-based
methods inject small-scale neural modules to PLMs
and update only these modules during fine tuning.
Adapter (Houlsby et al., 2019) simply injects two
linearly trainable projectors (i.e., Adapter layers)
into each transformer layer of PLMs. Karimi Ma-
habadi et al. (2021) further make the weights of
Adapter layers conditioned on hypernetworks (Ha
et al., 2016) facilitating parameter sharing across
multiple tasks. Later, Hu et al. (2021) propose Low-
Rank Adaptation (LoRA), a layer-parallel structure
which contains less parameters than Adapter.

In view of hypernetwork (Ha et al., 2016) which
generates weights for another network, although its
superiority has been proved in multi-task parameter
efficiency (Karimi Mahabadi et al., 2021), the sin-
gle linear projector used in their hypernetwork con-
tinues to have under-explored abilities (e.g., avoid-
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ing local optima and performance compensation
when linear structure size is reduced). Furthermore,
the PLM used in Karimi Mahabadi et al. (2021)
is TS (Raffel et al., 2020), a pre-trained encoder-
decoder model. Therefore, the effectiveness of the
hypernetwork remains unknown in encoder-only
PLMs (e.g., BERT and RoBERTa). To this end, we
propose LayerConnect, a hypernetwork-assisted
inter-layer connector. Specifically, in the proposed
architecture, we first insert a connector between
every adjacent transformer layer in a PLM. Only
the parameters of the inserted connector are up-
dated during the fine-tuning stage. Then, to share
parameters across multiple tasks and avoid local
convergence, the weights of the connector are con-
ditioned on a well-designed hypernetwork that is
equipped with an interpolator and a down-sampler.
The proposed hypernetwork reduces the required
parameters in the connectors and ensures sufficient
optimization space. We conduct extensive experi-
ments on the GLUE benchmark (Wang et al., 2018).
The experimental results show that compared with
Adapter, our LayerConnect requires only 11.75%
of its parameters, while keeping the performance
degradation to less than 5%.

2 Method

We propose hypernetwork-assisted inter-layer con-
nectors (i.e., LayerConnect), as shown in Figure 1,
the Transformer encoder (Vaswani et al., 2017) is
used as the backbone of our LayerConnect and a
connector is inserted between Transformer layers,
named inter-layer connector. Specifically, the con-
nectors linearly transform the hidden states of each
Transformer layer:

clx) =X, A+ B (1)

where X; € R™*4 is the hidden state of the [-th
Transformer layer (I € {1,2,---,L}), n and d
are the input size and the hidden size of Trans-
former, respectively. Further, A' € R™ " and
B! € R % are the trainable parameters where
each row in A! or B! is a repetition of a vector
a! or b with length n. In the entire model, the
only tunable parameters are A = [a';a?;--- ;a”]
and B = [b';b%--- ;b"]. Compared with pre-
vious intra-layer Adapters (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), our inter-layer con-
nector contains fewer trainable parameters due to
(1) the number of inserted layers in our model is L
while the counterpart of others is 2L; and (2) the
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Figure 1: LayerConnect architecture.

parameters count in our connector is n+d, which is
less than 2d - d,, (1 < d,,, < d) existing Adapters.

To prevent the model from converging to the lo-
cal optima due to the small number of parameters,
the weights of A and B are conditioned on a hyper-
network. Unlike the approach of Karimi Mahabadi
et al. (2021), whose hypernetwork is a single linear
projector, we design a new hypernetwork equipped
with an interpolator and a down-sampler. In detail,
we first utilize a learned task embedding e; € RE*¢
for each task, and then, use an interpolator to raise
dimensionality, followed by a ReLU non-linearity:

€in = ReLU(Wmet) (2)

where W;,, € R™EXL is the set of trainable param-
eters of the interpolator and m is a hyper parameter.
In this manner, sufficient interpolator parameters
are provided to optimize the connectors. Subse-
quently, a down-sampler is used to project X,
back to the original dimensionality. Finally, the
weights of A and B are generated from the down-
sampled vector:

€ds = stein (3)
(AT,BT) = X 4, (W4, Ww5) 4)

where Wy, € REXmL 4 ¢ R and WP e
R?*4 are trainable parameters.

We specify the parameters of hypernetwork for
different tasks during fine tuning. After that, the
hypernetwork is discarded when deploying models,
indicating that the parameters of the hypernetwork
do not influence storage space during reasoning.
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. | SST2 | QNLI | M-MM QQP RTE STS-B CoLA MRPC
Method Para. Size | “pco” | Ace. Acc. | Ace. Fl | Acc. | PCC  SCC | Acc. | Acc.  Fl

Vanilla Fine-Tuning 108.3IM | 91.46 | 91.00 | 8391 | 91.08 87.93 | 69.67 | 89.73 8935 | 60.74 | 86.17 90.12
ADA: 27.66K | 90.60 | 88.14 | 78.77 | 8554 8051 | 63.82 | 8699 8697 | 51.1Z | 77.79 8522
ADAg-random 13.06K | 90.51 | 86.34 | 7254 | 8271 77.90 | 58.48 | 83.63 83.25 | 34.36 | 72.07 82.67
ADAg 156.76K | 91.48 | 90.84 | 81.46 | 88.11 83.98 | 69.82 | 88.08 88.08 | 57.12 | 84.46 88.94
ADAs-hyper 156.76K | 91.40 | 90.87 | 81.96 | 88.58 84.71 | 70.51 | 88.07 88.07 | 56.01 | 8529 89.42
Bitfit 102.91K | 9078 | 87.70 | 78.15 | 8550 80.90 | 67.22 | 87.22 87.22 | 47.92 | 78.14 85.67
LayerCon. (our) 18.43K | 9245 | 8858 | 7896 | 85.73 8116 | 68.73 | 8746 87.63 | 53.86 | 86.17 90.11
LayerCon. (w/o B) 921K | 90.52 | 87.13 | 7562 | 8471 7979 | 6498 | 8586 85.74 | 49.72 | 80.94 87.18
LayerCon. (w/o A) 9.21K | 89.48 | 8525 | 75.63 | 8249 77.97 | 57.40 | 70.10 8125 | 42.98 | 69.61 81.66
LayerCon. (w/o A&B) | 18.43K | 89.79 | 84.79 | 8255 | 83.06 78.43 | 58.19 | 84.63 84.63 | 40.94 | 7421 83.11

Table 1: Experimental results on the GLUE benchmark, based on BERT-base. M.-MM = MNLI-MM. Para. Size:
additional parameters for PLM inference in a single task. The bold denotes the best results.

. SST-2 | QNLI | M.-MM QQP RTE STS-B CoLA MRPC
Method Para. Size Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1
Vanilla Fine-Tuning 125.31M | 94.65 | 93.11 87.16 9149 88.70 | 77.36 | 90.00 89.79 | 59.66 | 88.57 91.75
ADA1 27.66K 92.09 | 88.19 82.48 85.74 80.95 | 58.34 | 81.93 81.99 | 37.82 | 77.09 81.92
ADAg-random 13.06K 90.51 | 80.97 75.46 82.69 77.82 | 58.53 | 87.38 87.26 | 30.09 | 68.38 81.22
ADAg 156.76K | 93.85 | 90.90 86.63 88.29 84.56 | 70.18 | 90.63 90.31 | 58.92 | 87.60 91.08
ADAg-hyper 156.76K | 94.50 | 91.77 85.13 87.30 83.23 | 70.21 | 88.86 89.22 | 61.14 | 84.74 88.66
Bitfit 103.68K | 90.60 | 88.49 75.79 85.23 81.08 | 67.22 | 84.56 84.41 | 54.17 | 80.88 86.15
LayerCon. (our) 18.43K 93.58 | 89.51 83.57 87.04 8298 | 66.13 | 86.74 86.85 | 55.17 | 79.88 85.67
LayerCon. (w/o B) 9.21K 91.28 | 87.59 80.66 85.34 81.03 | 59.01 | 83.08 83.45 | 41.86 | 75.29 83.66
LayerCon. (w/o A) 9.21K 92.66 | 84.57 71.52 83.55 7946 | 60.72 | 78.09 78.38 | 43.27 | 70.10 81.68
LayerCon. (w/o A&B) 18.43K 91.50 | 86.73 72.76 8590 8191 | 63.29 | 84.66 83.55 | 46.56 | 73.70 82.21

Table 2: Experimental results on GLUE benchmark, based on RoBERTa-base.

Therefore, we only need to restore the connector
parameters, i.e., A and B, for each task.

3 Experiment

3.1 Setup

The PLMs used in our experiments are BERT and
RoBERTa models implemented by the Transform-
ers library (Wolf et al., 2020). More details are
given in Appendix A.

3.2 Dataset and Metric

Following previous work (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), we evaluate model
performance on the GLUE benchmark (Wang et al.,
2018). Note that some test sets in GLUE are not
publicly available, thus, the corresponding valida-
tion sets are used as alternatives. The main metric is
accuracy (Acc.). For the QQP and MRPC, we use
the F1-measure; for the STS-B, we use the Spear-
man and Pearson correlation coefficients (SCC and
PCCO).

3.3 Baselines

We compared our model with the following meth-
ods. (1) Vanilla Fine-Tuning: Fine-tuning all pa-
rameters in PLMs; (2) Adapter (Houlsby et al.,
2019) under different settings: specifically, we ad-
just the middle size of its bottleneck structure to 1

and 8, which we denoted as ADA; and ADAg, re-
spectively; (3) ADA-random: We randomly add an
Adapter layer! to the PLM as a baseline. (4) ADAg
-hyper: We equip the original Adapter of size § with
our hypernetwork. (5) Bitfit (Zaken et al., 2021).

Moreover, we also modify our LayerConnect
(LayerCon.) into the following three variations: (1)
LayerCon. (w/o B) uses only the hypernetwork to
generate the weights of A; (2) LayerCon. (w/o A)
uses only the hypernetwork to generate the weights
of B; (3) LayerCon. (w/o A&B) removes the hy-
pernetwork and randomly initializes the weights of
A and B.

3.4 Results

We first analyze the effectiveness of LayerConnect
and hypernetwork through the experimental results
of the base model (Table 1 and Table 2).

Effectiveness of LayerConnect. Our LayerCon-
nect outperforms Bitfit in most of the benchmark
datasets. For the Adapter baselines, a larger
Adapter achieves the higher performance (ADA;
vs. ADAg). As a strong baseline, Adapter even
outperforms the vanilla fine-tuning in some bench-
mark datasets. However, when the Adapter is
equipped with parameters similar to those of Layer-
Connect, its performance declined (ADAg-random

'We choose to add only one Adapter layer since the train-
able parameters in this strategy are most close to our model.
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’ . SST-2 | QNLI | M.-MM QQP RTE STS-B CoLA MRPC
Method Para. Size Acc Acc. Acc Acc. F1 Acc. PCC SCC Acc. Acc. F1
Vanilla Fine-Tuning 333.58M | 93.12 | 92.36 86.55 91.44 88.43 | 7545 | 90.08 90.17 | 65.12 | 87.74 91.28
ADA1 76.82K 92.09 | 91.62 83.30 87.37 83.04 | 6823 | 89.63 89.53 | 58.81 | 71.08 81.73
ADAg-random 36.88K 91.97 83.56 77.52 85.25 80.83 | 64.34 | 84.58 85.13 | 57.54 | 7843 85.53
ADAg 417.98K 9293 | 92.11 86.60 89.17 8630 | 72.99 | 90.19 90.06 | 61.07 | 86.12  90.18
ADAg-hyper 417.98K 92.84 | 92.12 85.90 89.72 86.28 | 75.71 | 90.03 89.51 62.70 | 87.84 91.35
Bitfit 272.38K 92.20 | 90.03 85.90 87.15 83.63 | 70.03 | 89.90 89.65 | 57.79 | 79.75 90.21
LayerCon. (our) 36.88K 92.59 | 91.10 83.36 85.72 84.43 | 7242 | 90.08 87.63 | 60.90 | 87.50 91.24
LayerCon. (w/o B) 18.43K 92.09 | 89.71 81.11 85.03 80.76 | 68.95 | 88.12 88.87 | 57.02 | 80.15 86.61
LayerCon. (w/o A) 18.43K 91.86 | 89.99 80.67 84.70 80.24 | 67.15 | 88.50 88.25 | 58.58 | 82.35 82.04
LayerCon. (w/o A&B) 18.43K 91.97 | 89.86 81.77 84.56 80.05 | 59.21 | 87.45 87.42 | 55.63 | 76.47 84.81
Table 3: Experimental results on GLUE benchmark, based on BERT-Large.
. SST-2 | QNLI | M.-MM QQP RTE STS-B CoLA MRPC
Method Para. Size Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1
Vanilla Fine-Tuning 356.51IM | 96.61 | 94.94 89.98 91.92 89.45 | 85.12 | 92.28 92.09 | 65.08 | 88.48 91.75
ADA1 76.82K 95.07 | 91.96 88.17 86.61 82.51 | 71.12 | 90.63 90.54 | 55.59 | 86.27 90.48
ADAg-random 36.88K 95.18 | 75.97 84.94 84.67 80.43 | 73.29 | 88.48 88.53 | 52.06 | 83.33 88.51
ADAg 417.98K 95.94 | 94.56 89.66 89.25 8597 | 72.74 | 92.01 91.08 | 62.75 89.07 92.17
ADAg-hyper 417.98K 96.58 | 94.73 90.03 89.34 86.03 | 73.19 | 90.05 89.88 | 59.06 | 89.46 92.31
Bitfit 273.41K 95.37 | 93.04 88.46 87.49 83.79 | 72.22 | 91.05 9091 | 59.70 | 86.64 90.21
LayerCon (our) 36.88K 95.41 93.67 88.60 88.04 83.00 | 76.92 | 91.50 91.46 | 63.61 | 87.00 90.21
LayerCon. (w/o B) 18.43K 93.23 90.85 86.44 86.24 82.32 | 73.29 | 86.34 86.32 | 54.23 | 70.83 81.89
LayerCon. (w/o A) 18.43K 93.35 | 92.29 86.90 85.77 85.99 | 70.76 | 86.55 86.57 | 53.95 | 82.50 83.86
LayerCon. (w/o A&B) 36.88K 94.61 | 92.36 87.28 86.24 81.92 | 68.23 | 8291 83.56 | 56.53 | 77.45 8540
Table 4: Experimental results on GLUE benchmark, based on RoBERTa-Large.
Para. Size | CoLA(Acc.) | MNLI-MM(Acc.) 0

2m. 55.17 §3.57 10° 70 LayerConnedt PO

4m. 55.47 84.01 14 Adapters A

10m. 55.48 84.22 108 - o- Adapter 16 T et

Table 5: The effect of the size of hypernetwork under
the RoBERTa-base model.

vs. ADAg) and is worse than ours on most datasets.
Moreover, the trainable inserted parameters in our
model are only 11.75% of that in ADAg. The Layer-
Connect performance is competitive with the best
Adapter, with an average performance deterioration
of 1.42% (1.0 points) and 3.96% (3.3 points) for
BERT-base and RoBERTa-base, respectively.

Effectiveness of the Hypernetwork. We also
demonstrate that the hypernetwork is necessary
for the connectors. We compare the results of our
model with or without hypernetwork (LayerCon.
vs. LayerCon. (w/o A&B)). The former outper-
forms the latter except for MNLI-MM. We analyze
this because the hypernetwork provides sufficient
parameters during the fine-tuning stage to tune the
connectors effectively. We also remove the A and
B in our hypernetwork, respectively, to further re-
duce the parameters. However, the performances
are all worse than that of the original hypernetwork
(LayerCon. vs. LayerCon. (w/o B) and LayerCon.
(w/o A)), demonstrating the rationality of our hy-
pernetwork. Moreover, we attempt to equip the
best Adapter with our hypernetwork, the results are
only slightly changed compared with the original

Parameter Size
N
o
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—_
o
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oLl s el
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Figure 2: Parameter size as the number of tasks grows.

Adapter (ADAg vs. ADAg-hyper). We conclude that
our hypernetwork is more effective on fewer param-
eters’ inserted layers since its provided parameters
are more valuable to them.

We additionally test our model and baselines
based on BERT-large and RoBERTa-large models.
The corresponding results are shown in Table 3 and
Table 4, respectively. The average performance de-
terioration is 2.12% (1.74 points) and 0.79% (0.85
points) for BERT-large and RoBERTa-large, respec-
tively; both are lower than that of the base models.
The trainable inserted parameters in LayerConnect
are only 8.82% of that in ADAg.

4 Discussion

As presented in Table 5, we adjust the middle value
of the hypernetwork shape in our method to 4 and
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10, respectively. A larger size resulted in a slight
performance improvement. This result suggests
that the hypernetwork size has a positive effect in
our LayerConnect.

We compare the parameter size in the deploy-
ment for model inference as the number of tasks
grows, as shown in Figure 2. In model inference,
considering the scalability, for the Bitfit, one may at
least store multiple copies of the bias (i.e., 1,324K).
However, the structure and the bias locations are
also necessary. The parameter sizes of the Adapter
and the Adapter with the hypernetwork are the
same (i.e., the size of the bottleneck structure). In
contrast, our connectors require an extremely small
parameter size. That is to say, one can easily de-
ploy several tens of the tasks, and the total size of
the parameters just arrives at the same level as that
of a single task when using the others.

5 Conclusion

To enhance the parameter efficiency in the fine-
tuning stage of PLMs, we propose the ultra-light
connectors to be embedded into the Transformer
layers. Furthermore, to keep the performance of
such a small structure, we use the hypernetwork
to assist the tuning of the parameters within the
connectors. We compare our method with main-
stream methods (Adapter and Bitfit). Experimental
results show that our method outperforms Bitfit in
most cases. Compared with ADAg (with best per-
formance in most cases), our method reduces the
trainable parameters to 11.75% for base models
and 8.82% for large models, while keeping the per-
formance degradation to less than 5% (2.07 points
on average). By analyzing the results, we verify
that reducing the number of parameters on the basis
of Adapter will seriously reduce the performance,
and the introduction of hypernetwork promises an
effective way to compensate for performance. This
reveals a new direction of the study on model ef-
ficiency. Additionally, LayerConnect shows scal-
ability, especially for the memory-sensitive and
storage-sensitive edge devices e.g., smartphones,
embedded devices, micro containers, and IoT/IoH
devices.
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A Setup and Evaluation Metric
A.1 Setup

Connectors: The LayerConn.(ours), Layer-
Conn.(w/o B) and LayerConn.(w/o A) are shown
as Equation 5 to Equation 7, respectively:

Ccl(x) =X;- A + B (5)
Cl(X;) = X;- Al (6)
c'(x;) =B (7)

where X; € R"*4 Al ¢ R"*" and B! € R"*4,
l €{1,2,---,L}) is the layer ID. For both Bert-
base and RoBERTa-base model, L = 12; for both
Bert-large and RoBERTa-large model, L = 24.
Each row in A' or B! is a repetition of a vector a' or
b with length n. The only tunable parameters are
A = [a';a%---;a"] and B = [b*;b% - ;bY].
n and d are the input size (max. length) and the
hidden size of Transformer, respectively. For both
Bert-base and RoBERTa-base model, n is 128, and
d is 768; for both Bert-large and RoBERTa-large
model, n is 128, and d is 1024.

Hypernetwork: Aa interpolator can be ex-
pressed as:

ein = ReLU (Wine;) (8)
and a down-sampler can be expressed as:
€ds = stein (9)

where W;,, € R™EXE and Wy, € REX™L | they
are the trainable parameters of the interpolator and
the down-sampler, respectively. m is a hyper pa-
rameter. In the experiment, the minimum m = 2.
PLMs: The learning rates are 2 x 1075 and
5 x 1076 for BERT (base and large) and RoBERTa
(base and large), respectively. We select AdamW
as the optimizer. We choose random seeds for each
model and report the average results of five runs.

A.2 Evaluation Metric

The metrics vary across different tasks, expect for
the commonly used accuracy and F1 Score. We
briefly introduce other metrics as follows:

Pearson Correlation Coefficient. The Pearson
Correlation Coefficient is used to calculate the sim-
ilarity of sentence pair from S, and S, as shown
in Equation 10:

E[(Sz — ps,)(Sy — ps,)]

08,08,

(10)

PSz,Sy =

where 1 and o are the mean and standard deviation
for S, and S, respectively.

Spearman Correlation Coefficient. The Spear-
man Correlation Coefficient is another way to cal-
culate the similarity of sentence pair from S, and
Sy. Its format is the same with Pearson one. How-
ever, the samples are transformed into the level
variable, and the calculation is simplified as shown
in Equation 11:

_ 650, (Y — sy
N(N2—1)

(11

where S;g) and S?Si) are sentence sample from S,
and Sy, and N is the total number of the samples.

Matthews Correlation Coefficient (MCC).
The performance of CoLA is evaluated by MCC,
as shown in Equation 12:

TP-TN —FP-FN
V@

Q= (TP+ FP)- (TP + FN)-

(TN + FP)- (TN + FN)

MCC =

(12)

where T'P is true positive, T'N is true negative,
F'P is false positive, and F'N is false negative.

A.3 Performance Degradation

The performance degradation is calculated by Equa-
tion 13:

BaselineScore — OurScore

Negative degradation means an improvement.
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